
INDUCING PARAMETERS OF A DECISION TREE
FOR EXPERT SYSTEM SHELL MCESE BY GENETIC ALGORITHM

I. Bruha and F. Franek
Department of Computing & Software, McMaster University

Hamilton, Ont., Canada, L8S4K1
E-mail: { bruha | franya} @mcmaster.ca

KEYWORDS
Expert system shell, genetic algorithms, rule-based sys-
tems, classification, data analysis.

ABSTRACT

There exist various tools for knowledge representation,
modelling, and simulation in Artificial Intelligence. We
have designed and built a software tool (expert system
shell) called McESE (McMaster Expert System Environ-
ment) that processes a set of production (decision) rules
of a very general form. Such a production (decision) set
can be equivalently symbolized as a decision tree.

In real life, even if the logical structure of a production
system (decision tree) is provided, the knowledge engi-
neer may be faced with the lack of knowledge of other
important parameters of the tree. For instance, in our
system McESE, the weights, threshold, and the certainty
propagation functions – all of these are a part of the
machinery handling the certainty/uncertainty of deci-
sions – have to be designed according to a set of training
(representative) events, observations, and examples.

One possible way of deriving these parameters is to
employ machine learning (ML) or data mining (DM)
algorithms. However, ‘ traditional’ algorithms in both
fields select immediate (usually local) optimal values –
in the context of a whole decision set such algorithms
select optimal values for each rule without regard to
optimal values for the whole knowledge base. Genetic
algorithms comprise a long process of evolution of a
large population of objects (chromosomes) before select-
ing (usually global) optimal values, and so giving a
‘chance’ to weaker, worse objects, that nevertheless may
prove to be optimal in the context of the whole knowl-
edge base.

In this methodology case study, we expect that a set of
McESE decision rules (or more precisely, the topology of
a decision tree) is given. The paper discusses a simula-
tion of an application of genetic algorithms to generate

parameters of the given tree that can be then used in the
rule-based expert system shell McESE.

INTRODUCTION

A builder of an expect system usually employs an expert
system shell to design and develop a decision-support
expert system for a given problem. We have designed
and built a software tool (expert system shell) called
McESE (McMaster Expert System Environment) that
processes a set of production (decision) rules of a very
general form allowing several means of handling uncer-
tainty (Franek 1989; Franek and Bruha 1989). Note that
such a production (decision) set can be equivalently
exhibited as a decision tree.

In this study, we expect that the logical structure or the
topology of a set of decision rules (a decision tree) is
given. Even if this logical structure is provided, particu-
larly in real-world tasks, the designer may be faced with
the lack of knowledge of other parameters of the tree.
These parameters are usually adjustable values (either
discrete or numerical ones) of production rules or other
knowledge representation formalisms such as frames. In
particular, in our system McESE, these are represented
by weights and thresholds for terms and the selection of
the certainty value propagation functions (CVPF for
short) from a predefined set. We use the traditional
approach of machine learning (ML) and data mining
(DM): we adjust the above parameters according to a set
of training (representative) observations (examples).
However, we use a different and relatively new approach
for the inductive process based on the paradigm of ge-
netic algorithms.

Genetic algorithm (GA) encompasses a long process of
evolution of a large population of chromosomes
(individuals) before selecting optimal values that have a
better chance of being globally optimal compared to the
traditional methods. The fundamental idea is simple:
chromosomes selected according to an ‘evaluation’ are
allowed to crossover so as to produce a ‘ sl ightly

different’ new one – the offspring. It is clear that the
algorithm performs according to how ‘slightly different’
and ‘evaluation’ are defined.

In this paper, we present a simulation of applying GAs
to generate/adjust the parameter values of a McESE
decision tree.

Section 2 of this paper briefly describes our rule-based
expert system shell McESE with emphasis on the form
of rules. Section 3 then surveys the structure of GAs.
Afterwards, Section 4 introduces the methodology of this
project including a case study.

RULE-BASED EXPERT SYSTEM SHELL MCESE

McESE (McMaster Expert System Environment)
(Franek 1989; Franek and Bruha 1989) is an interactive
environment for design, creation, and execution of
backward-or forward-chaining rule-based expert
systems. The main objectives of the project focused on
two aspects: to provide extensions of regular languages
to deal with McESE rule bases and inference with them,
and a versatile machinery to deal with uncertainty.

