Repetitions in two-pattern strings

Frantisek Franék Weilin Lu W. F. Smyth

Algorithms Research Group
Department of Computing & Software
McMaster University
Hamilton, Ontario

Canada L8S 4L7

August 2, 2000

Abstract

A recent paper shows that it can be determined in O(n) time
whether or not a given string @ of length n is a substring of an infinite
Sturmian string; further, if @ is such a substring, that the repetitions
in @ can be computed in ©(n) time, generalizing a similar result for
Fibonacci strings. In her M.Sc. thesis W. Lu extended these results
to "two-pattern” strings formed recursively from concatenations of
strings p'q and p’q, where p and q are so-called "suitable patterns”.
Sturmian strings thus constitute the special case when p = a, ¢ =
b, |j—1| = 1, while Fibonacci strings constitute the special case of
Sturmian strings when ¢ = 1. In this paper we significantly relax the
conditions for ”suitable patterns” while showing that the repetitions
can still be determined in ©(n) time, thus significantly extending the
class of strings whose repetitions can be calculated in linear time. This
result is a part of an ongoing two-pronged research effort to identify
and describe the class of strings whose repetitions can be determined
in linear time and to show (or refute) that, in general, repetitions in
any string can be listed in a list of a linear length using a succinct
notation of ”"runs” even though the list itself cannot be calculated in
a linear time.

1 INTRODUCTION

It was shown in [IMS97] that repetitions in Fibonacci strings can be calcu-
lated in linear time. This result was generalized to Sturmian strings, of which
Fibonacci strings form a proper subclass, in [FKS00]. In her M.Sc. thesis
[McMaster University, 2000] W. Lu generalized the result to so-called ”two-
pattern” strings, i.e. strings recursively formed by blocks made of two "suit-
able patterns”. Her class of two-pattern strings properly extended the class
of block-complete Sturmian strings still allowing for a linear computation of
repetitions. In this work we significantly relax the conditions on ”suitable
patterns”, thus properly enlarging the class of "two-pattern” strings.

Given a string @ = x[1..n] of length n, we show that O(n) time is required
to decide whether or not a given string @ is a two-pattern string. Further,
in the case that @ is indeed two-pattern, we show that all the repetitions in
x can be computed in O(n) time.

As in [FKS00] we adopt an algorithmic, rather than a mathematical,
point of view: we imagine always that the string @ is unknown, and that our
objective is to design efficient algorithms to process it, rather than study its
mathematical properties.

We begin by defining "suitable patterns”:

Definition 1 A binary string q is said to be p-regular, p a binary string,
if there are binary strings w # ¢ and v and integers [> 0, n,m > 1 so that
q = (up'vp™®)"u and if =0, then v = ¢.

Definition 2 An (ordered) pair of binary strings p, q is said to be a suitable
pair of patterns if

1. p is primilive, i.e. has no non-trivial borders,
2. p is neither a prefix nor a suffix of q,

3. q is neither a prefiz nor a suffiz of p,

4. q is not p-reqular.

Note: this is a significant relaxation of conditions as used in W. Lu’s thesis
where it was required among other requirements that p is not a substring of
q and that p and g have no common suffix. As we shall see later, most of
combinatorial difficulties we had to overcome in this paper stem from this
relaxation.

Definition 3 A morphism is @ mapping o : a — p'q,b — p’q, 0 < i <
71, p and q a suitable pair of patlerns.

We call o an ezpansion and observe that we may extend it naturally to
arbitrary strings @ = uv of {a,b}" by defining

o(uv) = o(u)o(v).

Definition 4 Let ¥ = {0y,0,,...0,} denole an expansion sequence,
where the choices of p, q, 1 and j for distinct expansions oy and o are
not required to be the same. Suppose that € = o, -+ 03 - 01(a). Then x is
called a two-pattern string of scope) if each o : « — p'q,b — p'q
satisfies |p|, |g| < A.

In Section 2 we show that two-pattern strings with scope A can be rec-
ognized in O(A*n) time; furthermore, that when @ turns out in fact to be
a two-pattern string with scope A, the expansion sequence of @ can also be
generated in O(A*n) time. Then in Section 3 we show how to compute all
of the repetitions in a two-pattern string with scope A in O(Kn) time where
the constant K depends on A.

Recall from [FKS00] that a Sturmian string is said to be block-complete
if and only if it can be generated by a sequence of expansions (Definition 3)
in which

p=a, q=>, |[j—i|=1,and A = 1. (1)

Thus the restrictions (1) identify the special case of block-complete Sturmian
strings. Observe also that the use of the scope does not really restrict the
generality of the problem, since all of the possible two-pattern strings with
scope A are included in the set of two-pattern strings with scope A+1.

