

An Intelligent Tutoring System Prototype for Learning to Program JavaTM

 Edward R. Sykes

School of Computing and Information
Management, Sheridan College

1430 Trafalgar Road, Oakville, Ont.,
Canada, L6H 2L1

+1 (905) 845-9430 Ext. 2490
ed.sykes@sheridanc.on.ca

Franya Franek
Department of Computing and Software,
Faculty of Science, McMaster University

1280 Main Street W., Hamilton, Ont.,
Canada, L8S 4L8

+1 (905) 525-9140 Ext. 23233
franek@mcmaster.ca

Abstract

 The �JavaTM Intelligent Tutoring System� (JITS)
research project involves the development of a
programming tutor designed for students in their first
programming course in JavaTM at the College and
University level. This paper presents an overview of the
architectural design including state-of-the-art web-based
distributed architecture, the AI techniques used, and the
programmer-optimized user interface. This project is a
prototype being constructed which will model the domain
of a small subset of the JavaTM programming language in
a very specific context. Research is in progress and it is
hypothesized that the completed prototype will be
sufficient to prove the concept and that a fully developed
JavaTM Intelligent Tutoring System will provide an
interactively-rich learning environment for students that
will result in increased achievement. Based on the
success of similar Intelligent Tutoring Systems, it is also
hypothesized that these students will be able to learn
programming skills and knowledge more quickly and
effectively than students in traditional educational
settings.

Keywords: Intelligent Tutoring Systems, Web-Based
Education, Programming Tutors, Artificial Intelligence in
Education.

1. Introduction

 Intelligent Tutoring Systems (ITS) are, in many
respects, very similar to human tutors. Based on
cognitive science and Artificial Intelligence (AI), ITS
have proven their worth in multiple ways in multiple
domains in Education [1, 5]. Currently, ITS can be found
in core Mathematics, Physics, and Language courses in
many schools across Canada, the United States, and
various countries in Europe. ITS are growing in
acceptance and popularity for reasons including: i)
increased student performance, ii) deepened cognitive

development, and iii) reduced time for the student to
acquire skills and knowledge [1, 2, 5].
 Intelligent Tutoring Systems that tutor and monitor
programming have been developed and evaluated for
many years in the field of Artificial Intelligence in
Education. In many ways, programming has been a very
productive domain in the evolution of most aspects of the
field, including student modeling, knowledge
representation, and the application of sound pedagogical
principles. Effective programming requires a range of
problem-solving and diagnostic strategies. The manner
in which a student writes code provides rich insight into
the reasoning processes of the student. As a result,
programming provides an interesting domain for studying
learning and cognitive processes.

The goal of the current research is to bring together
recent developments in the fields of Intelligent Tutoring
Systems, Cognitive Science, and AI to construct an
effective intelligent tutor help students learn to program
in JavaTM. In addition to contributing to understand the
learning process in general, it is hoped that this research
will have a positive impact on supporting instructors
teaching JavaTM programming in their institution. More
than ever, this is an important area for institutions where
there are more students wishing to learn to program, and
where it is difficult to provide personalized instruction
that they need [3]. Additionally, since there are a
growing number of institutions investing in distance
learning, this research will play a significant role to
provide appropriate methods of teaching this key subject
to students learning remotely.

2. Java ITS Model and Architecture

 This section presents the model and architecture for
the JavaTM Intelligent Tutoring System. Four distinct
components are presented that support JITS: the
curriculum design, the AI module, the distributed web-
based infrastructure, and the user interface design.

2.1. JITS Curriculum Design

 This section describes the curriculum architectural
model for JITS. Due to the complexity involved with
semantic parsing, it is necessary to restrict the JITS to
tutor a small subset of the Java programming language.
The area of focus involves the following list of JavaTM
language basics:

a. variables (declaration, use, local vs. global),
b. operators, and
c. looping structures.

 A database of records with the following structure will
be constructed:
 Given a Problem (P), there are n number of Solutions
(S1, S2, �, Sn), with a number (m) of categories of
classifiable incorrect responses (R1, R1,�, Rm). For each
incorrect response category there is a finite number (t) of
appropriate hints (H1, H2,,�,Ht). Table 1 illustrates an
example of a problem with solutions, some incorrect
responses.

Table 1. JavaTM ITS Curriculum Architecture

Problem:
Write a program called �Summer� which adds all the
integer numbers from 1 to a specified number (N). For
example, if N were assigned the value 10, then the sum of
the numbers from 1 to 10 is 55.

