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Background

A run, a maximal fractional repetition in a string was
conceptually introduced by Main in 1989. The term was coined
by Iliopoulos, Moore, and Smyth in 1997.

..............
s s+p-1 s+p s+2p-1 s+(e-1)p s+ep-1 s+ep s+ep-1+t

           generator
p = period (generator  length) > 0

         tail
     0    t < p

       repeats e times
e = power, exponent > 1

leading square of the run trailing square of the run

s+(e-2)p+t
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Though there may be at most O(n log n) repetitions in a string
(Crochemore 1981), it was hoped that the more concise
notation of runs will eliminate the need to list all repetitions.

In 2000, Kolpakov and Kucherov showed that there are at most
O(n) runs in a string.

Several authors (Kolpakov and Kucherov, Smyth et al.)
formulated several conjectures on the nature of the maximum
number of runs in a string, based on computational results
(Kolpakov and Kucherov up to length 32, Franek and Smyth up
to length 35).
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r(x) = # of runs in a string x

ρ(n) = max {r(x) : |x | = n}

Conjectures:
1 ρ(n) ≤ n
2 ρ(n+1) ≤ ρ(n)+2
3 for any n, there is a binary cube-free string x of length n so

that ρ(n) = r(x).
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Upper bound:
1 ρ(n) ≤ 6.3n, then improved to 3.44n, Rytter 2006
2 ρ(n) ≤ 1.6n Crochemore and Ilie 2008
3 The current value stands at ρ(n) ≤ 1.029n

http://www.csd.uwo.ca/~ilie/runs.html

Upper bound for microruns (runs with a bounded period):
1 ρ≤9(n) < n, Crochemore and Ilie 2008
2 ρ≤9(n) < 0.971n, Giraud 2008
3 ρ≤p(n) < n, p = 9,10,11 Franek and Holub 2008
4 ρ≤60(n) < 0.93n, Ilie 2009
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Lower bound (asymptotic):
1 ρ(n) ≥ 0.927n, Franek, Simpson, and Smyth 2003, Franek

and Yang 2008
2 ρ(n) ≥ 0.944565n, Matsubara et al. 2008
3 The current value stands at ρ(n) ≥ 0.944575n by Puglisi

and Simpson
http://www.shino.ecei.tohoku.ac.jp/runs/
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Structure of run-maximal strings

The objective is to describe in structural or combinatorial terms
strings that exhibit the maximum number of runs.

In essence, a run-maximal string has an R-cover, possibly a
single “weak point", and satisfies a density condition.

This structure immediately yields:
a highly effective compression scheme for run-maximal
strings, and
a way to reduce dramatically the search space for
run-maximal strings.
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Usually, we encode a repetition as (s,p,e), where s is the
starting position, p is the period, and e is the exponent.
Alternatively, we can encode it as (s,p,d) where d is the
ending position of the repetition; the mutual transformations are
d = s+ep−1 and e = (d−s+1) / p

Usually, we can encode a run as (s,p,e, t) where s is the
starting position, p is the period, e is the exponent, and t is the
tail. Alternatively, we can encode it as (s,p,d) where d is the
ending position of the run; the mutual transformations are
d = s+ep−1+t and e = (d−s+1) / p, t = (d−s+1) % p
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Definition (R-cover)

Let x be a string. { Ri = (si ,pi ,di) | 1 ≤ i ≤ m } is an R-cover of
x if

a) Each Ri is a left-maximal square in x, i.e. either
Ri = x [0..k ] or Ri = x [v ..k ] and x [v−1] 6= x [v+k−1

2 ].
b) For every Ri and Ri+1, 1 ≤ i < m, si+1 ≤ di < di+1.
c) For every Ri and Ri+1, 1 ≤ i < m, their overlap x [si+1..di ]

is maximal such that (b) holds.
d) For any run R′ in x and its leading square R, there is an

1 ≤ i ≤ m so that R ⊆ Ri .
e) x =

⋃
1≤i≤m

Ri .
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a a

a a
aa b a b

a b a a b a b a a b a b

a a
ba a b
b a b b a b

b b
b a b a a b a b a a b a b
b a b a

a b a a b a
a a

a b a b a

a b a a b a
a a

a b a b
b a b b a b

b b
b a b a

a b a a b a
a a

a b a b
b b

a bb a b a a b a bb a b a a b
a ba b a a

a a b a ba a b a b a a b b a b a a b a b a a b a b b a b a a b a b b
a a b a a ab

a b a ba a b a b a a b b a b a ba a b a b a a b ab b a a b a b

bb a b a a b a b b a b a a b a b

0 1 2 8 103 4 5 6 7 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Illustration of R-cover (in bold)
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Theorem (Structure of run-maximal strings)

Let x = x [0..n] be a run-maximal string. Then either
x has an R-cover, or
there are a string y that has an R-cover and a letter w so
that x = wy, or
there are a string y that has an R-cover and a letter w so
that x = yw, or
there are strings y1 and y2 that have R-covers and a letter
w so that x = y1wy2.