We conclude this section with an example. The two-pattern strings gen-
erated from the sequence of expansions

O - a_>(a)267 b—>(a)36 (plzaaqlzbviZZLj:?’)
oy: a— (ab)?bb, b— (ab)?bb (p, = ab,q, =bb,i=2,j =3)

o3: a— ab, b—(a)’b (ps=a,q3;=>b,i=1,7=23)
are as follows:
o1(a) : aab
oy -01(a): ababbbababbbabababbb
o5 -09-01(a): baaababaaabaaabaaababaaababaaabaaabaaababaaababaaab
abaaabaaabaaab

2 THE RECOGNITION ALGORITHM

We begin by outlining our approach to recognizing whether or not « is a
two-pattern string for a given scope A. At each step we identify the elements
of a 4-tuple (p,q,1,7), if it exists, such that

e p and q is a suitable pair of patterns;

o |p|.lg| < X

o for some string y, @ is an expansion of y under the morphism o defined
by the 4-tuple;

The 4-tuple then also defines an inverse morphism, or reduction,

o' p'q—a,p’q—b, (2)
such that ¢~'(2) = y. The recognition algorithm executes simply by per-
forming successive reductions on @, while recording at each step the corre-
sponding 4-tuple. If at any step no 4-tuple can be found within the given
scope A, we conclude that @ is not a two-pattern string for that scope; while
if a sequence of reductions to the letter a can be found, then @ is in fact
a two-pattern string of scope A. It is convenient to introduce the idea of a
2-cover of x; that is, a pair of strings u, v such that & may be constructed
by concatenating both of them, with each string occurring at least once. A
straightforward algorithm may then be outlined as shown in Figure 1. It
utilizes two simple algorithms, PRIMITIV(p) that returns true whenever
the input string p is primitive (in O(|p|) steps), and SUITABLE(p,q) that
returns true whenever p, q is a suitable pair of patterns (in O(|p||q|) steps).
Their design is left to the interested reader.

For n > 2X, Algorithm RECOGNIZE, considers in increasing order of
length the possible choices of p and g, |p|< A, |g| < A. The processing
depends critically on the assumption that p is not a prefix of q: this as-
sumption permits an exact count to be made of the number & of consecutive
occurrences of p = &[l..r] at the beginning of @. Thus for each choice of r
the starting position of the first occurrence of g is well defined, and so the
only possible instances of g are @[kr+1..kr+s], s = 1,2,... ;. For each
of the at most A possible choices of p and g, a simple left-to-right scan of
x determines in O(|&|) time whether there exist integers 0 < ¢ < j such
that (p‘q,p’q) is a 2-cover of . RECOGNIZE, is a recursive algorithm that

4

boolean RECOGNIZE, (@)

— Deal first with trivial cases
if || =1 then return true
if 2 = a/®! or b®! then return false

for r < 1 to nun(A,|z|) do
p < z[l..r] — a candidate for p
if not PRIMITIV(p) then continue forloop for next r
compute the maximum %k such that z[l.kr] = p*
for s < 1 to nmun(X, |z|) do
q < xlkr+1..kr+s] — a candidate for g
if not SUITABLE(p,q) then
continue forloop for next s
if for some 0<:<j, {p'q,p'q} is a
2-cover of
x then
output (p,q,i,7) — which defines o
return RECOGNIZE, (o~'(z))
endif
enfdor
return false — as we did not find a suitable g
endfor
return false — as we did not find a suitable p

Figure 1: Recursive Recognition of a Two-Pattern String

reduces the length of & by a factor of at least 2 at each step, and thus over
all recursive calls, at most 2|x| positions need to be scanned. Based on this
discussion, and knowing that each call to PRIMITIVE requires at most A
steps and each call to SUITABLE at most A\? steps, we state formally the
main result of this section:

Theorem 1 For every fized integer A > 1, Algorithm RECOGNIZE), deter-
mines in O(A'n) time whether or nol ® is a lwo-paltern string of scope X,
and, if so, outputs its reduction sequence, also in O(A*n) time. O

A more detailed investigation of RECOGNIZE reveals that in fact only
one pair of suitable patterns (if found) is ever tried (of course, on each level

of reduction) due to the lexicographic order of generating the candidates for
p and candidates for g. It is, in a sence, a minimal such pair, where the
minimality is first determined by the length of p and then by the length of q.
This observation raises the question whether RECOGNIZE in fact recognizes
all strings defined in 4. Is it possible that there was another suitable pair
(with either a bigger p or the same p but bigger q) forming a 2-cover of @
and allowing the whole recursion to complete successfully, while the recursion
with the minimal pair did not finish successfully? If it was possible, the
algorithm would either not recognize all two-pattern strings, or would have
to include a backracking blowing its complexity to O(n log n), both rather
undesirable. Luckily, the following argument shows that it cannot happen.

So let & be a concatenation of p?q1 and pjl‘lq17 and at the same time a
concatenation of pg"q2 and pYq,, p;,q, and p,,q, being suitable pairs of
patterns, the former ”smaller” than the latter. If |p,| = |p,|, then clearly
p; = p,. It follows that either g, = g, or one of them is p;-regular, a
contradiction. So we have to assume that |p;| < |p,|. If ever a p, located to
the left of a p, overlaps it, then we have a contradiction with the primitivness
of p,. Thus each right end of a p, is located within a g,. Thus p, =
plflq1 .. pfu for some n > 1, u is a prefix of q,, and each k; - - k, equals
either 7; or j;. If we ever had two adjacent p,’s, it would either violate the
primitivness of p; or imply that q, is p,-regular, both forbidden. Therefeore
x = (p,q,)™ for some m, which would reduce @ to a™, which would fail the
algorithm.

