

Presenting JECA: A Java Error Correcting Algorithm for the Java Intelligent
Tutoring System

Edward R. Sykes

School of Applied Computing and
Engineering Sciences,

Sheridan College,
1430 Trafalgar Road, Oakville,

Ont., Canada, L6H 2L1
email: ed.sykes@sheridanc.on.ca

phone: (905) 845-9430
fax: (905) 815-4035

Franya Franek
Department of Computing and
Software, Faculty of Science,

McMaster University,
1280 Main Street W., Hamilton,

Ont., Canada, L8S 4L8
e-mail: franek@mcmaster.ca

phone: (905) 525-9140

Abstract

 Error recovery in compiler design and construction is a well-
known area of Computer Science. Traditionally, the compiler’s
responsibility has been to identify all possible errors in one pass
of the source code in as short a period of real time as possible.
However, in certain situations, it is more desirable to have the
compiler act ‘intelligently’ by making ‘intelligent’ code changes
and by offering suggestions to the author of the source program.
This research paper examines error recovery in a specific
context involving small Java programs. Furthermore, this paper
presents JECA (Java Error Correction Algorithm), a practical
algorithm for a compiler that error corrects by intelligently
changing code, and identifies errors more clearly than other
current-day compilers. The ultimate goal of this research is to
provide a foundation for the Java Intelligent Tutoring System
(JITS) currently being field-tested.

Key Words
Intelligent Tutoring Systems, Computational Intelligence,
Web Technologies, e-Learning.

1. Introduction
 Today’s compilers perform error recovery but still
maintain a high level of terse error messages as feedback.
These error recovery mechanisms act in much the same
way as traditional systems in that they attempt to identify
as many of the errors in the program as possible in the
shortest amount of time. For instance, the default
philosophy for error correction implemented in many
compilers (e.g., C, C++, Java, Pascal, Turing, etc.) is to:
i) report the presence of errors accurately;
ii) recover from each error quickly in order to detect

subsequent errors; and
iii) not significantly slow down the processing of correct

programs.
However, in certain circumstances, as in learning to

program, it is more desirable to have the compiler act
‘intelligently’ and make ‘intelligent’ changes or
suggestions to the author of the source program. This
research paper examines error recovery in a specific
context involving small Java programs. A review of
various tools is presented including JFlex, CUP, and
JavaCC [1]. Furthermore, this paper presents JECA – a

practical algorithm for a compiler that error corrects by
intelligently changing code and identifies errors more
clearly than other current-day compilers. The goals of the
proposed system are to:
i) intelligently recognize the ‘intent’ of the student;
ii) analyze the student’s code submission;
iii) ‘auto-correct’ where appropriate (e.g., converting

“While” into the keyword “while”, “forr” into “for”,
etc.);

iv) learn individual student’s misconceptions, and
categorizes the types of errors he/she make;

v) produce a ‘modified code’ that will compile (or bring
the code closer to a state of successful compilation),

vi) produce a ‘modified code’ that will meet the program
specifications (or bring the code closer to meeting
program specifications); and

vii) prompt the student programmer for information when
necessary via well-defined hint support structures.

 The remainder of this paper provides a closer look at
how these goals are achieved in JECA. In order to
support the rationale for JECA, an investigation of
appropriate tools including JFlex, CUP, and JavaCC.
These tools are discussed in relation to their error
recovery capabilities and potential to implement specific
error recovery algorithms. The JECA implementation is
presented with its supporting algorithms. Lastly, the
integration of JECA with the Java Intelligent Tutoring
System is discussed including specific examples using the
embedded hint generation infrastructure. The purpose of
JECA is to give clear and helpful feedback to the student.
In this way, JITS supports students to be able to learn
programming better and more enjoyably.

2. The Implementation: The Java Error

Correction Algorithm (JECA)
JECA is supported by two distinct components. The

first component involves scrutinizing the identifiers that
the scanner has tokenized by comparing them to
keywords and to currently validated identifiers. The
second component has the parser perform a rigorous deep
level error recovery technique implemented by a variation
on the Burke-Fisher Error Recovery algorithm [2]. This

algorithm is explained in greater depth in the following
sections.