Moreover, x satisfies the density condition: for any k < n,
removing x [0..k−1] destroys at least ρ(k) runs.
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Proof of the theorem

Lemma

Let x and y be strings. Then there is a transformation τ of the
alphabet of y, so that |τ(y)| = |y |, r(τ(y)) = r(y), and
r
(

x || τ(y)
)
≥ r(x) + r(τ(y)) = r(x) + r(y).

Proof.
Let A be the alphabet of x , and let B = {b1, · · · ,bk} be the
alphabet of y . Take C = {c1, · · · , ck} so that A ∩ C = ∅. Define
τ(bi) = ci . Now, no runs can get “glued" together.
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Definition (weak point)

Let x = x [0..n] be a string. A position i is a weak point if
r(x [0..i−1]) + r(x [i+1..n]) = r(x [0..n]) (“removing" the position
does not destroy any run).
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Lemma
A run-maximal string x = x [0..n] has at most one weak point.

Proof.
By contradiction assume two different weak points, i and j . By
the previous lemma, there are transformations τ and θ so that
r
(

x [0..i−1]) || τ(x [i+1..j−1]) || θ(τ(x [j+1..n]))
)
≥

r(x [0..i−1]) + r(x [i+1..j−1]) + r(x [j+1..n]) = r(x [0..n]).
Let a 6= x [0], let
y = aa || x [0..i−1] || τ(x [i+1..j−1]) || θ(τ(x [j+1..n])). Then
|y | = |x | and
r(y) ≥ 1+r(x [0..i−1])+r(τ(x [i+1..j−1]))+r(θ(τ(x [j+1..n]))) ≥
1 + r(x) > r(x), a contradiction with x being run-maximal.
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Lemma
Let x = x [0..n] have no weak point. Then x has an R-cover.

Proof.
0 is not a weak point, so there must be a run destroyed by 0.
Take all such runs, take the one with the largest period, and set
R0 to its leading square.
We follow by induction.
Assume to have {Ri : r ≤ k}. Let D be the ending of Rk . If
D = n, we are done.
If D < n, then D+1 is not a weak point, so there is a run
destroyed by D+1. Among all runs destroyed by D+1, choose
the ones with the leftmost start, among them choose the one
with the largest period. Set Rk+1 to its leading square.
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Now we can conclude the proof of the main theorem. A
run-maximal string x has at most one weak point. The weak
point-free segments have R-covers.

The density condition is straightforward: if x [0..k−1] destroys
fewer than ρ(k) runs, we can replace x [0..k−1] with a
run-maximal string y for k−1, but then r(y || x [k ..n]) > r(x)
contradicting run-maximality of x .
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Illustrations

For illustration, we used large (hopefully run-maximal) strings
from http://www.shino.ecei.tohoku.ac.jp/runs/ by
Matsubara et al.

First we used the string of length 125 characters. Its R-cover
given as [starting position, period , ending position] follows.

[0,24,47]
[16,32,79]
[48,37,121]
[109,8,124]
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Then we used the string of length 139632 characters:
[0,34227,68453] [139618,5,139627]
[21754,45341,112435] [139624,3,139629]
[67095,34227,135548] [139630,1,139631]
[113749,11114,135976]
[127159,4781,136720]
[131940,3609,139157]
[136862,1172,139205]
[138273,505,139282]
[138778,380,139537]
[139158,218,139593]
[139424,93,139609]
[139554,32,139617]
[139594,13,139619]
[139610,8,139625]
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Then we used the string of length 184973 characters:
[0,79568,159135] [184959,5,184968]
[113749,25837,165422] [184965,3,184970]
[139586,19504,178593] [184968,2,184971]
[159090,11114,181317] [184971,1,184972]
[172500,4781,182061]
[177281,3609,184498]
[182203,1172,184546]
[183614,505,184623]
[184119,380,184878]
[184499,218,184934]
[184765,93,184950]
[184895,32,184958]
[184935,13,184960]
[184951,8,184966]
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A compression scheme for strings with R-covers

The R-covers allow for a very effective compression scheme
with 40-50% reduction rate. In this section we describe the
compression scheme.