3 COMPUTING THE REPETITIONS

In this section we describe the algorithm REP, that, given a two-pattern
string @ with a scope A and its reduction sequence, computes all the repeti-
tions in @ in time O(K,|2|), where the constant K, depends only on A.

The main idea of the algorithm can be described in the following way:
if y is a reduction of @, then all repetitions in @ can be derived through
a formula from repetitions in y and other linear configurations in y. The
repetitions in y and the linear configurations are themselves derived (in a
recursive manner) from repetitions and linear configurations in its reduction.
Since the required contribution at each level of reduction (recursion) is linear,
the whole algorithm finishes the task in a linear time.

First we recall the Crochemore encoding of a repetition [C81]: for a
given string @, (s,[,¢e), e > 2, means that @[s+i] = x[s+jl+i] for any 0 <
i < I[,0 <7 < e Wesay that a repetition (s,/,e) in @ can be shifted
r positions to the right (left) if (s+r,1,¢e) (respectively, (s—r,[,€)) is a
repetition in @. We say further that (s,/,e,r) is a run in @ if (s,[,¢) is a
repetition in @ that can be shifted at most r positions to the right and 0
positions to the left. A repetition (s,l,¢e) (or run (s,[,e,r)) is irreducible if
x[i..1+{—1] is not a repetition.

Before we can present REL,, we need to state and prove eight theorems
Theorem 2-Theorem 9 that are used to show that (i) the algorithm works
correctly (i.e. calculates all runs in @), and (ii) works in a linear time. The
proofs of these theorems are not very hard, though they are extremly tedious
and lengthy, as they have to cover many possibilities that must be dealt with
individually. Thus we decided to skip the proofs for this publication, the in-
terested reader can find the full version of this paper with all proofs at the web
site of one of the authors, at URL http://www.cas.mcmaster.ca/~franya

The following theorem shows that runs with ”small” generators (i.e.
smaller or equal to a fixed k, which for REL, will in fact be 3X) can be
calculated in time that solely depends on & only, and thus we shall have to
concentrate on calculating runs with "large” (i.e. bigger than x) generators.

Theorem 2 There is an algorithm that for any « > 1 and any input bi-
nary string « outputs all runs in & whose generator is of a size < K in
< (28 — 2)8k2 x| steps.

The following theorem summarizes how repetitions of "large” substrings
of @ relate to repetitions and certain linear configurations in y, the reduction
of @.

Theorem 3 Let p,q be a suitable pair of patterns. Let @ be a concatenation
of blocks p'q, p’q, 0 < i < j. Let y be a reduction of determined by the
inverse of the morphism o : a — p'q, b — p’q. Let \ be so that |p|,|q| < \.
Then for every run in @ with a generator of a size > 3X, one of the following

holds:
1. the run is an expansion (by a™') of a run from y;
2. 7 =141 and the run is a square uu derived from a configuration avbva

in y in the following way: uu = p'quwp'p'quwp’, which is a subslring

of p'quwp’wp’, which is an expansion of a---b---a;

3. the run is a square uu derived from a configuration bvavb in y in the
following way: wu = p'qwp'qw, which is a substring of p’quwp'qw,
the expansion ofb---a---;

4. the run is a square ww derived from a configuration bvav that is a suffix
of & in the following way: uu = p'qup'qw, which is a substring of
p'qup'qw, the expansion of b---a---;

5. q = pipy, Py s a prefix of p, and p, is a suffix of p and the run is
a square ww derived from configurations aa, ab, ba, bb in y (uu =
(pop"P1) (PP 1), which is a substring of p,p"qp™p,, which is a sub-
string of p"t'qp ', which is a substring of p'qp'q if r < i, of p'qp’q
ifr <1, of p'qp'q if r < i, and of pqp’q if r < j).

6. g = p,py, P, s a prefiz of p, and p, is a suffix of p and the run is a
square uw derived from a configuration bvaavb in y (uu =
(P2P'q -+ P'Py)(PoP'q - P'Py), which is a subslring of ,
P.p'q---p'qp'q- - p’, which is a substring of p'q---p'qp'q---p'q).

7. P = q.9,, q, is a prefiv of q, q, ts a suffix of g, 1 or j is odd, and
the run is a square ww derived from configurations aa, ab, ba, bb in y
(uu = (q,p"q,)(q,p"q,), which is a subsiring of q,p* *'q,, which is
a substring of gp* t'q, which is a substring of p'qp’q if i = 2r+1, of
p'qp’q if j = 2r+1, of p'qp'q if i = 2r+1, of plqp’q if j = 2r+1).

8. p=4q.9,, q, ts a prefir of q, q, is a suffirx of q, 5 = 2141, and the
run is a square uw derived from a configuration avbva in y (uuw =
(g2p"q,)(gyp"q,), which is a substring of
q,P'q - P'q;)(q:p'q -~ P'q,), which is a substring of
qp'q---p**'q---p'q).

