
Advol, April 2008 1

Compiler Optimization

 F. Franek
Dept. of Comp. and Software

McMaster University
Hamilton, Ontario, Canada

Advol, April 2008 2

• Compilation phases

• Intermediate code

• Control flow analysis

• Data flow analysis

• Various optimization techniques:
Peephole Optimization, Dead-code Elimination
Unreachable-code Elimination, Straightening,
If Simplification, Value Numbering,
Copy Propagation, (SCCP) Sparse Conditional

 Constant Propagation, Common Subexpression
 Elimination, Loop-invariant Code Hoisting.

Advol, April 2008 3

source
program Compiler

target
program

actions
source

program Interpreter

Advol, April 2008 4

Advol, April 2008 5

source
code

middle
end

front
end

Windows/
pentium 4
platform

pentium 4
machine

instructions
+

Windows
conventions

Linux/
pentium 4
platform

pentium 4
machine

instructions
+

Linux
conventions

dual-core
PowerPC

G5
processor /
Mac OS X
platform

G5
machine

instructions
+

Mac OS X
conventions

various back ends of compiler object file

source file

intermediate
code

Advol, April 2008 6

A good intermediate code (IC) should have the
following qualities:

• It should be relatively simple to generate from a
 syntax tree, otherwise its introduction would be too
 costly and error prone.

• It should be relatively simple to generate a target
 code from the IC for the same reasons.

• The semantics of the IC must be simple, clear, and
 unambiguous, so the optimization of the IC can be
 clearly specified and implemented.

Advol, April 2008 7

• The syntax and semantics of the IC must be
 significantly less complex than that of the source code.

So, what IC?

The simple answer is that IC is whatever a compiler
designers decide to use.

Traditionally, there are three main approaches:

• Graphical representation -- usually in the form of
 trees or graphs (often in the form of simplified
 syntax trees (e.g., A.W. Appel and his compilers for
 Tiger).

Advol, April 2008 8

• Stack-machine code -- Java bytecode is an example
 of such an approach.

• Three-address code -- rudimentary Assembly-like
 instructions with two operands (hence two addresses)
 and a place to store the result (that is the third
 address).

In this talk we are using as the IC a three-address
code developed for MACS.

Advol, April 2008 9

class Factorial {
 shared int fact(int n) {
 int i, res;
 if (n == 0) return 1;
 for(res=1,i=2; i <= n; res=res*i,i++);
 return res;
 }
}

MACS source code of method fact()

Advol, April 2008 10

ic-start
 ...
 Fact:
 sec-start
 arg n {val}{int}
 t10 = 0
 t12 = n == t10
 t13 = !t12
 if t13 goto L1
 t14 = 1
 return t14
 L1:nop
 L2:t13 = 1

Advol, April 2008 11

L2:t13 = 1
 res = t13
 t14 = 2
 i = t14
 t15 = i <= n
 t16 = !t15
 if t16 goto L3
 L4:nop
 t17 = res * i
 res = t17
 t18 = i + 1
 i = t18
 goto L2
 L3:nop

Advol, April 2008 12

L3:nop
 return res
 sec-end
 ...
 ic-end

A raw MIC code of method fact()

Advol, April 2008 13

ic-start
 ...
 fact:
 sec-start
 arg n {val}{int}
 t12 = n == 0
 t13 = !t12
 if t13 goto L2
 return 1
 L2:res = 1 (does this def. reach L3?)
 i = 2
 t15 = i <= n
 t16 = !t15

Advol, April 2008 14

 t16 = !t15
 if t16 goto L3
 L4:t17 = res * i
 res = t17
 t18 = i + 1
 i = t18
 goto L2
 L3:return res
 sec-end
 ...
 ic-end

A streamlined MIC code of method fact()
It is hard to “see”, for instance, the loop in the IC code.

Advol, April 2008 15

arg n {val} {int}

t13

i = 2

t16

true

false

false

t17 = res * i

return restrue

t12 = n == 0

t13 = ! t12

return 1

res = 1

t15 = i <= n

t16 = !t15

res = t17

t18 = i + 1

i = t18

goto

In the flowchart, we can
“see” the loop again

Advol, April 2008 16

arg n {val} {int}
t12 = n == 0
t13 = ! t12
 t13

false

return 1

BB1

true

res = 1
i = 2

BB2

BB3

t17 = res * i
res = t17
t18 = i + 1
i = t18
goto

BB5
false true

return res

BB6

t15 = i <= n
t16 = ! t15
 t16

BB4

The flowchart with
basic blocks

Advol, April 2008 17

BB1

false true

BB2

BB6

BB3

BB4

BB5

Exit

Enter

truefalse

CONTROL FLOW GRAPH

join block
branch block

branch block

join block

Advol, April 2008 18

Entry

BB1

BB2 BB3Exit

BB5

BB4

BB6

Dominance (dominator) tree
Loop identification via
back edge
(from a node to its dominator)

Advol, April 2008 19

Calculations of dominators:

• by a simple depth-first recursive algorithm based on
 the inductive definition of domination:
 A dominates B if
 (a) A=B, or
 (b) A is a unique immediate predecessor of B, or
 (c) B has more than one immediate predecessor,
 and for every C immediate predecessor of B,
 A dominates C.