Program specifications:
This program requires the use of a for-loop structure. A
skeleton structure of the solution is given. Fill in the
code to complete this program.
OUTPUT>Sum = 55

Skeleton Program (located in Source Code area):

Solution (one of n):
public class Summer {
 public static void main(String[] args) {
 int sum = 0;
 int i = 0;
 for (i = 1; i <= 10; i++) {
 sum += i;
 }
 System.out.println("Sum = " + sum);
 }
}

Incorrect response #1 (student response area):
(redeclaration of variable �i�)
 for (int i = 1; i <= 10; i++) {
 sum += i;
 }

Incorrect response #2:
(sum is 0, as the body of the loop is never executed)
 for (i = 1; i > 10; i++) {
 sum += i;
 }

Incorrect response #3:
(adding 1 instead of variable �i': results in sum being
lower than expected)
 for (i = 1; i <= 10; i++) {
 sum += 1;
 }

etc.

 The astute reader recognizes that there are limitless
possibilities for student responses and the system cannot
simply list incorrect responses coupled with feedback
messages. For instance, the student could write:
sum=(n+1)*(n/2); or sum=(n*n+n)/2;

 Both answers are completely correct and the system
needs to recognize these types of responses and not
merely respond back to the student indicating a failure.
Testing the correctness of a program is not an easy task,
and cannot be achieved just by giving a set of fixed
responses. JITS is designed to be pedagogically sound.
So, although the above formulas result in correct answers,
this is not the final goal of the tutoring system. Rather,
JITS focuses on the methodology by which a student
attempts to solve a problem. Conventions, style, and
professional programming techniques are modeled in
JITS. In this fashion effective tutoring may take place.
These pedagogical issues as they are designed in JITS are
addressed in the following sections.

public class Summer {
 public static void main(String[] args)
 {
 int sum = 0;
 int i = 0;

 System.out.println("Sum = " + sum);
 }
}

/* student writes code here */

2.2. JITS AI Module

 In order for JITS to provide intelligent feedback to the
student the AI module relies on a collection of
information: the problem statement, the problem
specification, student�s code, the established student
model, the expert model, the JavaTM Parser, the
syntactic_decision_tree, the semantic_decision_tree, the

JavaTM Parse Tree, the output from the JavaTM compiler,
and the result from the JavaTM runtime engine.
Obviously, based on the context, some of this information
will not be available. The two decision trees (i.e.,
syntactic_decision_tree, and semantic_decision_tree)
represent the strategic and judgmental knowledge for the
specific programming problem currently being examined
by the student [4].

Student�s source
code

Submit complete
code to the Java

parser

yes

no
Use

syntax_decision_tree
to provide feedback

Construct the Java
Parse Tree

Compile and
Execute the code

Gather information
from Java Parse
Tree, Compiler,
and Execution

engine

Java Parser
succeed?

Student

Use
semantic_decision_tree
to determine feedback

1

1
Is the

problem
solved?

stop

no

yes

1

Figure 3. Flow chart of JITS AI Module

 Using the arithmetic sum problem described in Table
1, Figure 1 depicts how the expert model�s solution may
be divided into discrete sections. Based on this, Figure 2
represents the high level functional decomposition tree
for this problem with Figure 3 presenting a high-level
flow chart showing the process.

for (i = 0; i <= 10; i++)
sum += i;

A B C D

E
Figure 1. Sub-sections of expert model solution

Solve for-loop
programming
problem #1

Step 1:
Investigate correctness
of for-loop statement

Step 2:
Investigate correctness

of body of for-loop

Step 1.1:
Investigate for-

loop: init section

Step 1.2:
Investigate for-

loop: conditional
section

Step 1.3:
Investigate for-
loop: update

section
Figure 2. High-level functional decomposition tree

2.2.1. JITS AI Module: Feedback

 The information gathered by the AI module previously
described is then carefully scrutinized so that appropriate
hints can be generated for the student. An expert system
(supporting the decision trees), and two methods support
the feedback mechanism: general_hint(int
context, String snippet) and
specific_hint(int context, String
snippet). Although the two decision trees isolate the
specific area of error within the student�s code, additional
fine-grained analysis occurs within these methods. These
methods are passed an integer representing the context in
which the current programming issue has been identified.

The second argument, snippet, represents the small
portion of code associated with the given context. For
example, if the student submitted: sum = (n*n+n)/2;
only, then general_hint() would issue a message
such as, �Your answer is correct. However, the program
specification is asking for a solution using a for-loop
construct. Please revise your code.� Specific hints are
code-specific generated in the same fashion as a human
tutor would during troubleshooting to pinpoint the exact
situation in which a syntactic or logic error has occurred.
Figure 4 depicts a small section of the
semantic_decision_tree (please refer to sections A and B
from Figure 1).

Is the �for� keyword
present?

yes

for-loop format correct?
i.e., for (�; �; �)

no

general_hint(context, snippet)

no

Investigate which section of the for-
loop is incorrect format then issue

general_hint(context, snippet)

yes

Is B generic format:
variable op. literal?

yes
no

Issue
specific_hint(context, snippet)

Issue
specific_hint(context, snippet)

Is B of format:
variable = literal?

yesno

Is B of format:
i = literal?

Issue
specific_hint(context, snippet)

yesno

Is B of format:
i = 0 or i i=1?