Theorem 4 Let p,q be a suitable pair of patterns. Lel @ be a concatenation
of blocks p'q, p’q, 0 < i < j. Lel y be a reduction of determined by the
inverse of the morphism o : a — p'q, b — p’q. Let \ be so that |p|,|q| < \.
Then for every configuration aubua in & with |u| > 3X, one of the following

holds:

1. the configuration aubua can be derived from aa, ab, or ba configurations
iny: if g = p,bp,y, ap, is a suffix of p, p,a is a prefizx of p, then for
any 0 < r <1, aubua = ap,p"p,bp,p"p,a = ap,p"qp"p,a which is a

substring of p"tilqp™t!;

2. the configuration aubua can be derived from a bb configuration in y:
if ¢ = p,bp,, ap, is a suffix of p, pya is a prefix of p, then for any
0 <r <j, aubua = ap,p"p,bp,p"pia = ap,p"qp"p,a, which is a

substring of p"tlqp™*;

3. the configuration aubua can be derived from aa or ba configurations in
y: if v is odd, 1 > 1, p = q,bq,, aq, is a suffir of q, q,a is a prefix
of q, then forr i_Tl; aubua = aq,p’q,bq,p"q,a = aq,p**'q,a =

aq,p'qa, which is a substring of qp'q;

v

4. the configuration aubua can be derived from ab or bb configurations in
y: if j is odd, p = q,bq,, aq, is a suffix of q, q,a is a prefiz of q, then
for r = 55, aubua = aq,p’q,bq,p"q1a = agyp*t'qia = agyp’qya,

which is a substring of quq;

5. the configuration aubwa can be derived from a buaaub configuration in
y: if g = p,bp,, ap, is a suffix of p, pya is a prefix of p, then aubua =
ap,p'q - P'pibp,p'q - - P'Pra = apyp'q---p'qp'q - - p'pia, which is
a substring of p'Tlq---p'gqp'q---p'Tt, which is a substring of
P'q---p'ap'q---P'q;

6. the configuration aubua can be derived from a -aubua configuration in
y: if j = 241, p = q,bay, aq, is a suffiz of q, qya is a prefiv of q,
then aubua = aq,p'q---p'q;bq,p'q- - p'qra =
aq,p'q---p**'q---p'q,a = aq,p'q---p'q - p'q,a, which is a sub-
string of qp'q---p’q---p'q.

Theorem 5 Let p,q be a suitable pair of patterns. Lel @ be a concatenation
of blocks p'q, p’q, 0 < i < j. Lelt y be a reduction of determined by the
inverse of the morphism o : a — p'q, b — p’q. Let \ be so that |p|,|q| < \.
Then for every configuration buaub in & with |u| > 3\, one of the following
holds:

1. the configuration buaub can be derived from aa, ab, or ba configurations

iny: if @ = piap,, bp, is a suffiz of p, p,b is a prefix of p, then for
any 0 < r < 1, buaub = bp,p"p,ap,p"p,b = bp,p"qp p,b which is a
substring of p"tilqp™t!;

2. the configuration buaub can be derived from a bb configuration in y:
if ¢ = pyap,, bp, is a suffix of p, p,b is a prefix of p, then for any

9

0 <r <, buaub = bp,p"pyap,p"p,b = bp,p"qp"p,b, which is a

substring of p"tlqp t!;

3. the configuration buaub can be derived from aa or ba configurations in

y: if 1 is odd, 1 > 1, p = q,aq,, bg, is a suffix of q, q,b is a prefix
of q, then for r = %; buaub = bq,p"q,aq,p’q,b = bq,p*"*'q,b =

bq,p'q,b, which is a substring of qp'q;

4. the configuration buaub can be derived from ab or bb configurations in
y: if j is odd, p = q,aq,, bq, is a suffiz of q, q,b is a prefiz of q, then

for v = 155, buaub = bgyp'q,aqyp"qib = bgp”t'q b = bayp’a;b,
which is a substring of qp’q;

5. the configuration buaub can be derived from a buaaub configuration
in y: if g = p,ap,, bp, is a suffix of p, p,b is a prefix of p, then
buaub = bp,p'q - p'piap,p'q - p'p;b = bp,p'q---p'gp'q- - p'pib,
which is a substring of p'Tiq---p'gqp'q--- p'Tt, which is a substring of
P'q--p'ap'q - p'q;

6. the configuration buaub can be derived from a -aubuwa configuration in
y: if g = 21+1, p = qqaq,, bq, is a suffiz of q, q,b is a prefix of q, then
buaub = bq,p'q - - p'q,aq,p'q - p'q;b = bg,p'q---p**'q---p'q,b=
bq,p'q---p’q---p'q,b, which is a substring of qp'q---p’q---p'q.

Theorem 6 Let p,q be a suitable pair of patterns. Let @ be a concatenation
of blocks p'q, p’q, 0 < i < j. Let y be a reduction of determined by the
inverse of the morphism o : a — p'q, b — p’q. Let \ be so that |p|,|q| < \.
Then for every configuration buaaub in & with |u| > 3\, one of the following
holds:

1. the configuration buaaub can be derived from aa, ab, ba, or bb config-
uralions in y: if ¢ = pyaap,, bp, is a suffix of p, p,b is a prefix of p,
then for any 0 < r < i, buaaub = bp,p"p,aap,p”"p;b = bp,p"qp p,b
which is a substring of p*Hqp ™t ;

2. the configuration buaaub can be derived from a bb configuration in y:
if ¢ = pyaap,, bp, is a suffix of p, p,b is a prefix of p, then for any
0 <r <y, buaaub = bp,p"p,aap,p"p,b = bp,p"qp p,b, which is a

substring of p"tlqp™t!;

