
Simulation of Petri Nets in Rule-Based Expert System Shell
McESE

F. Franek and I. Bruha

Dept of Computer Science and Systems, McMaster University
Hamilton, Ont., Canada, L8S4K1

Email: {franya | Bruha}@mcmaster.ca

Abstract

There exist various tools for knowledge representation and modelling in artificial intelligence. We have
designed and built a software tool called McESE (McMaster Expert System Environment) that comprises three such
represen tations: pro duction systems, n eural nets, an d Petri nets. T he first two tools are alm ost com plemen tary in
their strengths and weaknesses: neural nets are very good in noisy-data processing but weak in high-level reasoning,
production systems exhibit reasonably good performance in high-level reasoning but are weak in handling
imprecise and uncertain data. Petri nets, another widely used paradigm, are useful in modelling concurrent processes
and sim ulation of discrete pro cesses. Co nseque ntly, som e research ers are trying to com bine these tools in ord er to
util ize the strength of each system.

This paper describes the way of simulating Petri nets in the expert system shell McESE.

1. Motivation

McESE (McMaster Expert System Environment)
[F], [FB1] is an interactive environment for
design, creation, and execution of backward
chaining rule based expert systems. The main
objectives of the project focused on two aspects:
extension of regular languages so they be able to
deal with rule bases and use them (at this time
two particular extensions are at use, Common-
Lisp extension and C extension), and a way to
deal with uncertainty.

The first objective is reached by
providing the language being extended by a set of
built-in functions dealing with the rule bases. In
case of CommonLisp these functions themselves
written in C are ported to CommonLisp via its C
interface and so the user of McESE-CommonLisp
has no way of distinguishing them from the built-
in functions of CommonLisp and that is why we
can call it an extension of CommonLisp. In case
of C there was no problem to add these functions
to the set of functions used in the interactive
environment of McESE-C.

The other objective is reached by the
particular design of McESE rules utilizing
weights, threshold directives, and CVPF's
(Certainty Value Propagation Function). McESE
rules have the following syntax:

R: T1 & T2 & & Tn ==F==> T

T1,...,Tn are left-hand side terms of the rule R and
T is the right-hand side term of the rule R. A term
has the form:

weight * predicate [op cvalue]

where weight is an explicit certainty value,
predicate is a possibly negated (by ~ or -) predic-
ate possibly with variables, and op cvalue is the
threshold directive (op can either be >, >=, <, or
<=, and cvalue is an explicit certainty value). If
the weight is omitted it is assumed to be 1 by de-
fault. The threshold directive can also be omitted.
The certainty values can be either integers or reals
(in any range). The default is reals in the range
0..1 .

The value of a term depends on the
current value of the predicate for the particular in-
stantiation of its variables; if the threshold
directive is used, the value becomes 0 (if the

current value of the predicate does not satisfy the
directive), or 1 (if it does). The resulting value of
the term is then the value of the predicate modi-
fied by the threshold directive and multiplied by
the weight.

A rule is eligible to fire if the value of all
its left hand side terms is non-0. The firing of
McESE rule consists of assigning the new
certainty value to the predicate of the right hand
side term (for the given instantiation of variables).
The value is computed by the CVPF F based on
the values of terms T1,...,Tn . In simplified terms
the certainty of the left-hand side terms
determines the certainty of the right-hand side
predicate. There are several built-in CVPF the
user can use (min, max, average, weighted ave-
rage), or the user can provide his/her own
custom-made CVPF's. If the CVPF is omitted in a
rule, min is used by default. This approach allows,
for instance, with the default certainty values to
create expert systems with fuzzy logic used to
deal with uncertainty.

With McESE, as with any rule-based
expert system, the problem which of the eligible
rules should be fired arises. This is dealt with by
what is commonly known as conflict resolution.
McESE provides the user with three predefined
conflict resolution strategies: min (where one of
the rules leading to the minimal certainty value is
fired), max (where one of the rules leading to the
maximal certainty value is fired), and rand (where
a randomly chosen rule is fired). The user has an
option to use his/her own conflict resolution
strategy.

To be able to make McESE to a useful
tool for modelling and analysis of general
systems, we were faced with the need to extend
McESE to include neural nets and Petri nets. In
[FB2] we described how neural nets can be
simulated within McESE. Though the simulation
was possible, it turned out that for any practical
purposes the neural nets needed tended to be
rather big and their execution in simulated form
was kind of slow. Thus the new version of
McESE has built-in means to define and train
neural nets [K]. Of course only a few types of
neural nets are available directly, thus for any
other type the user would have to revert to the

simulation approach as described in [FB2].