The language extension is facilitated through a set of
functions with the native syntax that provide the full
functionality required (for instance, in the Common-Lisp
extension these are Common-Lisp functions callable
both in the interactive or compiled mode, in the C
extension, these are C functions callable in any C
program).

The versati l i ty of the treatment of uncertainty is
faci l i tated by the design of McESE rules uti l izing
weights, threshold directives, and CVPF's (Certainty
Value Propagation Function). The McESE rule has the
following syntax:

R: T1 & T2 & & Tn =F=> T

T1,...,Tn are the left-hand side terms of the rule R and T
is the right-hand side term of the rule R. A term has the
form:

weight * predicate [op cvalue]

where weight is an explicit certainty value, predicate is
a possibly negated (by ~ or -) predicate possibly with
variables, and op cvalue is the threshold directive (op
can either be >, >=, <, or <=, and cvalue is an explicit
certainty value). If the weight is omitted it is assumed to
be 1 by default. The threshold directive can also be
omitted. The certainty values are reals in the range 0..1 .

The value of a term depends on the current value of the
predicate for the particular instantiation of its variables;
if the threshold directive is used, the value becomes 0 (if
the current value of the predicate does not satisfy the

directive), or 1 (if it does). The resulting value of the
term is then the value of the predicate modified by the
threshold directive and multiplied by the weight.

In McESE in the backward-chaining mode, each rule
that has the predicate being evaluated as its right-hand
side predicate is eligible to fire. The firing of a McESE
rule consists of instantiating the variables of the left-
hand side predicates by the instances of the variables of
the right-hand size predicate, evaluating all the left-hand
side terms and assigning the new certainty value to the
predicate of the right-hand side term (for the given
instantiation of variables). The value is computed by the
CVPF F based on the values of the terms T1,...,Tn . In
simplified terms, the certainty of the evaluation of the
left-hand side terms determines the certainty of the right-
hand side predicate. There are several built-in CVPF’ s
the user can use (min, max, average, weighted average),
or the user can provide his/her own custom-made
CVPF's. This approach allows, for instance, to create
expert systems with fuzzy logic, or Bayesian logic, or
many others (Jaffer 1990).

Any rule-based expert system must deal with the
problem of which of the eligible rules should be ‘ fired’ .
This is dealt with by what is commonly referred to as
conflict resolution. In McESE the problem is slightly
different; each rule is fired and it provides an evaluation
of the right-hand predicate – and we face the problem
which of the evaluation should be used. McESE provides
the user with three predefined confl ict resolution
strategies: min (where one of the rules leading to the
minimal certainty value is considered fired), max (where
one of the rules leading to the maximal certainty value is
considered fired), and rand (a randomly chosen rule is
considered fired). The user has the option to use his/her
own conflict resolution strategy as well.

GENETIC ALGORITHMS: A SURVEY

The induction of concepts from databases consists of
searching usually a large space of possible concept
descriptions. There exist several paradigms how to
control this search, for instance various statistical
methods, logical/symbolic algorithms, neural nets, and
the like. However, such traditional algorithms select
immediate (usually local) optimal values.

On the other hand, the genetic algorithms (GAs)
comprise a long process of evolution of a large
population of individuals (objects, chromosomes) before
selecting optimal values, thus giving a ‘chance’ to
weaker, worse objects. They exhibit two important
characteristics: the search is usually global and parallel
in nature since a GA processes not just a single
individual but a large set (population) of individuals.

Genetic algorithms emulate biological evolution and are
utilized in optimization processes. The optimization is
performed by processing a population of individuals
(chromosomes). A designer of a GA has to provide an
evaluation function, called fitness, that evaluates any
individual. The fitter individual is given a greater chance
to participate in forming of the new generation. Given an
initial population of individuals, a genetic algorithm
proceeds by choosing individuals to become parents and
then replacing members of the current population by the
new individuals (offsprings) that are modified copies of
thei r parents. This process of reproduction and
population replacement continues until a specified stop
condition is satisfied or the predefined amount of time is
exhausted.

