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ABSTRACT

McESE  (McMaster Expert System Environment) is a software tool  for building  problem-
specific  shells  and  creating  expert   system applications in a particular programming language.
Developed  and implemented by the authors at McMaster University,  it is  designed to allow the
user to deal with imprecise and incomplete  knowledge, customize the shell’ s handling of
uncertainty,  allow  hierarchical partitioning of knowledge bases,  and fast prototyping. Specialized
software  of McESE is written in C and facilitates handling of  all aspects  of  dealing  with  rule-
based  knowledge  bases.  Some  of practical  and theoretical aspects of McESE are discussed  in
this paper. For more details see [FB], [FB1], [F], [L].

INTRODUCTION

McESE  is an expert system environment designed to  build  problem-specific  shells  and
create expert  system  applications.  It  is designed to satisfy the following goals:

• allow the user to deal with imprecise and incomplete knowledge in McESE  knowledge  bases
with a declarative formalism  that  has  a satisfactory degree of expressive power;

• allow  the  user  to  customize  the  shell  as  so  it  handles uncertainty in the way of his
preference;

• allow  the  user  to create  expert  system  applications  in  a particular  programming  language
(C,  FranzLISP,  and  SCHEME  are available  at  the moment),  with a point of  reference
being  the application rather than the knowledge base (so the creation of such an application
resembles ordinary programming as much as possible);

• allow the user a natural (hierarchical) connection of  different knowledge bases in an
application;

• allow rapid prototyping;
• allow fast inferring.



DESCRIPTION OF McESE

In McESE the user can encode the domain knowledge in general  rules of the form:
                  TERM1 & TERM2 & ...  & TERMn ==CVPF==> TERM
where CVPF abbreviates "certainty value propagation function". The "meaning" of a simple rule
TERM1 & TERM2 ==F==> TERM3 is:  if  we  are  certain with value v1 that TERM1 is true,
and if  we  are certain with value v2 that TERM2 is true,  then we are certain with value F(v1,v2)
that TERM3 holds.

A term has the form:
    weight * predicate_name (list_of_variables) threshold_directive
where  weight  and threshold_directive are optional, threshold_directive having form [top tval],
where top is > or  >=, and tval a real value between 0 and 1 inclusive.  The predicate  in the term
may be negated by the symbol ‘-‘  or ‘~’ .

Firing  of  such  rule  (after all variables  have  been  bound  to objects) consists of the
evaluation of the right hand side (RHS for short) predicate using certainty values of all left hand
side  (LHS for   short)  predicates  (and  hence  terms)  processed   by   the corresponding CVPF.

Rules  in this form allow to capture an  imprecise,  uncertain  and incomplete knowledge,
since the rules are guaranteed to “ fire”  for any values of LHS terms (except some situations when
the firing  is prevented  by the CVPF),  and only the resulting value of  the  RHS predicate is
affected by the values of LHS terms.

The  predicates  serve as simple statements about  relations  among objects  of the domain
the user is “dealing”  with.

For  a  particular  knowledge  base,  if  no  CVPF  in  a  rule  is stipulated,  the default one is
used. As any CVPF can be defined as default by the user, he can in fact pre-determine that all rules
in the knowledge base will be handled uniformly,  in essence fixing  a particular method of the
treatment of uncertainty for the knowledge base.

Most  of  expert  systems  shells are  either  presented  with  the knowledge  representation
language  as the main  language  of  the application,  and  hence the application is “centered”
around  the “model”  (knowledge base), and the procedural parts are connected to it  by different
means (in the case of OPS languages and PROLOG  it is  the  only  language),  or they themselves
are  written  in  the language of application (for example KEE in LISP). We tried to give the user a
possibility to write an application in the usual way, at least the procedural parts,  and in the
programing language of  his choice,  but  still preserve the possibility of having access to  a
declarative  knowledge  base  when  needed.  This  is  achieved  by “extending”  a particular
programming language by McESE commands  to facilitate  all required communication between
the application  and the knowledge bases.  The software to perform the communication  is written
in C,  but is transparent to the user.  Thus,  a particular application is completely built using a single
programming language and the language of McESE rules. At this point, McESE extensions of C,
FranzLISP,  and SCHEME are available.  Note that this shift  in emphasis  changes  the  focal
point from  knowledge  base  to  the application  in  an  effort  to  allow  for  ordinary
programming techniques, methods, and experience to be fully utilized.



