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Motivation and background

We investigate the function
ρd(n) = max{ r(x) | x is a (d ,n)-string }

r(x) denotes the number of runs in a string x
(d ,n)-string denotes a string of length n with exactly d
distinct symbols.
We introduce the notion of r-cover and show how it can be
used for recursive computational determination of ρd(n).
r-covers can be used as a computational framework for an
efficient computation of the maximum number of runs.
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Baker+Deza+F (On the structure of run-maximal strings)
introduced the notion of an r-cover as a means to represent the
distribution of the runs in a string and thus describe the
structure of run-maximal strings.

The straightforward assertion that a run-maximal string has an
r-cover – except possibly a single weak point – holds only when
the size of the alphabet is not kept fixed.

However, the approach can be adapted inductively to handle
situations with fixed alphabets and can be used to speed up
generation of the pool of the strings containing a run-maximal
string.
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Definition

An r-cover of a string x = x [1 .. n] is a sequence of primitively
rooted squares { Si = (si ,ei ,pi) | 1 ≤ i ≤ m } so that
(1) none of the Si ’s, 2 ≤ i ≤ m are left-shiftable;
(2) for any 1 ≤ i < m, si < si+1 and di ≤ si+1+1, i.e. two

consecutive squares are either adjacent or overlap;

(3)
⋃

1≤i≤m

Si = x ;

(4) for any run (s,e,p) of x there is 1 ≤ i ≤ m so that S, the
leading square of the run is a substring of Si , denoted by
S ⊆ Si .

A string which has an r-cover is referred to as r-covered.
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(d ,n−d) table

n − d
1 2 3 4 5 6 7 8 9 10 11 12

d

2 1 2 2 3 4 5 5 6 7 8 ρ2(13) .
3 1 2 3 3 4 5 6 6 7 8 ρ3(14) .
4 1 2 3 4 4 5 6 7 7 8 ρ4(15) .
5 1 2 3 4 5 5 6 7 8 8 . .
6 1 2 3 4 5 6 6 7 8 9 . .
7 1 2 3 4 5 6 7 7 8 9 . .
8 1 2 3 4 5 6 7 8 8 9 . .
9 1 2 3 4 5 6 7 8 9 9 . .

10 1 2 3 4 5 6 7 8 9 10 ρ10(21) .
11 . . . . . . . . . . ρ11(22) .

The main diagonal, the second diagonal
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There are several reasons for organizing the table in this
unorthodox manner:

The regularities the table exhibits point to several ways of
possible induction

Point to a proper upper bound: ρd(n) ≤ n−d

Allow a reduction of the problem, as the behaviour of the
items on the main diagonal determines the behaviour of all
entries.
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Basic properties of ρd(n) function

ρd(n) ≤ ρd+1(n + 1) for n ≥ d ≥ 2
ρd(n) ≤ ρd(n + 1) for n ≥ d ≥ 2
ρd(n) < ρd+1(n + 2) for n ≥ d ≥ 2
ρd(n) = ρd+1(n + 1) for 2d ≥ n ≥ d ≥ 2
ρd(n) ≥ n − d , ρd(2d + 1) ≥ d and ρd(2d + 2) ≥ d + 1 for
2d ≥ n ≥ d ≥ 2
ρd−1(2d − 1) = ρd−2(2d − 2) = ρd−3(2d − 3) and
0 ≤ ρd(2d)− ρd−1(2d − 1) ≤ 1 for d ≥ 5
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{ρd(n) ≤ n − d for n ≥ d ≥ 2} ⇐⇒ {ρd(2d) ≤ d for d ≥ 2}
{ρd(n) ≤ n − d for n ≥ d ≥ 2} ⇐⇒ {ρd(9d) ≤ 8d for
d ≥ 2}
{ρd(n) ≤ n − d for
n ≥ d ≥ 2} ⇐⇒ {ρd(2d + 1)− ρd(2d) ≤ 1 for d ≥ 2}
{ρd(2d + 1) ≤ d for d ≥ 2} =⇒ {ρd(2d) = d and
ρd(n) ≤ n − d − 1 for n > 2d ≥ 4}
{ρd(2d) = ρd(2d + 1) for d ≥ 2} =⇒ {ρd(n) ≤ n − d − 1
and ρd(2d) = d for n > 2d ≥ 4}
{ρd(2d) = ρd(2d + 1) for d ≥ 2} =⇒ {square-maximal
(d ,2d)-strings are, up to relabelling, unique and equal to
a1a1a2a2a2 . . . adad}.
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Basic properties of r-covered strings

Lemma
If a string x is r-covered, its r-cover is unique.