2.1 First Component of JECA: Error Recovery in

the TokenManager (Scanner)
It is sometimes desirable to change what the scanner

has interpreted to a single keyword. For example,
suppose the beginner programmer submitted the
following code:

public class Test {
 public static void main() {
 Int sum = 0;
 For (iint i=0; i<=10; i++)
 sum = sum + i;
 System.out.println(“Sum is:” + sum);
 }
}
There are 3 distinct syntax errors. The “Int sum=0;”
statement, the “For”, and the “iint”. It is desirable to
present the appropriate information to the student
programmer in a way that is both supportive and direct.
In this example, the student mistakes the “Int” and
“For” for the keywords “int” and “for” respectively. A
typical compiler will produce the following:

Test.java:5: ')' expected
 For (iint i=0; i <=10; i++)
 ^
Test.java:5: not a statement
 For (iint i=0; i <=10; i++)
 ^
Test.java:5: ';' expected
 For (iint i=0; i <=10; i++)
 ^
3 errors

The error recovery algorithm presented in this paper,
JECA, attempts to understand the ‘intent’ behind the
student’s program and by prompting the student, and
behind-the-scenes, modifies the submitted program as
follows:
public class Test {
 public static void main(String args []){
 int sum = 0;
 for (int i=0; i <=10; i++)
 sum = sum + i;
 System.out.println("Sum is:” + sum);
 }
}
generating the anticipated result:
Sum is:55

The student will receive prompts for each ‘assumption’
the JECA intent recognition module is performing. For
example, on encountering the ‘Int’ in line 3, a message
will be produced “I found an ‘Int’. Should I replace it
with ‘int’ ? (y/n)” In this fashion, the user of the system
is fully aware of all changes that are taken place on the
submitted code. This philosophy is different from other
compiler designs which make changes to the source
program without notifying the user [3, 4]. A supporting
mechanism used to do this is depicted in figure 4.

_keyword

Keyword
_name
_id
_variation[]
_count[]
_variation_count “abstract”

10
...
...

_name
_id
_variation

_count

_variation_count

“for”

49

3

...“For” “FOR” “fro”

...2 3 1

“volatile”
98
...
...

Figure 4. Keyword object and _keyword data structure

A Keyword object houses all attributes and

functionality associated with a keyword in the language.
It contains the name of the keyword (i.e., String _name),
the symbol table ID for the keyword (i.e., int _id),
dynamically learned variations on the keyword (i.e.,
String _variation []), the number of times these
corresponding variations have occurred (i.e., int _count
[]), and the total number of variations learned at this time
(i.e., int _count). The Keyword object contains useful
information that can be used for statistical analysis and
capturing a representative model of the student of the
system. By keeping track of the types of errors the
student makes and the number of times these types of
errors occur, the system is in a good state to offer
meaningful feedback to assist the student to program
better. Given the lexeme (the identifier to be validated as
an identifier or as a keyword) the algorithm for this
process is presented below:
loop

i = 0
go through the _keyword array
extract the keyword name at position i

 d = Edit_Distance (lexeme to keyword)
if (d <= THRESHOLD)

 add it to a refinement collection
 i++
end loop
perform refinement on refinement collection

JECA uses an additional object called ‘BestMatch’ to
assist in refining the search for appropriate potential
keyword matches. The refinement collection is a Java
Collection of BestMatch objects which represents the best
matches of all the keywords that are similar to the
identifier in question. The refinement process proceeds
and applies additional rules and constraints to narrow the
number of BestMatches until it is determined that the
identifier is indeed a valid identifier or should be
converted into a keyword. Once this is determined, the
TokenManager returns the appropriate Token to the

parser. A figure of the BestMatch object is presented in
figure 5.

BestMatch

_keyword

_lexeme

_edit_distance

_transformation_string

_name
_id
_variation

_count

_variation_count

“for”

49

3

...“For” “FOR” “fro”

...2 3 1

“Forr”

2

“~| |”

Keyword

Figure 5. BestMatch object – used for the refinement
process in determining an identifier or a keyword.

A member of the BestMatch object is

_transformation_string. This member receives the value
from the Edit_Distance algorithm. The Edit_Distance
algorithm accepts two strings for comparison and
determines the closeness of these strings by performing
insertions, deletions, and character replacements [4].
Figure 6 depicts a transformation string given two strings
“Forr” and “for”.

Forr
~| |
fo-r

Figure 6. BestMatch member contains the
Transformation string from Edit_Distance algorithm.

2.2 Second Component of JECA: Error Recovery

in the Parser
 JECA’s parser component algorithm implementation is
loosely based on the Burke-Fisher Error Recovery
algorithm [2]. This algorithm exhaustively tries single
token insertion, deletion or replacement at every point
within k tokens before where the error occurs. In other
words, k represents a window of tokens where the
problem resides. Given N, representing the total number
of tokens in the language, there are k+kN+kN possible
deletions, insertions and substitutions within the k token
window [2]. The k token window is kept on a queue. In
this algorithm, all semantic actions must be delayed to
prevent unwanted side effects until parse is validated [2].