Since Petri nets come in many varieties
and forms, and for many practical applications
they do not tend to be as big as practical neural
nets, rather than extending McESE yet more to
deal with Petri nets, we decided to provide the
user with the means to use the functionality of
McESE (with some small modifications) to
define, execute, and analyze Petri nets.

This paper deals with the ways Petri nets
can be defined, executed, and analyzed within the
framework of McESE. Due to the briefness of this
exposition we cannot go into very technical
details (that are unavoidable for implementation),
but we hope that the reader gains clear ideas about
the concept of how Petri nets can be simulated in
McESE, the strong and weak points of our
approach, and the usability of such a system.
Since neither of the authors works in the area of
pure or applied Petri nets research, we do not
think that we can add anything significant to this
field. What we are offering here is a software tool
that can be conveniently used to design, execute,
and analyze Petri nets.

2. Simulation of general Petri nets

The first task in creating a Petri net is to
describe its topology. The net consists of places
and transitions with oriented arcs going from the
input places of a transition to the transition and
from the transition to the output places of the tran-
sition.

We use the syntax of McESE rules to des-
cribe the topology of the Petri net being
simulated. Each rule represents a single (unique)
transition of the net, the left-hand side constant
predicates (i.e. with no variables) denotes both the
input and output places of the transition. The
unique right-hand side constant predicate denotes
the transition.

Let us illustrate this approach on a small
example. Consider the transition T of a Petri net
(Fig. 1.). The corresponding McESE rule des-
cribing the topology of the transition T may look
thing like this (as we shall see later we will have
to refine the notation, for we need to capture more

than just the topology of a transition, but for the
illustration at this point it suffices):

R: 2*P1&P2& 2*P3 & ~P1 & 3*~P4 & ~P5 ==> T

The information carried by the syntax of the rule
R does really describe the topology of the tran-
sition T, since the non-negated predicates of the
left-hand side of R, i.e., P1, P2, and P3, define the
input places of T , while the negated predicates,
i.e. P1, P4, and P5, define the output places of T.
The weights associated with the predicates (recall
that when omitted the default value is 1) define
the number of arcs going to or from the places. In
particular, there are 2 arcs going from P1 to T and
one arc going from T to P1. Thus, we can see that
in such a manner we can describe any transition
of a general Petri net.

Recall that a transition is enabled if every
input place of the transition posses at least as
many tokens as there are arcs going from that
place to the transition. If a transition is enabled it
may be chosen (based on some other criteria as
we shall discuss later) to fire. If a transition fires
the tokens are moved along the arcs from the
input places to the output places. There are some
conceptual restrictions needed: all tokens are
deemed equivalent so it does not matter which
token is moved where and the act of firing is
considered an atomic event that takes no time
from the point of view of the execution of the
Petri net.

Thus, a McESE rule representing a transi-
tion of a general Petri net must capture not only
the topology of the transition but also the condi-
tion describing when the transition is enabled. For
example, the rule R described above must be refi-
ned to the following form using threshold direc-
tives:

R: 2*P1[>=2] & P2 & 2*P3[>=2] & ~P1[>=0] &
 3*~P4[>=0] & ~P5[>=0] ==> T

The tokens, or to be more precise, the
number of tokens a place holds, are represented
by its certainty value. Hence, first we have to tell
the McESE compiler what is the range and type of
certainty values by McESE compiler directives:

#cv type integer
#cv range [1..infinity]

In fact, as the default type of certainty values is
real and the default range is 0..1, the rule R would
not compile in the way it was originally
presented.

Let us discuss the new form of the rule R
to explain the significance of the use of the thres-
hold directives. As we already mentioned, the cer-
tainty value of a place represents the number of
tokens the place holds. Thus, for instance, the
threshold directive [>=2] used with P1 will
evaluate to 1 if and only if the current value of P1

is >= 2 (i.e. P1 holds 2 or more tokens); in other
words 2*P1[>=2] will evaluate to 1 if and only if
P1 holds at least 2 tokens. The threshold directives
[>=0] used with the output places will always
evaluate to 1 no matter what the current value of
the output place is. Thus, if all the values of the
left-hand side expressions come to non-0, the
transition is enabled, otherwise it is not. In this
way the rule captures both the topology of the
transition and the condition that makes the transi-
tion enabled.