10

. the configuration buaaub can be derived from aa or ba configurations
iny: if i is even, 1 > 2, q = bg,b or q = b, p = a, then for r = %}

buaaub = b(p")aa(p")b = bp*+2b = bp'b, which is a subslring of qp'q;

. the configuralion buaaub can be derived from ab or bb configuralions
iny: if j is even, 3 > 2, q =0bq,b orq=>b, p=a, then forr = %}

buaaub = b(p")aa(p")b = bp?* T2b = bp’b, which is a substring of qp’q;

. the configuration buaaub can be derived from aa or ba configurations in

y: ifiisodd, 1 > 1, p=q,aaq,, bq, is a suffix of q, q,b is a prefix of
q, then forr = Z_ buaaub = b(qu q,)aa(q;p"q,)b = bq,p**'q,b =

bq,p'q,b, which is a substring of qp'q;

. the configuration buaaub can be derived from ab or bb configurations

iny: if j is odd p = q,aaq,, bg, is a suffix of q, q,b is a prefir of

q, then forr = , buaaub = b(qu q,)aa(q,p q,)b = bg,p**+'q.b =
bq,p’ qlb whzch is a substring of qp’q;

. the configuration buaaub can be derived from a buaaub configuration
iny: if q = plaapQ, pr is a suﬂ?x of p, pib is a prefix of p, then
buaaub = bp,p'q - - p'p,aap,p'q - --p'p,b =

bp,p'q - -P'qp'q- - p'p,b, which is a substring of

ptlq---p'gpq---p't', which is a substring of p’q---p'qp'q - p'q;

. the configuration buaaub can be derived from a -aubuwa configuration
iny: if g = 2142, q = bg,b or q = b, p = a, then buaaub =
b)p'q - p'laa(p'q - p')b=bp'q---p**iq---pb= |
bp'q---p’q---p'b, which is a substring of qp'q---p’q---p'q.

. the configuration buaaub can be derived from a -aubua configuration
iny: if g =241, p= qlaaqz, bq, is a suﬂi:z: of q, q,b is a prefiz of
q, then buaaub = bqyp'q - - p'q,aaq,p'q - p'qib =

bq,p'q---p*t'q---p'q,b = bg,p'q---p'q---p'qb, which is a sub-
string of qp'q---p’q---p'q.

Theorem 7 Let p,q be a suitable pair of patterns. Lel @ be a concatenation
of blocks p'q, p’q, 0 < i < j. Let y be a reduction of determined by the
inverse of the morphism a : a — p'q, b — p’q. Let \ be so that |p|,|q| < A.
Then every configuration buaw that is a suffix of @ with |u| > 3X is derived
from a -avbv configuration that is a suffizx of y: if q = q,bq,, p = aq,,

11

J =141, buau = b(q,---q)a(qg,---q) = bg,---qp---q which is a substring
ofap'q---p'q---p'q.

Theorem 8 Let p,q be a suitable pair of patterns. Lel @ be a concatenation
of blocks p'q, p'q, 0 < i < j. Let y be a reduction of determined by the
inverse of the morphism o : a — p'q, b — p’q. Let \ be so that |p|,|q| < \.
Then every configuration aubu that is a suffix of @ with |u| > 3X is derived
from a -avbv configuration that is a suffix of y: if q = qaq,, p = bq,,
J =141, aubu = a(q,---q)b(q,---q) = aq,---qp- - - q which is a substring
ofqp'q---p'q---p'q.

The last missing piece before we can describe the repetition algorithm
involves a description of how to "expand” runs from a reduction y to @
using the inverse of the morphism o : a — p'q,b — p’q. Of course, we
assume that p,q is a suitable pair of patterns.

We shall keep track of a position not in the usual way using index 1 to the
size of the string, but rather in the number of a’s and b’s that precede the
given position. This is necessary, for the expansion is uneven in that a will be
expanded to p'q while b to p’q, hence they will have different lengths. Thus
a run for us is an ordered 4-tuple ((sq4,35), (la,ls), €, (rq, 7)), where the pair
(84, 5) determines the position at which the generator of the run starts (s,
being the number of a’s and s, the number of b’s that precede the position
where the generator starts, hence the start is at the position s,+s,+1), the
pair (l,,[;) determines the length of the generator (i.e. the length is [,+1;),
e is the power of the run, and the pair (r,,r;) determines the number of
positions it can be shifted to the right (i.e. we can shift r,+r; positions to

the right).

p, denotes the number of a’s in p, while p, denotes the number of b’s in
p. Similarly g, and g,. GCS(p,q) denotes the greatest common suffix of
p and g and GCS(p,q). (or GCS(p,q)s) denotes the number of a’s (or
b’s) in GCS(p,q). GCP(p,q) denotes the greatest common prefix of p and
g, and GCP(p,q), (or GCP(p,q),) denotes the number of a’s (or b’s) in
GCP(p,q).

Let ((8'a,8%), (s, l's), €, (r'a,7's)) be a run in y. Then LC =
yls's+sy+, 4] is the last character of the generator of the run, while
RP = §',+s' s+ (I y4+1's)+r's+r'y is the position of the last character in the

12

run in its rightmost shift, or, equivalently, the length of y the run covers
from its leftmost position to its rightmost position.