Predicates which never occur on RHS of any rule correspond to facts and  observations;  we
shall call them level  0  predicates.  They represent data input nodes of the knowledge base.  Their
values are not derived (inferred) using rules,  they must be obtained from so-called  predicate
service  procedures.   These  may  be   ordinary procedures to supply the facts and/or observations,
or they may in fact be other expert systems.  This mechanism allows for convenient partitioning of
the domain knowledge into a hierarchy of  knowledge bases (or more precisely expert systems), see
Fig. 1.

                              Fig. 1

On   the  other  hand,   predicates  on  higher  levels   represent  conclusions based on facts
and/or other conclusions.  Their   value  must be obtained by inferring.

Since  McESE  built-in inference engine automatically  prompts  the user  for  the  result of
the invocation  of  a  predicate  service procedure  in the case that the predicate service procedure is
not available  to the system (and similarly for CVPF’s),  one can  just test and modify rules in the
knowledge base without the overhead of building   the   complete   application.   Moreover   since
McESE interactions  and  inferences  are  identical  in  McESE-C,  McESE-FranzLISP,  and
McESE-SCHEME,  one can quickly build a prototype in McESE-FranzLISP   (utilizing   versatility
and   flexibility   of FranzLISP)  to  verify  the  methods  and  approaches,   and   when satisfied,
the  knowledge  bases can be used as they are  for  the McESE-C application.

McESE knowledge bases are compiled immediately while being  created and/or  modified.
The resulting data structure allows  for  direct linking  of  relevant  predicates,   so  only  relevant
rules  are  considered when a predicate is being evaluated. Thus inferring with such  a  knowledge
base  amounts to  a  “walk”   through  the  data structure and hence the speed of inferring depends
entirely on  the depth of the knowledge base rather than on its size.  The result is a  fast
performance,  knowledge base queries are quickly  evaluated and returned to the application
program.



McESE  editor allows the user to edit a knowledge  base  (i.e.  the rules)  in  the  declarative
form though  the  knowledge  base  is maintained  as  the  above described  data  structure.  The
editor provides on-line syntactical checking, parsing and compiling of the rules,   and  a
rudimentary  semantical  checking.   This  greatly simplifies  the  task  of creation and  modification
of  knowledge bases.

McESE inference engine provides the mechanism for  “ inferring” .  It can  work  in  two
basic  modes,  forward  chaining  and  backward chaining.  Backward  chaining  from a given
predicate  with  given bindings  for its variables is performed as depth-first  walk  down the
(compiled)  knowledge  base  to  level  0  predicates   (with simultaneous  propagation  of bindings
for  predicate  variables), “selecting”   the appropriate substructure leading to the  predicate being
evaluated  (there may be more than one  such  substructure).  Only  the  required  0  level
predicates  are  activated  (and  so appropriate known facts are fetched and/or appropriate
observations are  made) and then the resulting certainty values  are  propagated (and recorded in the
knowledge base, too) back through the selected substructure to the required predicate.  The
backward chaining mode has  four submodes which amount to rule  conflict  resolution:  max
mode,  sufficient  max mode,  min mode,  and sufficient  min  mode.  Sufficient  max  (min)  mode
searches  for  a  substructure  which evaluates the required predicate to a certainty value bigger
(less) or equal to the specified value,  then the chaining stops and  this value  is  returned,  or  if
such a  substructure  is  not  found, “ failure”   is returned.  The max (min) mode evaluates all
possible substructures and returns the max, i.e. the highest value (the min, i.e.   the   lowest  value
respectively).   Forward  chaining   is implemented only from 0 level up,  to a specified level.
Specified predicates  from level 0 and their ascendants up to  the  specified level are evaluated and
their values recorded in the knowledge base for latter use.

