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•  Compilation phases

•  Intermediate code 

•  Control flow analysis

•  Data flow analysis

•  Various optimization techniques:
Peephole Optimization, Dead-code Elimination
Unreachable-code Elimination, Straightening,
If Simplification, Value Numbering, 
Copy Propagation, (SCCP) Sparse Conditional

          Constant Propagation, Common Subexpression
          Elimination, Loop-invariant Code Hoisting.
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A good intermediate code (IC) should have the 
following qualities:

•  It should be relatively simple to generate  from a
   syntax tree, otherwise its introduction would be too
   costly and error prone.

•  It should be relatively simple to generate a target
   code from the IC for the same reasons.

•  The semantics of the IC must be simple, clear, and
   unambiguous, so the optimization of the IC can be
   clearly specified and implemented.
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•  The syntax and semantics of the IC must be
   significantly less complex than that of the source code.

So, what IC? 

The simple answer is that IC  is whatever a compiler 
designers decide to use.

Traditionally, there are three main approaches:

•  Graphical representation -- usually in the form of
   trees or graphs (often in the form of simplified
   syntax trees (e.g., A.W. Appel and his compilers for
  Tiger).
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•  Stack-machine code -- Java bytecode is an example
   of such an approach.

•  Three-address code -- rudimentary Assembly-like
   instructions with two operands (hence two addresses)
   and a place to store the result (that is the third
   address). 

In this talk we are using as the IC a three-address 
code  developed for MACS.
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class Factorial {
 shared int fact(int n) {
   int i, res;
   if (n == 0) return 1;
   for(res=1,i=2; i <= n; res=res*i,i++);
   return res;
  }
}

MACS source code of method fact() 



Advol, April 2008 10

ic-start
  ...
  Fact:
  sec-start
     arg n {val}{int}
     t10 = 0
     t12 = n == t10 
     t13 = !t12
     if t13 goto L1
     t14 = 1
     return t14
  L1:nop
  L2:t13 = 1
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L2:t13 = 1
     res = t13
     t14 = 2
     i = t14
     t15 = i <= n
     t16 = !t15
     if t16 goto L3
  L4:nop 
     t17 = res * i
     res = t17
     t18 = i + 1
     i = t18
     goto L2
  L3:nop
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L3:nop
     return res
  sec-end
  ...
 ic-end

A raw MIC code of method fact() 
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ic-start
  ...
  fact:
  sec-start
     arg n {val}{int}
     t12 = n == 0 
     t13 = !t12
     if t13 goto L2
     return 1
  L2:res = 1    (does this def. reach L3?)
     i = 2
     t15 = i <= n
     t16 = !t15
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     t16 = !t15
     if t16 goto L3
  L4:t17 = res * i
     res = t17
     t18 = i + 1
     i = t18
     goto L2
  L3:return res
  sec-end
  ...
 ic-end

A streamlined MIC code of method fact() 
It is hard to “see”, for instance, the loop in the IC code.
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arg n {val} {int}

t13

i = 2

t16

true

false

false

t17 = res * i

return   restrue

t12 =  n == 0

t13 =  ! t12

return 1

res = 1

t15 = i <= n

t16 = !t15

res = t17

t18 =  i + 1

i = t18

goto

In the flowchart, we can 
“see” the loop again
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arg n {val} {int}
t12  =   n == 0
t13  =   ! t12
             t13

false

return 1

BB1

true

res = 1
i = 2

BB2

BB3

t17 = res * i
res = t17
t18 = i + 1
i = t18
goto

BB5
false true

return   res

BB6

t15 = i <= n
t16 = ! t15
            t16

BB4

The flowchart with 
basic blocks  
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Entry
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Dominance (dominator) tree
Loop identification via
back edge
(from a node to its dominator)



Advol, April 2008 19

Calculations of dominators:

•  by a simple depth-first recursive algorithm based on
   the inductive definition of domination:
   A dominates B if
          (a) A=B, or
          (b) A is a unique immediate predecessor of B, or
          (c) B has more than one  immediate predecessor,
                and for every C immediate predecessor of B,
                A dominates C.