Now expand y back to @ by the inverse of the morphism «a. Since every
a is expanded to p'q, after the expansion it contributes i(p,+q,) a’s and
i(py+q,) b’s, while each b after the expansion contributes j(p,+q,) a’s and

J(py+a,) 's.

If the generator was not at the beginning of y, it could not be shifted left
for only one reason, namely that the character just before the generator was
different from the last character of the generator. But once we expand these
characters, they have a common suffix p'q, so we can shift left by at least
that much. If the last character of the generator is @ and the generator
has size > 2, then there is still more possibility for shifting left, namely
the GCS(p,q). If the last character of the generator is b and there are at
least 2 characters to the left of the generator, then again there is still more
possibility for shifting left, GC'S(p, q).

¢4, ¢p represent the extra left shift we gain after the expansion:

if (LC = a) then generator ends with ’a’
if (s',+s's = 0) then generator at the beginning of @
co=c, =0
elseif (I', = 1&!'y = 0) then generator contains just one letter - “a’
Co = 1P Tqar & = 1Py Gy
else
Ca = 1P, +q,+GCS(p,q)a, s = ipy+q,+GCS(p,q)s
else generator ends with b’
if (s',+s's = 0) then generator at the beginning of @
Co=c, =0
elseif (s, = 1&s'y, = 0) then there is only ’a’ left of the generator
Ca = 1P, g, ¢ = 1Py +a,
else

Cq = z'pa—l—qa—l-GCS(P7CI)a7 Cp = Zpb—l'qb—l_GCS(pvq)b

Thus, we move the generator to the left as far as it goes
Sa = (801480))Pat(8'at5")q, — cay 6 = (801457) Py +(s'a+5")q, — o

It is clear, that

13

lo = (U'ai4"))po+(Ua+1)q,, s = (Uai+s))py+('a+"s) gy

Even if there was no possible right shift, the extra left shift we gained by the
expansion and the subsequent move of the generator to the left means that
we gained at least (c,, ¢;) shift to the right. If the original shift to the right
stopped at the position RC', then we gain an extra shift to the right defined
by the GC P(p’q, p'q) which is p' + GCP(p, q).

k,, ky represent the extra right shift we gain after the expansion:

if (RC = ly|) then max. right shift ends at the end of y
ke = ky =0

else mazx. right shift doesn’t end at the end of y
ka = ip,+q,+GCP(P,q)u, ks = ip,+q,+GCP(p, q);

It may happen that the extra left shift and the extra right shift together with
the expanded original right shift are bigger than the size of the generator. In
such a case, we have to increment the exponent and decrease the right shift
accordingly.

Thus
ro = (r'ai4+1"7) P+ (s +1"5)q, + ¢o + K,
ry = (1 gt)Py + (o +15)qy + 5 + ks
if ((ra+ms) > (la+1)) then
To=Tq—lg, 7o =15 — lp, e = €'+1
else
e =e.

Now we are ready to describe (in a very high-level language to foster com-
prehension) the repetition algorithm for two-pattern strings with scope A:

REPA(my S Laa7 Lab7 Lba7 Lbb7 Laubua7 Lbuau67 Lbuaaub7 Laubu7 Lbuau7 Luu)7 where
@ is the input two-pattern string with scope A and S its reduction sequence,
while the rest of arguments are output results. L,, is the list of positions in
x where aa configuration occurs, similarly for all others. L,, is the list of
runs in .

1. Set Lyg -+ Ly, to empty sets.

2. If |&| = 1, return. (the base case of recursion)

14

10.

11.

12.

13.

Remove (p,q,t,j) from S producing &’. Reduce @ to y using the
inverse of the morphism a : a — p'q,b — p’q. Set L'y, --- L'y, to
empty sets. Recursively call

REPAY, S’ L'aas L'aby L'vay L'ty L aubuas L'wands L'vwaaubs L' aubus L'buaus
L)

In instructions 4-12 all runs in & are calculated.

Calculate (using the algorithm from Theorem 2) all runs in @ with
generators of size < 3\ and add them to L,,.

Expand all runs from L', into runs in @ using the expansion formula
(as described above) and add them to L.

Derive new runs in & using configurations in L' ., according to The-
orem 3.2 and add them to L,,.

Derive new runs in @ using configurations in L'y,4 according to The-
orem 3.3 and add them to L,,.

Derive new runs in @ using configurations in L'p,,, according to The-
orem 3.4 and add them to L,,.

Derive new runs in @ using configurations in L',,, L'y, L'pe, and L'y
according to Theorem 3.5 and add them to L,,.

Derive new runs in @ using configurations in L'p,4qu according to The-
orem 3.6 and add them to L,,.

Derive new runs in @ using configurations in L',,, L'y, L'y, and L'y
according to Theorem 3.7 and add them to L,,.

Derive new runs in & using configurations in L' 4., according to The-
orem 3.8 and add them to L,,.

In instruction 13 Ly, Lay, Lya, and Ly, are calculated.

Calculate all occurrences of aa, ab, ba, and bb respectively and store
them in L,,, Lap, Lps, and Ly, respectively.

In instructions 14-20 Laypua 1S calculated.