• More efficient algorithms are due to Lengauer+Tarjan
 and Alstrup+Lauridsen

Advol, April 2008 20

Dominators used for loop identification (to identify the
back edge) and for a fast transformation to SSA.

1

2 3

2

4

3

5

1

6

1

2 3

4

Non-loops with edges going back -- lacking domination

Advol, April 2008 21

H H

P

H H

P

Introducing a preheader P to a
natural loop with a header H

Introducing a preheader P to two
natural loops sharing a header H

Advol, April 2008 22

Terminology: definition (defining assignment)
 use

 a definition kills a subsequent definition

Constant folding is a typical example of data-flow
analysis. Only by reasoning about the flow, we can
replace t12 by 5 in
 t10 = 2
 ...
 t11 = 3
 ...
 t12 = t10 + t11

Advol, April 2008 23

Problem of reaching definitions - data-flow equations

Advol, April 2008 24

• Computing Ad(i) - traverse the block i and put in
 Ad(i) any definition encountered.
• Computing Kill(i) - After computing all Ad(i),
 traverse the block i and for every assignment
 encountered, put in Kill(i) any definition from
 Ad(i) that has the same left-hand side variable
 (except the current assignment, it does not kill
 itself).

The equations are now solved iteratively traversing the
flow graph in breadth-first fashion.

∪

Advol, April 2008 25

Sparse representations:

• du-chains and ud-chains

• SSA (static single assignment)

def 1 use11 use12

def 2 use21 use22

def n usen1 usen2

Advol, April 2008 26

SSA can be regarded as systematic renaming of
variables.

Not a problem within a simple basic block.

Advol, April 2008 27

A problem in a join block.

x1 = 10

x2 = 17y = 2 * x2 y = 3 * x1

z = x??

Advol, April 2008 28

x1 = 10

x2 = 17y = 2 * x2 y = 3 * x1

x3 = (x2,x1)z = x3
O

Advol, April 2008 29

arg n {val} {int}
t12 = n == 0
t13 = ! t12
 t13

false

BB1

true

BB2
BB3

BB5
false true

BB4

res1 = 1
i1 = 2

return res 3

return 1

res3 = O1(res1,res2)
i3 = O 2(i1,i2)
t9 = i3 <= n
t16 = ! t15
 t16

res 3 = (res1,res2)
i3 = (i1,i2)
t15 = i 3 <= n

BB6

t17 = res3 * i3
res2 = t17
t18 = i3 + 1
i2 = t18
goto

t17 = res 3 * i3
res2 = t17
t18 = i 3 + 1
i2 = t18

O1O2

Advol, April 2008 30

Do we have to rename all variables ?

...
x1 = 10y = 20
...

x3 = (x1,x2)z = y * x3...

B3

...
x2 = 30....

B1

B2

O

No, y need not be renamed.

Advol, April 2008 31

Path-convergence criteria for insertion of Φ

Numerous advantages for data analysis if the
program is in SSA

• simplifies the analysis

• is almost linear in space (unlike do- and ud-chains)

• disassociates the parts of the code where the use of
 variable are just coincidental

Advol, April 2008 32

...

...
 x3 = x1

x3 = (x1,x2,x3)...
...

B2

B1

 x3 = x1

x3 = (x1,x2,x3)

...
if t12 goto L1
 x3 = x1

x3 = (x1,x2,x3)...
...

B2

B1

 x3 = x1

x3 = (x1,x2,x3)

falsetrue

O O

How to convert it back -- removing Φ

Replacing Φ with no edge splitting

Advol, April 2008 33

...
if t12 goto L1a

L1:
...
...

B2

B1

x3 = (x1,x2,x3)

truefalse

L1a: x3 = x1goto L1

if t12 goto L1a

B1a

O

Replacing Φ with edge splitting

Advol, April 2008 34

...
t17 = 2
f4 = t17
...

...
<label>:nop
<instruction>
...

...
<label>:<instruction>
...

...
f4 = 2
...