The McESE rules in the form we just
described are still not fully suitable to our goal of
simulating the simple Petri nets. We have to be
able to execute such a net, or put it more simply,
we have to have means to fire a particular transi-
tion. At this point we cannot just simply rely on
the evaluation (firing) mechanism of McESE's in-
ference engine, since it can only modify the cer-
tainty value of the right hand side predicates.
Nevertheless to stay within the philosophy of
McESE and its operation, we provide yet another
predefined CVPF with a specific name trans that
actually modifies the certainty values of the left--
hand side predicates according to the movement
of tokens as prescribed by the rules of firing for

general Petri nets. In particular, the rule R looks in
its proper form as follows:

R: 2*P1[>=2] & P2 & 2*P3[>=2] & ~P1[>=0] &
 3*~P4[>=0] & ~P5[>=0] =trans=> T

If and when the rule R is fired, the value of P1 is
decremented by 2 (based on the weight associated
with P1), the value of P2 is decremented by 1, and
the value of P3 is also decremented by 2. Then the
value of P1 is incremented by 1, the value of P4 is
incremented by 3, and the value of P5 is incre-
mented by 1 as well. In this fashion, the tokens
have been distributed according to the topology of
the transition.

After a general Petri net has its topology
fully defined and before it may start executing we
need to make the initial marking, i.e. to place
tokens to places we desire.

The mechanism of McESE in fact al lows
us to have any number of markings and engage
them at any time we desire. To do so we have to
define a special constant predicate TOKEN. It is
going to be a level-0 predicate (see [FB1]), and
hence it has to have a function associated with it.
So we have to define such a function (if we are
using McESE-CommonLisp the function must be
defined in CommonLisp, if using McESE-C, it
must be defined in C). Because TOKEN is a
constant predicate, the corresponding function
TOKEN has no arguments and we make sure that
it always returns 1. Now we are ready to define a
marking in a very simple way using the ordinary
McESE mechanism. For example,

2*TOKEN ==> P1

3*TOKEN ==> P2

TOKEN ==> P3

P1 & P2 & P3 => Marking1

describes a possible initial marking that relies on
the fact that the initial values of all predicates are
set to 0. The execution of McESE inference en-
gine activated by eval(Marking1) (see [FB1]) be-
fore we have started execution of the Petri net will
cause the value of P1 be set to 2, the value of P2

be set to 3, the value of P3 be set to 1, regardless
of their current values.

Sometimes we may want to reset the

marking. We have to add rules of the type

TOKEN ==> ~Q

that set the value of Q to 0. Such a marking then
can be executed at any time and will set the values
of all places to either zero or the number of tokens
desired. In this fashion, the rule base can contain
more than one marking.

The last set of rules we have to add are
the rules that make the execution of the net
possible. Let T1,...,Tn be all transitions of the net
being simulated.

T1 ==> Net
T2 ==> Net
...
Tn ==> Net

where Net is a constant predicate.

A small loop of the form (here presented
in a pseudo-code)

while (value of Net != 0)
 eval(Net, rand)

will cause the inference engine to evaluate Net, to
do so it has to evaluate the transitions T1,...,Tn, so
from the transitions that are enabled it randomly
chooses one and fires it. As long as this can go on
it does. The process stops when no transition is
enabled and can fire in which case the value of
Net is set to 0 by the inference engine. As we
mentioned before, rand is a conflict resolution
strategy built in McESE. If the user desires a dif-
ferent way of choosing which among enabled
transitions is to fire, a custom made function can
be used with the eval function.

To summarize what we have discussed up
to now: we have means to describe the topology
of a general Petri net, to set/reset its marking, to
fire a single transition (by eval(T, .)), or to
execute the whole net.

3. Analysis of Petri nets

The fact that we can fire a single
transition allows the user to investigate in run-
time if that particular transition is live with
respect to the given marking.

This brings us to the other important topic
concerning Petri nets, their analysis.

At this stage of McESE project no static
analysis is yet possible. But the fact that the Petri
net is described by a McESE rule set that is com-
piled to a linked data structure gives us means to
perform such static analysis concerning many im-
portant properties of Petri nets in the near future.
In particular we plan to add computation of reach-
ability tree [P] for a given net. That would allow
static analysis of safeness, k-boundedness, and
conservation.