15

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Calculate all occurrences of aubua in @ where |u| < 3\ and store them
in Laubua-

Derive new configurations aubua in & from configurations in L',,, L',
and L'y, according to Theorem 4.1 and store them in Lyyupyq-

Derive new configurations aubua in @& from configurations in L'y ac-
cording to Theorem 4.2 and store them in L,ypy,-

Derive new configurations aubua in @ from configurations in L',, and
L'y, according to Theorem 4.3 and store them in Lyyupyq-

Derive new configurations aubua in @ from configurations in L/,; and
L'y according to Theorem 4.4 and store them in Lyypy,-

Derive new configurations aubua in @ from configurations in L'pyqqup
according to Theorem 4.5 and store them in Lgypy,-

Derive new configurations aubua in @ from configurations in L', pu,
according to Theorem 4.6 and store them in Lgypy,-

In instructions 21-27 Lyyauw s calculated.

Calculate all occurrences of buaub in @ where |u| < 3\ and store them
in Lbuaub-

Derive new configurations buaub in @ from configurations in L',,, L',
and L'y, according to Theorem 5.1 and store them in Lyyqup.

Derive new configurations buaub in @ from configurations in L'y ac-
cording to Theorem 5.2 and store them in Lpyqup-

Derive new configurations buaub in & from configurations in L',, and
L'y, according to Theorem 5.3 and store them in Lyyqup.

Derive new configurations buaub in @ from configurations in L', and
L'y according to Theorem 5.4 and store them in Lpyqup-

Derive new configurations buaub in & from configurations in L'pyqqup
according to Theorem 5.5 and store them in Lp,qy-

16

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Derive new configurations buaub in @ from configurations in L', pu,
according to Theorem 5.6 and store them in Lp,qyp.

In instructions 28-37 Lyyaaus 15 calculated.

Calculate all occurrences of configurations buaaub in @ with |u| < 3\
and store them in Lpyqqus.

Derive new configurations buaaub in @ from configurations in L',,, L',
L'q, and L'y, according to Theorem 6.1 and store them in Lpyqqup-

Derive new configurations buaaub in @ from configurations in L'y, ac-
cording to Theorem 6.2 and store them in Ly,qqus-

Derive new configurations buaaub in @ from configurations in L’,, and
L'y, according to Theorem 6.3 and store them in Lpyqqup-

Derive new configurations buaaub in & from configurations in L', and
L'y according to Theorem 6.4 and store them in Lpyqqus-

Derive new configurations buaaub in @ from configurations in L’,, and
L'y, according to Theorem 6.5 and store them in Lpyqqup-

Derive new configurations buaaub in & from configurations in L', and
L'y according to Theorem 6.6 and store them in Lpyqqup-

Derive new configurations buaaub in @ from configurations in L'pyqqup
according to Theorem 6.7 and store them in Lyyqqus-

Derive new configurations buaaub in & from configurations in L', 5,
according to Theorem 6.8 and store them in Lyyqqus-

Derive new configurations buaaub in & from configurations in L', pu,
according to Theorem 6.9 and store them in Lyyqqus-

In instructions 38-39 Lyy., 15 calculated.

Calculate all occurrences in @ of configurations buau with |u| < 3X and
store them in Lpyqy.

Derive new configurations buau in & from configurations in L', ac-
cording to Theorem 7 and store them in Ly,

17

In instructions 40-41 Lyyupy is calculated.

40. Calculate all occurrences in @ of configurations aubu with |u| < 3X and
store them in L upy.

41. Derive new configurations aubu in @ from configurations in L', ac-
cording to Theorem 8 and store them in L,

42. Return.

Theorem 9 For any integer A > 1 there is an integer constant C so that
for any two-pattern string & with a scope < X and its reduction sequence S
given as inpul to REP, the algorithm REP, in < Cylx| steps calculates all
output arquments with

1. |Laa|, |Lab, |Lbal, |Lip| < |2|;

2. |Lawbual, |Lbuaud]; |Lbuaaus| < |2] < (6A+17)(A+1)]2];

3. | Lawbul, | Lbuan| < (120442

4o | Lun] < ((23M = 2)144X2 4 8(6A+1T)(A+ 1)+ 2(120+4)+ 16)]x|.

Proof It is clear that |L..(2)| < |x|, |[La(®)| < ||, |Li(2)] < ||, and
| Lip()] < |a].

Lyupua 1s computed in instructions 14-20 of the algorithm. s denotes the
number of p’q blocks in @, while [the number of p’q blocks. Then || =

s(ilpl+lql) + {(jlpl+ql), while |y| = s+1.
As the induction hypothesis assume that both |Laubua (2)], | Lbuaaus(2)] < A|z|
for any z of size smaller than .

In instruction 14, it can be easily seen that we can compute at most (3A42)|z|
new configurations.

In instruction 15, from each element of each list L',,, L'y, and L'y, we can
derive at most ¢ new configurations aubua, thus from each list we can derive
at most t|y| = is+il < |a|, thus in instruction 15 we can derive at most 3|@|
new configurations.

In instruction 16, we can derive at most 2j|y| = 2j(s+!) < 2|«| new config-
urations.

18

In instruction 17, we can derive at most 2|y| < 2|x| new configurations.