Lemma
If a string x has an r-cover, then it is singleton free.

Definition
We say that the symbol x [i] destroys k runs in x , if
(a) i = 1 and r(x)− r(x [2 .. n]) = k , or
(b) i = n and r(x)− r(x [1 .. n−1]) = k , or
(c) 1 < i < n and r(x)− r(x [i .. i−1])− r(x [i+1 .. n]) = k .
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Definition
A singleton-free (d ,n)-string x is t-dense, t ≥ 1, if
(a) x [1] destroys strictly more than t−ρd(n−1) runs in x ;
(b) x [i], 1 < i < n, destroys strictly more than

t−r(x [1 .. i−1])−ρd ′(n−i) runs in x , where
d ′ = |A(x [1 .. n])−A(x [1 .. i])| ≤ d ;

(c) x [n] destroys strictly more than t−r(x [1 .. n−1]) runs in x .
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Lemma
If a singleton-free (d ,n)-string is not t-dense, then r(x) ≤ t .

Lemma
Let x be a (d ,n)-string. If any x [i] destroys at least one run in
x, then x has an r-cover.

Note that for an (d ,n)-string having an r-cover implies being
singleton free, however it does not imply that every x [i]
destroys at least one run, even though it is very close to it.
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The notion of density was designed so it can be checked using
only knowledge of an initial segment of a string and use the
knowledge of the ρd(n) function for the previous values of n.
The following lemma shows how the density of an r-covered
string x can be verified incrementally using the members of the
r-cover.
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Lemma

Let { Si = (si ,ei ,pi) | 1 ≤ i ≤ m } be the r-cover of an
(d ,n)-string x. Then x is t-dense if and only if
(a) for any 1 ≤ i < m, for any si ≤ j < si+1, x [j] destroys

strictly more than k runs in x, where k =
t−ρd(ei−1) if j = 0
t−r(x [1 .. j−1])−ρd ′(ei−j) if 0 < j and d ′ =

|A(x [1 .. j])−A(x [1 .. n])|
(b) for any sm ≤ j ≤ em, x [j] destroys strictly more than k runs

in x, where k =
t−r(x [1 .. j−1])−ρd ′(n−j) if j < n and d ′ =

|A(x [1 .. j])−A(x [1 .. n])|
t−r(x [1 .. n−1]) if j = n
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Lemma
Let ρd(n1) + ρd(n2) ≤ ρd(n1+n2) for any n1+n2 = n−1. If a
singleton-free run-maximal (d ,n)-string x does not have an
r-cover, then ρd(n) = ρd(n−1).

Lemma

If a run-maximal (d ,n)-string has a singleton, then either
ρd(n) = ρd(n−1) or ρd(n) = ρd−1(n−1).

Corollary

Let x be a run-maximal (d ,2d)-string, d ≥ 2. If x has any
singletons, they can all be moved to the beginning or the end of
the string without affecting the number of runs in x.
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Computational framework

Heuristic for a lower bound ρ−d (n)

The higher the value of ρ−d (n) that we can compute easily, the
less computational effort must be spent on determining ρd(n).

For d = 2, generate L2(n), the set of (d ,n)-strings which are:
r-covered, balanced over every prefix (the frequencies of a’s
and b’s differ by at most a predefined constant), and contain no
triples (aaa or bbb). Then

ρ−2 (n) = max { ρ2(n−1), ρ2(n−2)+1, max
x∈L2(n)

r(x) }.
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This heuristic was found to be very good when tested against
the known binary run-maximal strings: Franek & Smyth up to
34, and Kolpakov & Kucherov up to 60. Note that
ρ−2 (25) < ρ2(25) since the only run-maximal (2,25)-string
contains a triple.