Consider a string x and its R-cover { Ri | 1 ≤ i ≤ m }.

We record the period of R1, its generator, and the offset where
R2 starts relative to the beginning of R1 (0 if there is no R2). If
there is no R2, we end there. If there is R2, we record the
period of R2, the “completion of its generator", and the offset
where R3 starts relative to the beginning of R2 (0 if there is no
R3), and so on.
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What do we mean by “completion of the generator" of Ri+1?
The two basic relative configurations of Ri and Ri+1 are
depicted in the following two diagrams.

0 p1-1 p1 2p1-1

s2 s2+p2-1 s2+p2 s2+2p2-1

Ri

Ri+1

In this configuration, the generator of Ri+1 is in fact subsumed
in Ri and does not need to be recorded as it can be easily
determined, and so the “completion of the generator" is empty.
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In this configuration, only a portion of the generator of Ri+1 can
be determined from Ri , the shaded part in the diagram must be
recorded, and that is the “completion of the generator".

0 p1-1 p1 2p1-1

s2 s2+p2-1 s2+p2 s2+2p2-1

Ri

Ri+1
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Let us recall a binary string

aabaababaababbabaababaababbabaababb

of length 35 and its R-cover previously shown for illustration.

b b

a a b a ba a b a b a a b b a b a a b a b a a b a b b a b a a b a b b
a a b a a b

a b a ba a b a b a a b b a b a ba a b a b a a b b
b a b a a b a b b a b a a b a b

0 1 2 8 103 4 5 6 7 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

The compression of the string is given by
[ 3,aab,1,13,abaababb,17,8,16,1,0 ].

How can we decompress it?
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1 We start with having the IPGN (initial part of the next
generator) set to empty.

2 We read the first item, 3, and it tells us that the generator
will have length 3, and since IPGN is empty, we read the
next 3 characters to complete the generator aab, and we
build the first square aabaab.

3 We read the next item, 1, and it tells us that the next
square starts at the offset of 1, which gives 5 of the first
characters of the generator, thus we set IPGN to abaab.

[ 3,aab,1,13,abaababb,17,8,16,1,0 ]
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4 We read the next item, 13, which tells us that we do not
have a complete generator (out of 13 we only have 5
characters), so we read the next 8 characters abaababb
to complete the generator to abaababaababb and to
complete the second square to
abaababaababbabaababaababb. This gives us

a a b a ba a b a b a a b b a b a a b a b a a b a b b a b a a b a b b
a a b a a b

a b a ba a b a b a a b b a b a ba a b a b a a b b

0 1 2 8 103 4 5 6 7 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

[ 3,aab,1,13,abaababb,17,8,16,1,0 ]
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5 We read the next item, 17, which tells us that the next
square starts at the offset of 17 from the beginning of the
second square, so we set IPGN to babaababb.

6 We read the next item, 8, which tells us that the generator
will have size 8. Since IPGN has size ≥ 8, we can
determine the generator as babaabab and complete the
square to babaababbabaabab. This gives us

a a b a ba a b a b a a b b a b a a b a b a a b a b b a b a a b a b b
a a b a a b

a b a ba a b a b a a b b a b a ba a b a b a a b b
b a b a a b a b b a b a a b a b

0 1 2 8 103 4 5 6 7 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

[ 3,aab,1,13,abaababb,17,8,16,1,0 ]
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7 We read the next item, 16, which tells us that the next
square starts at the offset of 16. It gives us IPGN b.

8 We read the next item, 1, which tells us that the generator
has length 1. Since the size of IPGN ≥ 1, we do not to
read any more letters, compute the generator as b,
complete the square to bb. This gives us

b b

a a b a ba a b a b a a b b a b a a b a b a a b a b b a b a a b a b b
a a b a a b

a b a ba a b a b a a b b a b a ba a b a b a a b b
b a b a a b a b b a b a a b a b

0 1 2 8 103 4 5 6 7 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

9 We read the next item,0, which tells us that there is no
further square, we are done.

[ 3,aab,1,13,abaababb,17,8,16,1,0 ]
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Search strategy for run-maximal strings

Having generated a string with an R-cover, we can extend it in
all possible ways with another square. We do not need to
compute all runs in the extended string, all we need is to “unify"
runs in the last square and the newly added square.
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Conclusion

We showed that run-maximal strings are completely
covered with one or two R-covers
This fact leads to an efficient compression scheme for
run-maximal strings
Further research will concentrate on finding if this structure
of run-maximal strings can help resolve any of the three
major conjectures concerning run-maximal strings.
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T HANK YOU
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