In instruction 18, we can derive at most 2|y| < 2|x| new configurations.
£
Ig|+1

In instruction 19, we can derive at most |g|A|y| < |g|A new configura-
tions.

||
IPl+1

In instruction 20, we can derive at most |p|A|y| < |p|A new configura-

tions.

Note, that the conditions for deriving new configurations aubua from ele-
ments of L'yyqaus (Theorem 4.5) and from elements of L';yupuq (Theorem 4.6)
are mutually exclusive, so we either derive new configurations in instruction
19 and nothing in instruction 20 or vice versa.

First consider the case when instruction 19 derives the new configurations

while instruction 20 does not. Thus |Lyusua ()| < (3A+11)|2| + A|c|1c|1-|y1|m|'

S0 [Lausua(@)] < Ala| provided Alz| > (3A+11)|a| + Agh|a|, or A >
(3A+11)(|g|+1), which is satisfied by any A > (3A+11)(A+1). For the case

when instruction 20 derives the new configurations while instruction 20 does
not just replace |g| with |p| to obtain the same result.

Lyyaaus 1s computed in instructions 28-37 of the algorithm.

In instruction 28, it can be easily seen that we can compute at most (6A44)|z|
new configurations.

In instruction 29, from each element of each list L',,, L',, L'y, and L'y, we
can derive at most ¢ new configurations aubua, thus from each list we can
derive at most i|y| = is+il < ||, thus in instruction 29 we can derive at
most 4|&| new configurations.

In instruction 30, we can derive at most j|y| = j(s+() < |&| new configura-
tions.

In instruction 31, we can derive at most 2|y| < 2|x| new configurations.
In instruction 32, we can derive at most 2|y| < 2|x| new configurations.
In instruction 33, we can derive at most 2|y| < 2|x| new configurations.

In instruction 34, we can derive at most 2|y| < 2|x| new configurations.
||
Ig[+1

In instruction 35, we can derive at most |g|A|y| < |g|A new configura-

tions.

19

||
Ig[+1

In instruction 36, we can derive at most |g|A|y| < |g|A new configura-
tions.

||
IPl+1

In instruction 37, we can derive at most |p|A|y| < |p|A new configura-

tions.

Note, that the conditions for deriving new configurations buaaub from ele-
ments of L'yyqqus (Theorem 4.7) and from elements of L',upua (Theorem 4.8
and Theorem 4.9) are mutually exclusive, so we only derive new configura-
tions in exactly one of the instructions 35-37.

First consider the case when either instruction 35 or 36 derives the new config-

urations. Thus | Lyeas ()] < (6A+17)]@]+ Az |2]. S0 [Livaaus ()] < Al

provided Alz| > (6)417)|2| + Aglis|2|, or A > (6A+17)(|g|+1), which is

satisfied by any A > (6A+17)(A+1). For the case when instruction 37 derives
the new configurations just replace |g| with |p| to obtain the same result.

Loy 1s computed in instructions 40-41 of the algorithm. As the induction
hypothesis assume that |Lyuua(2)] < (12A4+4)|2| for any z of size smaller
than |&|.

In instruction 40, it can be easily seen that we can compute at most (6A+42) ||

new configurations.

In instruction 41, we can derive at most (12A+4)|y| < (6A+2)|x| new con-
figurations.

Hence | Lous ()] < 2(6A+2)|2| = (120+4)|].

Ly, 1s computed in instructions 4-12 of the algorithm. As the induction
hypthesis we assume that |L,,(2)| < B|z| for any z of size smaller that |z|.

In instruction 4, according to Theorem 2, we compute at most (23}*! —
2)72)?|«| new runs.
In instruction 5, we expand at most Bly| < 2|z| new runs.

In each of instructions 6, 7 we derive at most (6A+17)(A41)|y| <
(6A+17)(A+1)|x| new runs.

In instruction 8, we derive at most (12A+4)|y| < (12A+4)|x| new runs.
In instruction 9, we derive at most 45|q||y| < 4|z| new runs.

In instruction 10, we derive at most |q|(6A+17))(A+1)|y| < (6A+17)|| new

rumns.

20

In instruction 11, we derive at most 4|p||y| < 4|&| new runs.

In instruction 12, we derive at most |p|(6A+17)(A+1)|y| < (6A417)|2| new

rumns.

Thus, |Ly.(2)] < Ble|+ (22" — 2)72X% 2|+ 4(6A+17) (A1) ||+
(12X+4)|2z|+ 8|z|, which is true whenever B > (231 — 2)144)\%2+
8(6A+17)(A4+1)+ 2(12X4+4)+ 16.

We have already established or it is easy to see that there is an integer
constant D so that all instructions in the algorithm require < D|@| steps,
with the exception of the recursive call. Thus, we are looking for a constant
Cy such that Cy|z| > D]z|+ Cily|. Since |y| < ||, any Cy > 2D will do.
O

References

[C81] Maxime Crochemore, An optimal algorithm for computing
the repetitions in a word, /PL 12-5 (1981) 244-250.

[FKS00] Frantisek Franék, Ayse Karaman & W. F. Smyth, Repetitions
in Sturmian strings, 7CS 249-2 (2000) to appear.

[IMS97] C.S.lliopoulos, Dennis Moore & W. F. Smyth, A characteriza-
tion of the squares in a Fibonacci string, 7CS 172 (1997)
281-291.

21