Peephole optimization

Very typical (in MACS Icgen())

Peephole optimization vs. Delayed code emission

Advol, April 2008 35

...
t12 = x
x = t12 + 1
...

Dead-code elimination

no further use of x
x is dead (not used after definition), while t12 is not.

An instruction is dead if it only computes values not used
in any instruction on any executable path leading from
the instruction.

Advol, April 2008 36

The dead-code elimination is an optimization method
focused on detecting and eliminating dead
instructions. It can be run on any level of IC but it is
most suitable and effective on low level code including
the target code.

A real care must be taken in evaluation of dead
instructions; some real-world machine or assembly
instructions are executed for their side-effects (like
setting a condition code) and thus should not be
considered dead even if they compute a dead value.

Advol, April 2008 37

The basic approach to the detection of dead
instructions is optimistic -- on a pass, mark some
instructions as essential, and iterate the process in
order to find the maximal set of essential instructions.
The instructions that are not essential are considered
dead and, consequently, eliminated.

Before starting the process of detection of essential
instructions for the whole program, we identify the
initial set of essential instructions by some other
means, for instance for MIC -- I/O's, alloc(),
transfer assignment, strstore(), etc. are deemed
essential.

Advol, April 2008 38

Unreachable-code elimination

Common error -- B will never be executed

clearly “visible” as (x | !x) is a tautology

Advol, April 2008 39

No longer “visible” in IC

Advol, April 2008 40

The elimination of the unreachable code does not
improve the performance as we are eliminating code that
is NOT executed under any conditions. It can be run on
any level of IC or target code.

In the graph-theoretical terms, the elimination of
unreachable blocks boils down to the identifying the
largest connected component of CFG containing the
Entry block.

Advol, April 2008 41

BB1

BB2

BB1

BB3 BB5 BB3 BB5

Straightening

Advol, April 2008 42

If simplification

Advol, April 2008 43

Value numbering

Can we replace t1=y+t0 with x ? NO

Advol, April 2008 44

Value numbering is a procedure that discerns what
can and what cannot be replaced.

Value numbering in a basic block -- the basic idea is
based on hashing -- if two expressions hash to the
same, one can replace the other.

Hence we can replace z1 = x * z with z1 = y

10 x

4

 = y

3

 +

2

 t0

1

11 y

7

 = x

4

 *

6

 z

5

12 t1

8

 = y

7

 +

2

 t0

1

13 z1

9

 = x

4

 *

6

 z

5

Advol, April 2008 45

More important and more complex is global value
numbering (global means in a procedure). This
process is simplified by having the code for the
procedure in SSA.

Note that in SSA form it is clear that we can replace
z1 = x * z with z1 = y

Advol, April 2008 46

4

y

y = x
y

y = 4

x

+
y

5

y = x + 5

x x

+ y

y = x + z

z

1 21 1 2

Building a value graph

Advol, April 2008 47

2i1

2

2
res3

2

1

1

1

i2

1

O1

res1

*
res2

1

n

1

2

<=t9

1

2

!
t10

==
1

t2

0

2

!

1

t3

i3
O2+

Value graph
for fact()

Advol, April 2008 48

The basic idea is to define a congruence (indicating
similarity) between variables and propagate it.

Typically, Aho, Hopcroft, Ullman's Partitioning
Algorithm is used.

Advol, April 2008 49

Copy propagation (or Copy folding)

Copy assignment x = y means that we can
replace a use of x by a use of y.

To do copy propagation, the program need not be in
SSA form. If it is, it is straightforward as every
variable has just a single defining assignment. Thus,
when x = y is encountered, y's defining
assignment had been encountered before, and this is
the defining assignment for x, so it is guaranteed
that neither y nor x can change in a later
instruction.

Advol, April 2008 50

Entry
BB1

BB5

BB2

BB3

BB4

BB6
BB7

BB8

Exit

arg n {val} {int}

i1 = 2

true

false

false

i2 = i3 + 1

return res
true

t2 = n == 0

t3 = !t2

return 1

res1 = 1

t9 = i3 <= n

t10 = !t9

res2 = res3 * i2

goto

BB9

BB10
BB11

BB12BB13
BB14

BB15

 t3

 t10

res3 = O1(res1,res2)

BB9
i3 = O2(i1,i2)

BB16

fact() is single
block SSA form
with SSA edges
linking defs with
uses
 indicated by ----

Advol, April 2008 51

Sparse Conditional Constant Propagation

Deals with redundancy of the form x = const
when we replace every use of x with const. We
work with SSA form (sparse). It takes a form of
symbolic computation using Constant Propagation
Lattice.