Nevertheless, even at this stage McESE
can still be a valuable tool for analysis of Petri
nets.

For example, the user might want to know
if the net he/she just designed is safe (or more
generally if it is k-bounded). Although McESE
cannot perform yet the analysis of the net and
answer the question, it can do so in run-time. If
the range of cv is defined [0..1], the inference
engine in its debugging mode would alert the user
if at any point of execution a certainty value of a
place (i.e. the number of tokens) is out of range.
In the same manner the cv range [0..k] can be
used to test the net in run-time whether it is
k-bounded.

Another of often desired properties of
Petri nets is conservation. A Petri net is strictly
conservative with respect to an initial marking if
the number of tokens remains constant for all
reachable markings. This idea can be generalized
by having weights assigned to the places and
requiring that the sum of the weights of the tokens
(a token assumes the weight of the place it is
residing at) remains constant. In either case
McESE can provide run-time checking of either
form of conservation.

4. Restricted Petri nets.

The usual restrictions considered are in
fact restrictions on topology of transitions:
ordinary Petri nets (no multiple arcs are allowed),
nonreflexive Petri nets (no self loops are allowed,
the input place of a transition cannot be its output

place), and restricted Petri nets (nonreflexive or-
dinary Petri nets). As such they pose no problems
for their simulation in McESE.

Petri [P] considered, what we could call
now a restriction, a different rule for execution. A
transition was enabled if in addition to the input
places having enough tokens, the output places
were empty. McESE allows for such a Petri net in
an easy modification. Consider again the rule R in
its last form as presented above. The threshold di-
rectives associated with output places had all form
[>=0] to make the corresponding term always 1. If
we change the threshold directives to [>=1] we
can change the condition when the transition T is
enabled. E.g., assume P4 does not posses a token,
i.e. its certainty value is 0. Then the value of ~P4

is 1, and so the value of 3*~P4 is 3 and the value
of 3*~P4[>=1] is 1. On the other hand, if P4 does
posses token(s), its value is >= 1, hence the value
of ~P4 is 0, and the value of 3*~P4[>=1] is 0.
Thus, a transition in this from would be enabled
only if all its output places had no tokens in them.

5. Conclusion

The paper describes the way of emulating
Petri nets in McESE. This software tools [FB1],
[F] was originally designed and built as an expert
system shell. In order to utilize the strength
various AI knowledge representations and thus
the system a hybrid one, we firstly added an
emulator of neural nets (multilayer perceptron)
within the rule-based expert system shell [FB2].

Lately, we have incorporated an emulator
of Petri nets into McESE, thus completing on
edge of the "triangle" of various knowledge
representations (Fig. 2). Emulating neural nets in
terms of Petri nets can be found e.g. in [A]. [E]
displays a method of building production rules by
exploiting a multilayer perceptron as a classifica-
tion oracle (the dotted arc in our triangle).
Because Petri nets importance for theoretical
computer science as well as for simulation of
discrete processes in on the rise, we found a need
to augment McESE to handle Petri nets in
addition to production systems and neural nets
(the bold arc). Consequently all three modelling
paradigms may thus be exploited within one

system McESE.

Fig. 2. A "triangle" of knowledge representations.

References

[A] P. Abellard et al., A data flow Petri net
approach to neural networks, in [M],
1991

[E] M. Egmont-Petersen, Homomorphic
transformation from neural nets to rule
bases, in [M], 1991

[F] F. Franek, McESE-FranzLISP: McMaster
Expert System Extension of FranzLisp, in:
Computing and Information, North-
Holland, 1989

[FB1] F. Franek, I. Bruha, An environment for
extending conventional programming
languages to build expert system applica-
tions, Proc. IASTED Conf. Expert
Systems, Zurich, 1989

[FB2] F. Franek, I. Bruha, Simulation of neural
nets in expert system environment
McESE, in [M], 1991

[M] E. Mosekilde (ed.), Modelling and
Simulation, Proc. European Simulation
Conf, Copenhagen, 1991

[K] D.L. Knyf, Incorporation and training of
neural networks in McESE expert system,
M.Sc. Thesis, Dept. Computer Science
ans Systems, McMaster univ, 1993

[P] J.L. Peterson, Petri net theory and the
modelling of systems, Prentice-Hall, 1983