The Burke-Fisher Error Recovery algorithm uses 2
stacks, current and old, and a queue of k tokens [2]. old
stack contains all successfully parsed tokens so far.
current stack contains potential tokens covering a window
of the next k tokens. old stack and queue are used
together to reparse string after replacement, deletion or
insertion of single token into queue. Figures 7 and 8
depict an example using the Burke-Fisher error recovery
algorithm.

i = 22 ; j = -2 * 5 …. EOF

old stack new stack
INT_LTR

=

ID

Top of stack Top of stack INT_LTR

=

ID

;

Input stream

4 token queue

Figure 7. Burke-Fisher error correction algorithm with
a 4-token queue in the middle of processing a statement
production.

i = 22 ; j = -2 * 5 …. EOF

old stack new stack
;

STMNT

Top of stack Top of stack *

INT_LTR

=

ID

Input stream

4 token queue

Figure 8. Burke-Fisher error correction algorithm with
a 4-token queue completing the processing of a statement
production and commencing a new production.

The proposed parser error recovery algorithm for
JECA is similar in nature to the Burke-Fisher algorithm.
However, there are some significant differences. First,
since JECA is aimed at the beginner Java programmer,
the size of the source program will always be very small
(i.e., 50 lines of code or less). As a result, a Vector (i.e.,
java.lang.Vector) Abstract Data Type (ADT) is
used to store the entire source program in memory. In
this fashion, the tokens can be easily traversed and
manipulated thus providing opportunities for greater
analysis on the input program. Second, the Burke-Fisher
algorithm delays semantic actions to prevent unwanted
side effects. In JECA there are no semantic actions as
would be expected in a typical compiler. In other words,
unlike other compilers that generally produce assembler
code, or 3-address code, the proposed algorithm’s goal is
to correct errors so that the parse will be as valid as
possible. It does not have extensive semantic actions like
other compilers. The output of the proposed algorithm is
a modified source code that is intended to successfully
parse by the standard ‘javac’ executable (i.e., Java
compiler). The standard Java compiler will be invoked
next to perform the translation from the modified source
program to 3-address code. The third main difference
between Burke-Fisher’s algorithm and JECA’s is that the
student programmer will be asked for clarification during
the error recovery session. So, instead of using Burke-
Fisher’s approach to exhaustively insert, replace, or delete
tokens in a k-window token list, only the most probable
tokens will be presented to the student programmer. As a
result, the student has a significant degree of control over

the recovery process. This is supported by an inner
module which generates parse tree variations which are
then tested against the parser and Java compiler. These
variations are based on a number of considerations
involving token replacement, deletion, insertions, and
transpositions. A competition is arranged so that the parse
trees that succeed in recognizing the most tokens in the
source code are selected for further scrutiny. It then
becomes a competition among the best trees to determine
the appropriate course of action in terms of determining
the specific hints issued for the student. Table 2 depicts
this internal JECA functionality. Please note the student
does not see these computations.

Table 2. Internal JECA parse tree permutations and

competition for the selection of the best trees.
Given the following program:
1 public class Test {
2 public static void main(String args []){
3 iint sum = 0 ;
4 FOR (Int i=0; i<10 i++) // missing ‘;’
5 sum = smu + i;
7 }
8 }
and submitting it to JECA will yield a ParserException
stating:
Line 4 Column 30
Offending token: kind=>identifier, image=> “i”
Previous to Offending token:
kind=>integer_literal, image ==> “10”

The ParserException contains a list of expected tokens:
Expected ...
;
=
>
<
==
<=
>=
etc.
JECA takes this “expected” list, creates permutations on the
base parse tree involving insertions, deletions, replacements, and
transpositions, and then sets up the competition to determine the
best tree…

Nothing compiled successfully...but here is the
best tree...

public class Test {
 public static void main(String args []) {
 int sum = 0 ;
 for (int i = 0; i < 10; i++)
 sum = smu + i;
 }
}

The fourth difference between the Burke-Fisher
algorithm and JECA is that the parsing stops when it
encounters a situation that it cannot satisfy the current
production. The justification for this stems from the
philosophy behind teaching beginning programmers [5, 6,
7]. It is important that the student programmer not
become overwhelmed by the number of error messages
typically produced by compilers when errors occur [8, 9].
Rather, it is more helpful to:

i) extract detailed information regarding the single error
message and stop parsing;

ii) provide one clear and meaningful error message to
the student; and

iii) encourage the student to make the correction [10].