•  More efficient algorithms are due to Lengauer+Tarjan
   and Alstrup+Lauridsen
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Dominators used for loop identification (to identify the 
back edge) and for a fast transformation to SSA.
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Non-loops with edges going back -- lacking domination
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H H

P

H H

P

Introducing   a   preheader   P   to a
natural   loop   with   a   header H

Introducing   a   preheader   P   to two
natural   loops   sharing  a  header  H
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Terminology: definition (defining assignment)
                        use

   a definition kills a subsequent definition

Constant folding is a typical example of data-flow 
analysis.  Only by reasoning about the flow, we can 
replace t12 by 5 in 
         t10 = 2
    ...
    t11 = 3
    ...
    t12 = t10 + t11
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Problem of reaching definitions - data-flow equations
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•  Computing  Ad(i) - traverse the block i and put in
    Ad(i) any definition encountered.
•  Computing Kill(i)  - After computing all Ad(i),
   traverse the block i and for every assignment
   encountered, put in Kill(i) any definition from
           Ad(i) that has the same left-hand side variable
    (except the current  assignment, it does not kill
     itself).

The equations are now solved iteratively traversing the 
flow graph in breadth-first fashion.

∪
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Sparse representations:

•   du-chains and ud-chains

•   SSA (static single assignment) 

def  1 use11 use12

def  2 use21 use22

def  n usen1 usen2
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SSA can be regarded as systematic renaming of 
variables.

Not a problem within a simple basic block.
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A problem in a join block.

x1 = 10

x2 = 17y = 2 * x2 y = 3 * x1

z = x??
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x1 = 10

x2 = 17y = 2 * x2 y = 3 * x1

x3 =  (x2,x1)z = x3
O
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arg n {val} {int}
t12 = n == 0
t13 = ! t12
             t13

false

BB1

true

BB2
BB3

BB5
false true

BB4

res1 = 1
i1 = 2

return   res  3

return 1

res3 = O1(res1,res2)
i3 = O 2(i1,i2)
t9 = i3 <= n
t16 = ! t15
               t16

res 3 =       (res1,res2)
i3 =        (i1,i2)
t15 = i 3 <= n

BB6

t17 = res3  * i3
res2 = t17
t18 =  i3 + 1
i2 =   t18
goto

t17 = res 3 * i3
res2 = t17
t18 =  i 3 + 1
i2 =   t18

O1O2
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Do we have to rename all variables ?

...
x1 = 10y = 20
...

x3 =   (x1,x2)z = y * x3...

B3

...
x2 = 30....

B1

B2

O

No,  y need not be renamed.
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Path-convergence criteria for insertion of  Φ

Numerous advantages for data analysis if the 
program is in SSA 

•  simplifies the analysis

•  is almost linear in space (unlike do- and ud-chains)

•  disassociates the parts of the code where the use of
   variable are just coincidental
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...

...
     x3 = x1

x3 =   (x1,x2,x3)...
...

B2

B1

     x3 = x1

x3 =  (x1,x2,x3)

...
if t12 goto L1
     x3 = x1

x3 =   (x1,x2,x3)...
...

B2

B1

     x3 = x1

x3 =  (x1,x2,x3)

falsetrue

O O

How to convert it back  -- removing  Φ

Replacing Φ  with no edge splitting
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...
if t12 goto L1a

L1:
...
...

B2

B1

x3 =  (x1,x2,x3)

truefalse

L1a: x3 = x1goto L1

if t12 goto L1a

B1a

O

Replacing Φ  with  edge splitting
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... 
t17 = 2
f4 = t17
...

...  
<label>:nop    
<instruction>
...

...  
<label>:<instruction>
...

...
f4 = 2
...

Peephole optimization

Very typical (  in MACS  Icgen() )

Peephole optimization vs. Delayed code emission 



Advol, April 2008 35

...
t12 = x
x = t12 + 1
...

Dead-code elimination

no further use of x
x is dead (not used after definition), while t12 is not.

An instruction is dead if it only computes values not used 
in any instruction on any executable path leading from 
the instruction.
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The dead-code elimination is an optimization method 
focused on detecting and eliminating dead 
instructions. It can be run on any level of IC but it is 
most suitable and effective on low level code including 
the target code.