For d ≥ 3, we simply set ρ−d (n) = ρd−1(n)+1.
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Generating r-covered strings

Rather than generating strings, we generate their r-covers.
The generation proceeds by extending the partially built r-cover
in all possible ways. Every time a potential square of the
r-cover is to be extended by one position, all previously used
symbols and the first unused symbol are tried. For each
symbol, the frequency counter is checked that the symbol does
not exceed n+2−2d . Once a symbol is used, the frequency
counter is updated. When the whole r-cover is generated, the
counter is checked whether all d symbols occurred in the
resulting string; if not, the string is rejected.
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For computational efficiency reasons we opted instead for a
user-stack controlled backtracking implemented as a co-routine
Next() allowing us to call the co-routine repeatedly to produce
the next string. Note that the strings are generated in a
lexico-graphic order.

The generator for the first square and any other square in
the r-cover that is adjacent to the previous square is
generated by iterative calls to Next() producing all the
possible generators. Each generator is checked for the
additional properties (must be primitive, is not left-shiftable,
did not create an intermediate square in the intermediate
string, etc.) before it is accepted.
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For subsequent square, if the new square is overlapping
the previous square, its generator may be partially or fully
determined. If it is partially determined, iterative calls to
Next() are used to generate all possible completions of
the generator. The complete generator is checked and
accepted or rejected.
In addition, if the density of the string being generated is to
be checked.
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Recursive computation of ρd(n)

verify that ρd(n1)+ρd(n2) ≤ ρd(n−1) for any n1+n2 = n−1.
compute ρ−d (n)
generate R, the set of all ρ−2 (d)-dense r-covered
(d ,n)-strings
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Consider a singleton-free run-maximal string x /∈ R. Either x
does not have an r-cover, in which case ρd(n) = ρd(n−1), or x
has an r-cover and is not ρ−d (n)-dense, in which case
byρd(n) ≤ ρ−d (n). Therefore

ρd(n) = max { ρ−d (n), ρd(n−1), ρd−1(n−1), max
x∈Rk

r(x) }.

R ⊆ { x | x is a (d ,n)-string } and from the computational
results, the decrease in size is very significant, in many cases
R is empty.
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Recursive computation of ρd(2d)

For computation of values on the main diagonal we can use
r-covers satisfying additional conditions.

Definition
The r-cover { Si = (si ,ei ,pi) | 1 ≤ i ≤ m } of x = x [1 .. n]
satisfies the parity condition if for any 1 ≤ i < m,
A(x [1 .. ei−1]) ∩ A(x [si+1+1 .. n]) ⊆ Ax [si+1 .. ei ].
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Lemma
The singleton-free part of a run-maximal (d ,2d)-string with all
its singletons at the end has an r-cover satisfying the parity
condition.

With additional assumptions, the previous lemma can be
strengthen to exclude non-overlapping squares from the
r-cover.

Lemma
Let ρd ′(2d ′) = d ′ for any d ′ < d. Either ρd(2d) = d or for every
run-maximal (d ,2d)-string x with v singletons all at the end,
v ≤ d − 2, its singleton-free part x [1 .. 2d − v ] has an r-cover
satisfying the parity condition and which has no adjacent
non-overlapping squares.
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Since the number of runs in a singleton-free (d ,2d)-string is at
most d , we do not need to consider the singleton-free strings.

We can consider only (d ,2d)-strings that have singletons at the
end. Since ρd(2d) > ρd−1(2d−2), we can set
ρ−d (2d) = ρd−1(2d−2)+1 and thus consider only the strings
that have the non-singleton part ρ−d (2d)-dense.

Moreover, we can only consider strings whose r-covers of the
non-singleton part satisfy the parity condition with no adjacent
non-overlapping squares.
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The number of singletons must be at least d7d
8 e.

For every d7d
8 e ≤ v ≤ d−2, let Tv denote the set of all

singleton-free ρ−d (2d))-dense r-covered (d ,2d−v)-strings
whose r-covers satisfy the parity condition and have no
adjacent non-overlapping squares. Then

ρd(2d) = max
(

d ,max
{

max
x∈Tv

r(x) :
⌈7d

8

⌉
≤ v ≤ d−2

})
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Conclusion and future research

We first presented the notion of r-covers as a structural
generalization of a uniform distribution of runs in a string. Then
we showed that only for r-covered strings we do not know the
exact value of the maximum number of runs and hence only
r-covered strings must be examined to determine ρd(n).

Based on these observations, we presented a fast and efficient
computational framework with significantly reduced search
space for computations of ρd(n) based on the notion of density.
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T HANK YOU
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