Issue
specific_hint(context, snippet)

yesno

Investigate C section
of for-loop

C

Figure 4. JITS semantic_decision_tree (sections A and B from Figure 1 only)

2.3. JITS Distributed Web-based Infrastructure

 The JITS infrastructure supports the student via a
browser accessing information from the tutor via an
HTTP request/response process model. The processing is
accomplished by Enterprise JavaBeansTM within a J2EE
compliant server in combination with a web server
supporting the presentation logic for the tutor. The
presentation layer uses JavaServer PagesTM technology
which communicates with the home interface of the bean
for processing and returns a simple page back to the
student�s browser (e.g., html, xml, etc.). During
processing the bean gathers all the information about the
student�s code and submits it to the AI module for
processing. The infrastructure architecture uses a JDBC
connection from the Enterprise JavaBeansTM to an
external database which stores and retrieves specific
information about the student including student history
and performance statistics.
 The proposed architecture has numerous benefits. It is
scalable, platform-independent, and lightweight. The

student will never need to install software on their
machine and will not need a high-speed network
connection to use JITS. Other benefits include fast
execution as all processing is done on the J2EE server
and the middle-tier web server which typically have much
faster and more efficient hardware than typical PCs. The
net result is a product that increases the accessibility for
JITS to many students � a vital requirement for an
equitable and successful educational product in today�s
Internet-ready community.

2.4. JITS User Interface

 The interface for computer-based programming tutors
is a significant factor that was given careful consideration
during the design of JITS. The user interface is based on
a presentation format implemented in many popular
Integrated Development Environments used by
professional programmers (e.g., Visual Café,
JDeveloper).

Problem: A problem of
the appropriate level and
difficulty is presented to
the student. While the student

works on a solution it
must successfully
�Parse�, �Compile�, and
�Run�

Source Code Area

Results of parsing,
compilation, and
execution. This area is
also used for displaying
hints, the solution, and
current student statistics.

The student may select
a different question
from a bank of suitable
skill-level questions

Based on the current
problem, the student
may ask for a hint or
solution from the tutor.

The student model
based on performance
gathered statistics

Figure 5. JITS User Interface

 Upon connecting to JITS website, the student�s
browser displays the working environment for JITS. An
appropriate skill-level problem is selected or the problem
that last attempted is presented to the student.
 The student types in a solution in the Source Code
Area and presses �Parse�. This invokes a call to the
corresponding Enterprise JavaBeanTM representing the
student. Information is gathered (i.e., student model,
JavaTM Parser, compiler, runtime engine, etc.) and
submitted to the AI module. If the parser does not
succeed then the AI module will determine the
appropriate response based on the
syntactic_decision_tree. Otherwise, JITS goes beyond
the student and attempts to compile and execute the code.
This yields additional information for the AI module to
construct intelligent feedback. This information is used
by the semantic_decision_tree. Specific feedback is
generated and sent to the student�s browser.
 The student, at any time, may explicitly request a hint
from JITS, view the solution, opt to quit the problem and
select another, and view their performance history based
on statistics including problems attempted, problems
solved, number of attempts on a problem, and problem
difficulty. The JITS user interface is shown in Figure 5.

3. Conclusions

 In summary, the JavaTM Intelligent Tutoring System
prototype is designed using advanced cognitive science

and AI techniques promoting the necessity for on-going
research and development in the field of web-based
educational tools. This research project is significant
since it has the potential to be applied to numerous
programming courses at the College and University level.
Furthermore, it is important to the field of Education in
both e-learning and traditional settings. The project in
progress is based on sound theories and practices used in
successful Intelligent Tutoring Systems and draws from
the achievements ITS researchers have had in related
projects.

4. References

[1] Anderson, J. R., Corbett, A. T., Koedinger, K. R., &
Pelletier, R. (1995). Cognitive Tutors: Lessons learned.
The Journal of the Learning Sciences, 4, 167-207.

[2] Graesser A. C., Person, N. K., & Harter, D. (2001).
Teaching tactics and dialog in autotutor. International
Journal of Artificial Intelligence in Education, 12, 12-23.

[3] Koedinger, K. R. (2001). Cognitive tutors. In K. D.
Forbus & P. J. Feltovich (Eds.), Smart machines in
education (pp. 145-167). Cambridge, MA: MIT Press.

[4] Scott, A. C., Clayton, J., E., & Gibson, E., L. (1991). A
Practical Guide to Knowledge Acquisition. Menlo Park,
CA: Addison-Wesley.

[5] Woolf, B., P., Beck, J., Eliot, C., & Stern, M. (2001).
Growth and maturity of intelligent tutoring systems: A
status report, In K. D. Forbus & P. J. Feltovich (Eds.),
Smart machines in education (pp. 100-144). Cambridge,
MA: MIT Press

	Table 1. JavaTM ITS Curriculum Architecture