3. Java Intelligent Tutoring System User Interface

The interface for computer-based programming tutors
was given careful consideration during the design of the
Java Intelligent Tutoring System (JITS). The user
interface is based on a presentation format implemented
in many popular Integrated Development Environments
used by professional programmers (e.g., Visual Café,
JDeveloper, JBuilder, etc.) [11]. The JITS login screen
and user interfaces are shown in figure 9 and figure 10
respectively.
 The student types in his/her solution in the Source
Code Area and presses ‘Submit’. This invokes a call to
the corresponding JavaBean representing the student. The
code is then dispatched to JECA, which processes the
submission and generates a set of appropriate hint objects.
The student, at any time, may explicitly request a hint
from JITS by pressing the Hint button, or view the
solution by pressing the Solution button. The student may
opt to select another problem, or quit the tutoring session
at any time. Additionally, in support of metacognitive
development, the student may view his or her own
performance history (i.e., My Performance button). This
displays a performance summary based on numerous
statistics such as problems attempted, problems solved,
number of attempts on a problem, problem difficulty, time
elapsed, types of errors, etc.

Figure 9. JITS login screen.

Figure 10. JITS User Interface.

4. Java Intelligent Tutoring System Architecture

The JITS infrastructure supports the student via a
browser accessing information from the tutor via an
HTTP request/response process model. The processing is
accomplished by JavaBeansTM within a servlet engine
web server. The presentation layer uses JavaServer
PagesTM technology which communicates to the bean
representing the student and creates an XHTML page for
the student’s browser. During processing the bean
gathers all the information about the student’s code and
submits it to JECA for processing. The infrastructure
architecture uses a JDBC connection from the
JavaBeansTM to an external database which stores and
retrieves specific information about the student including
student history and performance statistics.
 The implemented architecture has numerous benefits
[12]. It is scalable, platform-independent, and lightweight
[12]. The student will never need to install software on
his/her machine and will not need a high-speed network
connection to use JITS. Other benefits include fast
execution as all processing is done on the middle-tier web
server, currently equipped with 4GB RAM and 2
Pentium-IV processors. The net result is a product that
increases the accessibility for JITS to many students – a
vital requirement for an equitable and successful
educational product in today’s Internet-ready community.

5. Hint Generation
 An additional design consideration is the categories of
hints that are generated by JECA for JITS. There are five
types of hints that may be created as a result of an error
from the student’s code submission. They are:

KEYWORD_REPLACEMENT_HINT
EXTENDED_TYPE_REPLACEMENT_HINT
IDENTIFIER_REPLACEMENT_HINT
GRAMMATICAL_HINT
GENERAL_HINT
OTHER_TYPE_OF_HINT

Figure 11. Hint categories.

A KEYWORD_REPLACEMENT_HINT arises from a
situation where the student typed in a suitably close
representation to a Java keyword. For instance, if the
student typed in ‘Whiles’, this would be interpreted as
the keyword ‘while’. An
EXTENDED_TYPE_REPLACEMENT_HINT is when the
student wrote ‘Sting’ which will interpreted as
‘String’ – the java.lang.String class. An
IDENTIFIER_REPLACEMENT_HINT is used in the
situation where a suitably close match to an existing
identifier has been found. For example, consider the
following snippet of code:

int my_int = 0; // declaration
my_it = my_intt + 1; // and use

There would be two
IDENTIFIER_REPLACEMENT_HINTs generated for
this piece of code:
Identifier Replacement Hint: Would you like me to
replace "my_it" with "my_int"?
Identifier Replacement Hint: Would you like me to
replace "my_intt" with "my_int"?

A GRAMMATICAL_HINT is generated when the
parser fails on a particular production in the Java
grammar. Specific information regarding the error is
recorded in the Hint object depicted in figure 8. The last
two types of hint are GENERAL_HINT and
OTHER_TYPE_OF_HINT. GENERAL_HINT is used in
the situation when the student is far from the solution path
and needs to be realigned with the program statement and
program specifications for the posed problem.
OTHER_TYPE_OF_HINT is reserved for future
research.