Genetic algorithms exploit several so-called genetic
operators:

• Sel ect i on operator chooses i ndi vi dual s
(chromosomes) as parents depending on their
fitness; the fitter individuals have on average more
children (offsprings) than the less fi t ones.
Selecting the fittest individuals tends to improve the
population.

• Crossover operator creates offsprings by combining
the information involved in the parents.

• Mutation causes the offsprings to differ from their
parents by introducing a localized change.

Details of the theory of genetic algorithms may be found
in several books, e.g. (Goldberg 1889; Holland 1975).
There are many papers and projects concerning genetic
algorithms and their incorporation into data mining
(Bala et al. 1995; De Jong et al. 1993; Giordana and
Saitta 1993; Janikow 1993; Turney 1995).

We now briefly describe the performance of the genetic
algorithm we have designed and implemented for
general purposes, including this project. The foundation
for our algorithms is the CN4 learning algorithm (Bruha
and Kockova 1994), a significant extension of the well-
known algorithm CN2 (Clark and Boswell 1991; Clark
and Niblett 1989). For our new learning algorithm
(genetic learner) GA-CN4, we removed the original
search section from the inductive algorithm and replaced
it by a domain-independent genetic algorithm working
with fixed-length chromosomes.

The learning starts with an initial population of
individuals (chromosomes) and lets them evolve by
combining them by means of genetic operators. More
precisely, its high-level logic can be described as follows:

procedure GA
Initialize randomly a new population
Until stop condition is satisfied do

1. Select individuals by the tournament
selection operator

2. Generate offsprings by the two-point
crossover operator

3. Perform the bit mutation
4. Check whether each new individual has

the correct value (depending on the type
of the task); if not the individual's fitness
is set to 0 (i.e., to the worst value)

enddo
Select the fittest individual
I f this individual is statistically significant then

return it
else return nil

The above al gori thm mentions some particular
operations used in our GA. Their detailed description
can be found e.g. in (Bruha et al. 2000; Goldberg 1989;
Holland 1975). More specifically, the generation mode
of replacing a population is used. The fitness function is
derived from the Laplacian evaluation formula. The
default parameter values in our genetic algorithm: size
of population is 30, probability of mutation Pmut =
0.002 . The genetic algorithm stops the search when the
Laplacian cri terion does not improve after 10000
generations.

Our GA also includes a check for statistical significance
of the fittest individual. It has to comply with the
statistical characteristics of a database which is used for
training; the �2-statistics is used for this test of
conformity. If no fittest individual can be found, or it
does not comply with the �2-statistic, then nil is
returned in order to stop further search; the details can
be found in (Bruha and Kockova 1994).

CASE STUDY

In our project, an individual is formed by a fixed-length
list (array) of the following parameters of the McESE
system:

- the weight of each term of McESE rule,
- the threshold value cvalue of each term,
- the selection of the CVPF of each rule from a

predefined set of CVPF’s
- the conflict resolution for the entire decision tree.

Since our GA-CN4 is able to process numerical
(continuous) attributes, the above parameters weight and
cvalue can be properly handled. As for the CVPF, i t is
considered as a discrete attribute with these singular
values (as mentioned above): min, max, average, and

weighed average. Similarly, the confl ict resolution is
treated as a discrete attribute.

Since the list of the above parameters is of the fixed size,
we can apply the GA-CN4 algorithm that can process
the fixed-length chromosomes (objects) only.

The entire process of deriving the right values of the
above parameters (weights, cvalues, CVPF’s, conflict
resolution) looks as follows:

1. A dataset of typical (representative) examples for a
given task is selected (usually by a knowledge
engineer that is to solve a given task).

2. The knowledge engineer (together with a domain
expert) induces the set of decision rules, i.e. the
topology of the decision tree, without specifying
values of the above parameters.