The  inference  engine can work in two modes as far  as  explaining what it is doing: the
silent mode when all inferring is transparent to the user and only the resulting value is available,  or
in trace mode  when  all  inferring is done on the  screen,  rule  by  rule, predicate  by  predicate,
with  all  relevant  information  being displayed,  too.  The  trace mode is useful mainly for testing
and debugging of knowledge bases.

A run time consistency checking takes place:  only the minimal  and maximal values for a
predicate are recorded. The difference between these  two  is the inconsistency level.  McESE
allows the  user  to preset  for  a  knowledge  base what  inconsistency  level  it  can tolerate.  If the
inconsistency level tolerance is exceeded,  ALARM is issued and the inferred value is returned to
the application.

Also,  a run time completness checking takes place:  in the case  a predicate cannot be
evaluated,  ALARM is also issued and  “ failure”  is returned by the inference engine.

For each McESE knowledge base the user can specify ALARM  procedure which  is
automatically invoked by McESE when ALARM is  issued.  In this procedure the user can define
what should be done.



An  invocation  of  the  inference  engine  from  the   application constitutes one inference
cycle.  Any of the values recorded in the knowledge  base as results of backward or forward
chaining  within the  last  inference cycle can be fetched to  the  application,  if needed.

As a simple explanation mechanism the inference engine keeps  track of the substructure
used for the max evaluation for each  predicate evaluated  during the last inference cycle (and
similarly  for  the min evaluation),  and displays it when asked for, together with the input data
which affected the particular values of facts on level 0 at the time of the evaluation.  Thus,  the user
can trace back  any inference to the facts and observations of level 0.

SOME THEORETICAL ASPECTS OF McESE.

“ Deep   knowledge”  versus  “ shallow knowledge”

Expert systems  of the  so-called first generation deal with  what is called  “shallow
knowledge”,  i.e.  the  knowledge  being just a set of  heuristics, without any “deep”  understanding
of the domain, where all concepts are treated  uniformly in a homogeneous way. On the other hand,
so-called  “deep knowledge” calls for explicit models of  the   domain embodying “understanding”
of different concepts  within the domain.  There have been quite strong claims with  regard to
expert  systems of  the  second generation using  this “deep knowledge”  (see  e.g. [NSM]),  but  we
tend  to  agree with [S] that  these  are  mostly unsupported  by  substantial practical
demonstrations  yet.  Being guided  by   our  pragmatical  goals,  McESE  belongs  among  first
generation   expert  systems, with  all  the consequences for explanations and knowledge
acquisition.

Knowledge  acquisition  in   McESE

As  stated  many  many  times, knowledge  acquisition  is the  real bottleneck of  expert
systems development.   It  is  very  hard  to  get   and  formalize  domain knowledge,  and the task
is time  consuming and seemingly  endless. Besides that, the  domain knowledge may (and will)
differ  from one human expert to another. There are hopes (and  claims) that the use of “deep
knowledge” expert systems will alleviate this  problem and will help facilitate in some way
“ learning”  (see [S]).  Given   the current state of the research into these problems,   McESE does
not address  it  in  any  way and leaves it to  the   poor  user  (i.e. knowledge engineer) to deal with
it in the  old fashion way.  There are,  though,  some  interesting   possibilities for “ learning  by
observation”   the  CVPF’s (or their modeling by  neural  nets),  if given the concepts and their
relations.  This is in the  plans  for our future research concerning McESE.

Treatment  of uncertainty in McESE

Presently there are two  basic approaches to uncertainty in expert systems.