There are a number of important pieces of information
represented in a Hint object. The Hint object is depicted
in figure 12. The _type member corresponds with one of
the six types of categories of Hints currently supported in
JECA. The _col and _line members specify where the
error occurred. The _line_of_code and _error_pointer
represent the source code and the exact location of where
the error occurred. There are two tokens to assist in
identifying where the error occurred in terms of the
tokens. _offending_token represents the precise token the
parser failed on, and _previous_to_offending_token
represents the last successfully parsed token during
parsing. The _hint member is a String summarizing the
actual hint relying on the values of other data members in
this object. It is intended to be used during the feedback
process during student tutoring. The last member of the
Hint class is the _confidence, which will be assigned an
integer from 1 to 10. A confidence value of 1 indicates a
high level of certainty indicating the suggested hint is
correct and will bring the student closer to a compiled
program. On the other hand, a confidence value of 10,
indicates uncertainty on behalf of the hint generated. In
these situations, the student will have to use their own
judgment based on the detailed information provided to
them by the Hint objects, namely the data members,

_type, _col, _line, _line_of_code, _error_pointer,
_offending_Token, and _previous_to_offending_Token.

Hint

_type

_col

_line

_line_of_code

GRAMMATICAL_HINT

10

for (int i=0; i <=10; i++

_error_pointer

_corrected_line_of_code

_offending_Token

_previous_to_offending_Token

_hint

_confidence

8

 ^

sum

++

for (int i=0; i <=10; i++)

Grammatical hint: Look near line: 8 column:
10. Look between the "++" and the "sum"

1

Figure 12. A JECA Hint object representing a
grammatical error.

An example follows to illustrate these design aspects
of the proposed error correction algorithm.

Given the following source program:
public class Test {
 public static void main() {
 Int sum = 0;
 For (iint i=0; i<=10; i++
 sum = sum + i;
 System.out.println(“Sum is:” + sum);
 }
}

Figure 13. Arithmetic sum Java program with
grammatical errors and syntax errors.

JECA would modify the program to:
public class Test {
 public static void main(String args []) {
 int sum = 0;
 for (int i=0; i <=10; i++)
 sum = sum + i ;
 System.out.println("Sum is:" + sum);
 }
}

Figure 14. Internally corrected JECA source program for
the arithmetic sum problem.

As a result, the following Hint objects would be created
by JECA:

1) Keyword replacement hint: Would you like me to

replace "Int" with "int"?
2) Keyword replacement hint: Would you like me to

replace "FOR" with "for"?
3) Keyword replacement hint: Would you like me to

replace "iint" with "int"?
4) Grammatical hint: Look near line: 8 column: 10.

Look between the "++" and the "sum"

The following section depicts how the Hint objects are
used in a typical dialog between JITS (via the supporting
JECA module) and the student programmer. Using the
example presented in figure 15, focusing only on the area
where the student enters code in the “source code area”

(see figures 10 and 15), table 3 presents the dialogue
between JITS and the student.

Figure 15. Arithmetic sum Java program with supporting
framework to focus the student on the task at hand.

Table 3. Hint objects utilization and typical dialogue
between JITS and the student.

public class Summer {
public static void main(String[] args) {

 int sum = 0;

// source code area:
// student writes code here

 System.out.println("Sum = " + sum);
}

}

Student’s submission:
For (intt i = 1; i <= 10; i++ {
 sum = smu + i;
}
JITS: Would you like me to replace "For" with "for"?
(Keyword replacement hint)
Student: Clicks Yes, or changes the code manually.
Resulting code:
for (intt i = 1; i <= 10; i++ {
 sum = smu + i;
}
JITS: Would you like me to replace "Int" with "int"?
(Keyword replacement hint)
Student: Clicks Yes, or changes the code manually.
Resulting code:
for (int i = 1; i <= 10; i++ {
 sum = smu + i;
}

JITS: Look near line: 4 column: 37. Look between the "++" and

the "{" (Grammatical hint)
JITS elaborates:
 HINT STRING :
 for (int i=0; i<10; i++ {

 ^
 CORRECTED CODE:
 for (int i=0; i<10; i++) {

 Confidence... : 1 (high certainty)
Student: Makes the appropriate changes to the code.
Resulting code:
for (int i = 1; i <= 10; i++) {
 sum = smu + i;
}
JITS: Would you like me to replace "smu" with "sum"?
(Identifier replacement hint)
Student: Clicks Yes, or changes the code manually.
Resulting code:
for (int i = 1; i <= 10; i++) {
 sum = sum + i;
}

 The tutoring process is dynamic. At any time the
student is able to interject, disagree with JITS’
suggestions, and modify the source code. JECA is
designed to be invoked many times to support the JITS
tutoring process.