3. The genetic learner GA-CN4 induces the right
values of the above parameters by processing the
training database.

To illustrate our new methodology of knowledge
acquisition we introduce the following case study. We
consider a very simple task of heating and mixing three
liquids L1, L2, and L3 . The first two have to be controlled
by their flow and temperature; then they are mixed with
L3 . Thus, we can derive these four rules:

R1: w11 * F1 [>= c11] & w12 * T1 [>= c12] =f1=> H1

R2: w21 * F2 [>= c21] & w22 * T2 [>= c22] =f2=> H2

R3: w31 * H1 [>= c31] & w32 * F1 [>= c32] &
 w33 * H2 [>= c33] & w34 * F3 [>= c34] =f3=> A1

R4: w41 * H2 [>= c41] & w42 * F2 [>= c42] &
 w43 * H1 [>= c43] & w44 * F3 [>= c44] =f4=> A2

Here Fi is the flow of Li , Ti its temperature, Hi the
resulting mix, Ai the adjusted mix, i =1, 2 (or 3). The
corresponding decision tree is on Fig. 1.

We assume that the above topology of the decision tree
(without the right values of its parameters) was derived
by the knowledge engineer. The unknown parameters
wij , cij , fi, including the conflict resolution then form a
chromosome (individual) of length 29 attributes. The
global optimal value of this chromosome is then induced
by the genetic algorithm GA-CN4.

ANALYSIS AND FUTURE RESEARCH

The primary aim of this project was to design a new
methodology for inducing parameters for an expect
system under the condition that the topology (the
decision tree) is known. We have selected domain-
independent genetic algorithm that searches for a global
optimizing parameters values.

Our analysis of the methodology indicates that it is quite
a viable one. The traditional algorithms explore a small
number of hypotheses at a time, whereas the genetic
algorithm carries out a parallel search within a robust
population. The only disadvantage our study found
concerns the time complexity. Our genetic learner is
about 20 times slower than the traditional machine
learning algorithms.

In the near future, we are going to implement the entire
system discussed here and compare i t with other
inductive data mining tools. The McESE system will
thus comprise another tool for rule-base knowledge
processing (besides neural net and Petri nets) (Franek
and Bruha 1989).

The algorithm GA-CN4 h is written in C and runs under
both Unix and Windows. The McESE system has been
implemented both in C and Lisp.

REFERENCES

Bala, J. et al. 1995. “Hybrid learning using genetic algo-
rithms and decision trees for pattern classification” ,
Proc. IJCAI-95, 719-724.

Bruha, I. and S. Kockova. 1994. “A support for decision
making: Cost-sensitive learning system” , Artificial
Intelligence in Medicine, 6, 67-82.

Bruha, I., P. Kralik, and P. Berka. 2000. “Genetic
learner: Di screti zation and fuzzi fication of
numerical attributes” , Intelligent Data Analysis J.,
4, 445-460.

Clark, P. and R. Boswell. 1991. “Rule induction with
CN2: Some recent improvements” , EWSL-91,
Porto, Springer-Verlag, 151-163.

Clark, P. and T. Niblett. 1989. “The CN2 induction
algorithm” , Machine Learning, 3, 261-283.

De Jong, K.A., W.M. Spears, D.F. Gordon, “Using
genetic algorithms for concept learning” . Machine
Learning, 13, Kluwer Academic Publ., 161-188.

Franek, F. 1989. “McESE-FranzLISP: McMaster Expert
System Extension of FranzLisp” , In: Computing
and Information, North-Holland.

Franek, F. and I. Bruha. 1989. “An environment for
extending conventional programming languages to
build expert system applications” , Proc. IASTED
Conf. Expert Systems, Zurich.

Goldberg, D.E. 1989. Genetic algorithms in search,
optimization, and machine learning, Addison-
Wesley.

Giordana, A. and L. Saitta. 1993. REGAL: An inte-
grated system for learning relations using genetic
algorithms, Proc. 2nd International Workshop
Multistrategy Learning, 234-249.

Holland, J. 1975. Adaptation in natural and artificial
systems, Univ. of Michigan Press, Ann Arbor.

Janikow C.Z. 1993. “A knowledge-intensive genetic
algorithm for supervised learning” , Machine Learn-
ing, 5, Kluwer Academic Publ., 189-228.

Jaffer, Z. 1990. “Different treatments of uncertainty in
McESE” , MSc. Thesis, Dept Computer Science &

Systems, McMaster University.
Turney, P.D. 1995. “Cost-sensitive classification:
Empirical evaluation of a hybrid genetic decision tree
induction algorithm” , J. Artificial Intelligence Research.

Figure 1: The decision tree of our case study