The  first,  linguistic  approach,  is  what one  may  describe  as  “reasoning about
uncertainty” ,  where linguistic terms are  used to deal  with uncertain aspects of the knowledge (as



we   humans  do),  and their interpretation and verification is  handled according  to the  “context”
in which they were  posed.  The argument  of  people following this line of thought is a  plausible
one, namely that the knowledge  representation  we   use ought to  reflect  the  way  we
communicate  our  ideas  as   much  as  possible.   But,  from  the pragmatical  (computational)
point of view this is not (at least at this   stage) a very practical approach due to the need of  a  very
sophisticated   mechanism   to  handle  this   interpretation   and  verification of linguistic terms of
uncertainty.  We suspect   that this approach may be feasible when systems for  representation  and
reasoning  with common sense are  developed.  For example see  [CG] for a heuristic  treatment of
this type. There are other schemes in this  category,  like default reasoning, but we think they
address more  the problem of reasoning with incomplete   and/or  unreliable knowledge.

The second approach is a numerical one, where  numbers are employed to indicate the
degree of certainty,   or uncertainty,  or whatever other term may be used. This  seems to be more
natural (at least at this stage) and the  field is richer in different schemes how to do it.  We  are
inclined to view the problem of uncertainty  in  this light,  given the fact that even we, humans,
very often have to use  numerical specifications to clear some aspects of our  transmission of  ideas.
When we were deciding how to deal with  uncertainty  in McESE,  we were mainly guided by
admittedly pragmatical aspects of the proposed system.  Thus  the question was which of many
schemes to  employ.  For  an  excellent overview of  the  field,  see  [G]. Briefly,  there  are about
four main ways to deal with  uncertainty  numerically.

Probabilistic (Bayesian statistics),  which has the  advantage of a well developed
terminology,  technology and  machinery, and also is easily   comprehensible   to  humans  as   we
have   incorporated probability  into  our everyday lives  and language.  Some  of  the works  in this
field clearly  influenced our  thinking,  especially for  their  clear   “theoretical”   approach  and
quite  impressive theories (see  e.g.  [DP],  [P], [RP]). But given the fact that one has   to   establish
a  host  of  prior  probabilities   in    the “background”  to facilitate the complete probability
distribution and/or assume that most of “events”  are  statistically independent, renders the whole
approach  computationally almost  impossible,  or one  must fit (and  that is the most frequent case)
his  knowledge  representation into a fixed scheme satisfying the  underlying  (and often  implicit
and  hence  “transparent” )   restrictions.   These systems  have what we call one degree  of ad-
hocness in  that  that the prior probabilities of  the “events”  are ad-hoc (i.e.  supplied by  the
domain   expert),   their  coherent  processing  is  well-established and  well understood process,
and so easily interpreted (some   mathematicians  argue though that the coherence is  only  a
superficial one,  that the approach is meaningless as the  “events”  in question are not really part of a
chance  system).

Evidential  approach,  mostly based on variations of what   is  now commonly  called
Dempster-Shafer  theory  of  belief    functions, presupposes  that  the pieces of evidence  are
"independent",  so again  one has to mold his knowledge  representation into  a  fixed scheme
satisfying some  (unfortunately implicit and not so obvious) underlying   restrictions.  Similarly,  as
with  the  probabilistic  approach, the penalty to pay is that the system becomes  incoherent
(theoretically,  it does not have to be visible on  the performance of the system in question) when
these  underlying restrictions  are violated,   with   no  recourse  but   re-fitting   the   knowledge
representation into the required framework. Since these schemes are computationally even more
taxing than the probabilistic  approach, applications in the  field tend to simplify matters by



considering only  the  simplest of belief (support)  functions.  These  systems have  what we call
two degrees of ad-hocness, for these  evidential support  belief  functions  must be supplied  for
each  piece  of evidence to be considered in order to get a  meaningful interaction among all
"events".  They are  propagated using some (slightly  ad-hoc) machinery of  combining evidence
(Dempster's rule),  and  then the results  must be interpreted (what they mean). The violation of
underlying   constrains   is  even  less  obvious   than   in   the  probabilistic case.  On the other
hand,  there are common   grounds between those two, as in the case of causal trees  (see [SS]).