JECA is significantly different from other standard
Java compilers. Given the source program in figure 13,
an ordinary java compiler would produce the following:

Test.java:5: ')' expected
 Forr (Int i=0; i <=10; i++
 ^
Test.java:5: not a statement
 Forr (Int i=0; i <=10; i++
 ^
Test.java:5: ';' expected
 Forr (Int i=0; i <=10; i++
 ^
3 errors

Clearly the embedded JECA system in JITS is much
more clear and helpful than standard Java compilers.
JECA has been designed for the beginner Java
programmer and intelligently recognizes the intent behind
the student’s code submissions.

6. Conclusions

JECA demonstrates a Proof of Concept that can be
effectively used to assist beginner Java programmers.
JECA was originally implemented in JFlex, CUP and
JavaCC. However, it became clear that JavaCC offers the
greatest control and flexibility over error recovery and
error correction; therefore, future versions of JECA will
be based on JavaCC.

JECA is a practical algorithm compiler that error
corrects by intelligently learning and changing source
program code, and identifies errors more clearly than
current-day compilers. The goals achieved by JECA
include:
i) intelligently recognize the ‘intent’ of the student;
ii) analyzing the student’s code submission;
iii) ‘auto-correcting’, where appropriate (e.g., converting

“While” into the keyword “while”, “forr” into “for”,
etc.);

iv) learning individual student’s misconceptions, and
categorizes the types of errors he/she make;

v) producing a ‘modified code’ that will compile (or
bring the code closer to a state of successful
compilation),

vi) producing a ‘modified code’ that will meet program
specifications (or bring the code closer to meet
program specifications); and

vii) prompt the student programmer for information when
necessary via well-defined hint support structures.

The ultimate goal of JECA is to give clear and helpful

feedback to the student. In this paper, a Proof of Concept
(i.e., JECA), was developed that fulfils the intended goals
and assists the student to be able to learn programming
better in a more enjoyably way in the Java Intelligent
Tutoring System.

7. References
[1] G. Klein, JFlex User Manual, 2003. Retrieved September

3, 2003, from http://www.jflex.de/
[2] M.G. Burke & G.A. Fisher, A practical method for LR and

LI syntactic error diagnosis and recovery, ACM
Transactions on Programming Languages and Systems, 9
(2), 1987, 164-197.

[3] C. Fischer, R.J. LeBlanc, Crafting a compiler with C.
(Redwood City, CA: Benjamin Cummings Publishing,
1991).

[4] A. V. Aho & T.G. Peterson, A minimum distance error-
correction parser for context-free languages, SIAM Journal
of Computing, 1, 1972, 305-312.

[5] E.R. Sykes, & F. Franek, (2003). A prototype for an
intelligent tutoring system for students learning to program
in Java, Proceedings of the IASTED International
Conference on Computers and Advanced Technology in
Education, Rhodes, Greece, 2003, 78-83.

[6] E.R. Sykes, JavaTM intelligent tutoring system model and
architecture, Proceedings of American Association of
Artificial Intelligence Spring Symposium on Human
Interaction with Autonomous Systems in Complex
Environments, Menlo Park, CA, 2003, 187-193.

[7] J.R. Anderson, A. Corbett, K.R. Koedinger, & R. Pelletier,
Cognitive tutors: lessons learned. The Journal of the
Learning Sciences, 4, 1995, 167-207.

[8] K.R. Koedinger, Cognitive tutors, in K. D. Forbus & P. J.
Feltovich (Eds.), Smart machines in education (Cambridge,
MA: MIT Press, 2001) 145-167.

[9] A.C. Graesser, N.K. Person, Teaching tactics and dialog in
autotutor, International Journal of Artificial Intelligence in
Education, 12, 2001, 12-23.

[10] R.C. O’Reilly, & Y. Munakata, Computational
explorations in cognitive neuroscience (London, England:
MIT Press, 2000).

[11] A. Tucker, & R. Noonan, Programming languages:
principles and paradigms (New York: McGraw-Hill,
2002).

[12] M. Pawlan, J2EE Tutorial, 2003. Retrieved December 30,
2003, from http://java.sun.com/j2ee/1.3/docs/

http://www.jflex.de/
http://java.sun.com/j2ee/1.3/docs/

	Presenting JECA: A Java Error Correcting Algorithm for the