A real care must be taken in evaluation of dead 
instructions; some real-world machine or assembly 
instructions are executed for their side-effects (like 
setting a condition code) and thus should not be
considered dead even if they compute a dead value.
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The basic approach to the detection of dead 
instructions is optimistic -- on a pass, mark some 
instructions as essential, and iterate the process in 
order to find the maximal set of essential instructions.
The instructions that are not essential are considered 
dead and, consequently, eliminated.

Before starting the process of  detection of essential 
instructions for the whole program, we identify the 
initial set of essential instructions by some other 
means,  for instance for MIC --  I/O's, alloc(), 
transfer assignment, strstore(), etc. are deemed 
essential. 
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Unreachable-code elimination

Common error -- B will never be executed

clearly “visible” as (x  | !x) is a tautology
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No longer “visible” in IC
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The elimination of the unreachable code does not 
improve the performance as we are eliminating code that 
is NOT executed under any conditions. It can be run on 
any level of IC or target code.

In the graph-theoretical terms, the elimination of 
unreachable blocks boils down to the identifying the 
largest connected component of CFG containing the 
Entry block. 
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BB1

BB2

BB1

BB3 BB5 BB3 BB5

Straightening
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If simplification
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Value numbering

Can we replace t1=y+t0 with x ?    NO
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Value numbering is a procedure that discerns what 
can and what cannot be replaced. 

Value numbering in a basic block -- the basic idea is 
based on hashing -- if two expressions hash to the 
same, one can replace the other.

Hence we can replace z1 = x * z with  z1 = y

10     x

4

 = y

3

 +

2

 t0

1

11     y

7

 = x

4

 *

6

 z

5

12     t1

8

 = y

7

 +

2

 t0

1

13     z1

9

 = x

4

 *

6

 z

5
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More important and more complex is global value 
numbering (global means in a procedure). This 
process is simplified by having the code for the 
procedure in SSA.

Note that in SSA form it is clear that we can replace 
z1 = x * z with  z1 = y
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4

y

y = x
y

y = 4

x

+
y

5

y = x + 5

x x

+ y

y = x + z

z

1 21 1 2

Building a  value graph 
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2i1

2

2
res3

2

1

1

1

i2

1

O1

res1

*
res2

1

n

1

2

<=t9

1

2

!
t10

==
1

t2

0

2

!

1

t3

i3
O2+

Value graph
for fact()
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The basic idea is to define a congruence (indicating 
similarity) between  variables and propagate it.

Typically, Aho, Hopcroft, Ullman's Partitioning 
Algorithm is used.
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Copy propagation (or Copy folding)

Copy assignment  x = y  means that we can 
replace a use of x by a use of y.

To do copy propagation, the program need not be in 
SSA form. If it is, it is straightforward as every 
variable has just a single defining assignment. Thus,
when x = y is encountered, y's  defining 
assignment had been encountered before, and this is 
the defining assignment for x, so it is guaranteed 
that neither y nor x can change in a later 
instruction.
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Entry
BB1

BB5

BB2

BB3

BB4

BB6
BB7

BB8

Exit

arg n {val} {int}

i1 = 2

true

false

false

i2 = i3 + 1

return   res
true

t2 =  n == 0

t3 =  !t2

return 1

res1 = 1

t9 = i3 <= n

t10 = !t9

res2 = res3 * i2

goto

BB9

BB10
BB11

BB12BB13
BB14

BB15

               t3

               t10

res3 = O1(res1,res2)

BB9
i3 = O2(i1,i2)

BB16

fact() is single 
block SSA form
with SSA edges
linking defs with 
uses
 indicated by ----
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Sparse Conditional Constant Propagation

Deals with redundancy of the form x = const
when we replace every use of x with const. We 
work with SSA form (sparse). It takes a form of 
symbolic computation using Constant Propagation 
Lattice.