The third approach is "fuzzy logic" or "fuzzy set"  approach. There every  linguistic
(uncertain) term is  represented by a  membership function and the degree of  uncertainty reflects in
the  membership function of the  "conclusion".  There are some common grounds  with Dempster-
Shafer  theory  (see [Z],[Z1]),  but we have  not  seen  a  practical  application  yet going beyond
the use of  max  and   min operators  to propagate "certainties" through rules  (corresponding
to  conjunction and disjunction respectively).  These systems  have what  we  call three degrees of
ad-hocness,  for one has to  supply  completely  ad-hoc membership functions for each  linguistic
term, these  are  processed  with an ad-hoc   mechanism  to  obtain  some results,  whose
interpretations are  again ad-hoc. More than in the previous two approaches,  the  underlying
constrains (with  respect to  max and min  operators) are so tied,  that the  system  becomes
factually  incoherent quite fast.

The  fourth  way  to deal with uncertainty may  be  called   ad-hoc systems.   There  belong
systems  with  different   mechanisms  of propagating "certainty factors" (MYCIN - see [BS]),  and
so.  The list would be quite long.  These systems exhibit  three degrees  of ad-hocness  (ad-hoc
numbers to  start  with,   ad-hoc  propagation mechanism,   and  ad-hoc  interpretation).   However,
they  proved themselves quite well from the  practical point of view.

In the light of the above mentioned possibilities,  bearing  on our mind one of our most
important goals (speed of  execution, and thus a  need  of a simple mechanism) we opted  for a
"hybrid"  solution exhibiting also three degrees of  ad-hocness.  The certainty values passed  to  the
knowledge  base are ad-hoc in that  that  they  are results  of   "computations" of level 0  predicate
procedures  and reflect the user's  ideas about how certain he is about  them.  The CVPF's  are   ad-
hoc,  for it is up to the user  to  provide  them, according  to his "feelings". And finally the
interpretation of the  resulting  values is also ad-hoc,  for their is  no   "theoretical" explanation  of
what these numbers mean.   Why did we  opt  for  a system  with three degrees of ad-hocness?
Speed itself  would  not justify  it,  as  having  for   example one  or  two  functions  to propagate
the  certainty   values would be even  faster  and  more convenient  for the  user.   (a) we had found
systems of  all  four numerical approaches  inherently inflexible.  In brief, you have to "mold" the
rules to fit the system, you have no freedom to capture the   "structural" relationships of the
predicates  involved,  and  then work on capturing the "certainty value" characteristic  of the
rule. Our approach allows you to do it in two  separate steps.  (b) we  had  found that too often we
needed  different   approaches  to uncertainty  within  a  single  knowledge  base   (and/or   control
mechanism).   Again,   CVPF's   allow   you   to    "switch"   from "probabilistic" to "evidential" to
"fuzzy" to  "ad-hoc" on the  go.  (c)  we  had  been  influenced  by  (very  pointed)  arguments   by
proponents  of  non-numerical  approach,   especially   "heuristic" approach.  Again,  CVPF's  allow
us to do emulate it to  a  degree.  They   are  nothing  else,   but  (procedural)   heuristics   about



uncertainty  in the particular rule.   (d) we had found  that  very often  we  were  able  to formulate
the  "structure"  of  a  rule correctly, while the numbers  needed frequent corrections (tuning).
The   separation   of  the   structure  of  the   rule   from   the interpretation of  uncertainty in the
rule helped to solve this. If  the structure of the rule is satisfactory,  one need to   fine-tune
the  CVPF's only.   (e) there has been an additional bonus  in  the possibility  to run  some
"experiments" with knowledge bases  under  different interpretations of uncertainty.

CONCLUSION

McESE  in its initial phases and forms  (McESE-FranzLISP,  McESE-C, and  McESE-
Scheme) has satisfied our expectations.  It has met  the goals stated when we started the project.  It
serves as a test  bed for different approaches to uncertainty for our research,  as  well as  an  expert
system environment for our  Expert  Systems  courses (especially McESE-FranzLISP).
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