T : don't know

 : not a constantT

....... .......false true-4 -3 -2 -1 0 1 2 3 4
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Can always be performed for integers and booleans

t0 = 2
t1 = 3
t2 = t1+t2

t0 = 2
t1 = 3
t2 = 5
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There are many computational rules for CPL,

just for an illustration:
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A careful examination of the code will reveal that it 
can be reduced to
             j = 6;
     i = 0;
     k = 5;
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        i1 = 2        t1 = i1        j = i1 * 3        t6 = j + 1
        t8 = t6 > 2
        t9 = !t8
           t9

        i4 =  (i2,i3)        k = 5 + i4

         i2 = 0 
  
 i3 = 1   

truefalse

s1

s2
s3

s4
O

1) evaluates i
1

 to 2 and adds the SSA edge S
1

2) evaluates t1 to 2 and adds an SSA edge (not 
shown)
3)  evaluates j to 6 and adds an SSA edge (not 
shown)
4)  evaluates t6 to 7 and adds an SSA edge 
(not shown)
5) evaluates t8 to true and adds an SSA edge 
(not shown)
6) evaluates t9 to false and adds an SSA 
edge (not shown)
7) marks the false branch as executable and 
leaves the true branch as non-executable

8) evaluates i
2

 to 0 and adds the SSA edge S
2

9) evaluates i
4

 to 0 

^

 T = 0 and adds the SSA 

edge S
4

10) evaluates k to 5
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Common-subexpression elimination 

provided that the values of x and y have not changed
between t12 = x * y and t13 = x * y.
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For a basic block it is simple (similar ideas as in value 
numbering).

More involved is global elimination -- computing 
available expressions.

An expression exp is available at the entry to a basic
block B if on every path in the flow graph from the 
Entry block to B there is an evaluation of exp that is 
not subsequently killed by having one or both of its 
operands reassigned (hence the value of exp stays the 
same).
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x2= expB1

B2

B3

B

B1

B2

B3

B
z = t

x3= exp
x1= exp

z = exp

x1= t

x2= t

x3= t

t = exp

t = exp

t = exp

Available expression and global common-subexpression 
elimination
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We have to solve data flow equations

The purpose of all of this computation is to obtain
Availen(i) for all i.
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Loop-invariant code hoisting

bad

Better
looks OK
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10       i = 0
11    L1:t20 = 10 * x
12       t21 = i < t20
13       t22 = !t20
14       if t22 goto L4
15       j = 0
16    L2:t23 = j < 100
17       t24 = !t23
18       if t24 goto L3
19       t25 = 10 * x
20       t26 = y + 8
21       t27 = *26
22       t28 = MICIarray(t27,i)
23       t29 = t28 + 8
24       t30 = *t29
25       t31 = MICIarray(t30,j)
26       *t31 = t25
27       t32 = j + 1
28       j = t32
29       goto L2
30    L3:t33 = i + 1
31       i = t33
32       goto L1
33    L4:...

t20 = 10 * x

t25 = 10 * x
t26 = y + 8
t27 = *t26

outer loop

inner loop repeated
at least 10
times

repeated at
least 1000
times

indicates
where the
code should
be hoisted
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Definition of invariant is inductive, so again we 
work with a fix-point problem.

preheader

t = exp

use of t

Problem with 
‘simple’ hoisting

still better to 
hoist than not.
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t = 0
preheader

x = 2 * t

t = 1

preheader

B1

B3

B4

truefalse

B2

t = 0
preheader

t = 1

y  = 2 * t

preheader

B1

B3

B4

truefalse

B2

More complex
problem with 
hoisting
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An assignment that is a candidate to be hoisted to the
preheader, must satisfy additional constraints:

•  The assignment must be in a basic block that
   dominates all uses of the left-hand variable in the
    loop (this takes care of the situation depicted on the
    left as B2 does not dominate B3 with the use of t).

•  The assignment must be in a basic block that
    dominates all exit  blocks of the loop (this takes care
    to the situation depicted on the right as B2 does not
    dominate the exit block B3).
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Peephole optimization
Dead-code elimination
Unreachable-code elimination
Straightening
If  simplif ication

Constant f olding
Algebraic simplif ication

on MACS source code level

on IC  level

Constant f olding

Global v alue numbering
Local + global copy  propagation
Sparse conditional constant propagation
Common-subexpression elimination
Loop-inv ariant code hoisting

Constant f olding

Peephole optimization
Dead-code elimination
Unreachable-code elimination
Straightening
If  simplif ication

on MIC level

Constant f olding

Global v alue numbering
Local + global copy  propagation
Sparse conditional constant propagation
Common-subexpression elimination
Loop-inv ariant code hoisting

Constant f olding

Peephole optimization
Register allocation
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