T : don't know

 : not a constantT

.......false true-4 -3 -2 -1 0 1 2 3 4

Advol, April 2008 52

Can always be performed for integers and booleans

t0 = 2
t1 = 3
t2 = t1+t2

t0 = 2
t1 = 3
t2 = 5

Advol, April 2008 53

There are many computational rules for CPL,

just for an illustration:

Advol, April 2008 54

A careful examination of the code will reveal that it
can be reduced to
 j = 6;
 i = 0;
 k = 5;

Advol, April 2008 55

Advol, April 2008 56

 i1 = 2 t1 = i1 j = i1 * 3 t6 = j + 1
 t8 = t6 > 2
 t9 = !t8
 t9

 i4 = (i2,i3) k = 5 + i4

 i2 = 0

 i3 = 1

truefalse

s1

s2
s3

s4
O

1) evaluates i
1

 to 2 and adds the SSA edge S
1

2) evaluates t1 to 2 and adds an SSA edge (not
shown)
3) evaluates j to 6 and adds an SSA edge (not
shown)
4) evaluates t6 to 7 and adds an SSA edge
(not shown)
5) evaluates t8 to true and adds an SSA edge
(not shown)
6) evaluates t9 to false and adds an SSA
edge (not shown)
7) marks the false branch as executable and
leaves the true branch as non-executable

8) evaluates i
2

 to 0 and adds the SSA edge S
2

9) evaluates i
4

 to 0

^

 T = 0 and adds the SSA

edge S
4

10) evaluates k to 5

Advol, April 2008 57

Common-subexpression elimination

provided that the values of x and y have not changed
between t12 = x * y and t13 = x * y.

Advol, April 2008 58

For a basic block it is simple (similar ideas as in value
numbering).

More involved is global elimination -- computing
available expressions.

An expression exp is available at the entry to a basic
block B if on every path in the flow graph from the
Entry block to B there is an evaluation of exp that is
not subsequently killed by having one or both of its
operands reassigned (hence the value of exp stays the
same).

Advol, April 2008 59

x2= expB1

B2

B3

B

B1

B2

B3

B
z = t

x3= exp
x1= exp

z = exp

x1= t

x2= t

x3= t

t = exp

t = exp

t = exp

Available expression and global common-subexpression
elimination

Advol, April 2008 60

We have to solve data flow equations

The purpose of all of this computation is to obtain
Availen(i) for all i.

Advol, April 2008 61

Loop-invariant code hoisting

bad

Better
looks OK

Advol, April 2008 62

10 i = 0
11 L1:t20 = 10 * x
12 t21 = i < t20
13 t22 = !t20
14 if t22 goto L4
15 j = 0
16 L2:t23 = j < 100
17 t24 = !t23
18 if t24 goto L3
19 t25 = 10 * x
20 t26 = y + 8
21 t27 = *26
22 t28 = MICIarray(t27,i)
23 t29 = t28 + 8
24 t30 = *t29
25 t31 = MICIarray(t30,j)
26 *t31 = t25
27 t32 = j + 1
28 j = t32
29 goto L2
30 L3:t33 = i + 1
31 i = t33
32 goto L1
33 L4:...

t20 = 10 * x

t25 = 10 * x
t26 = y + 8
t27 = *t26

outer loop

inner loop repeated
at least 10
times

repeated at
least 1000
times

indicates
where the
code should
be hoisted

Advol, April 2008 63

Definition of invariant is inductive, so again we
work with a fix-point problem.

preheader

t = exp

use of t

Problem with
‘simple’ hoisting

still better to
hoist than not.

Advol, April 2008 64

t = 0
preheader

x = 2 * t

t = 1

preheader

B1

B3

B4

truefalse

B2

t = 0
preheader

t = 1

y = 2 * t

preheader

B1

B3

B4

truefalse

B2

More complex
problem with
hoisting

Advol, April 2008 65

An assignment that is a candidate to be hoisted to the
preheader, must satisfy additional constraints:

• The assignment must be in a basic block that
 dominates all uses of the left-hand variable in the
 loop (this takes care of the situation depicted on the
 left as B2 does not dominate B3 with the use of t).

• The assignment must be in a basic block that
 dominates all exit blocks of the loop (this takes care
 to the situation depicted on the right as B2 does not
 dominate the exit block B3).

Advol, April 2008 66

Peephole optimization
Dead-code elimination
Unreachable-code elimination
Straightening
If simplif ication

Constant f olding
Algebraic simplif ication

on MACS source code level

on IC level

Constant f olding

Global v alue numbering
Local + global copy propagation
Sparse conditional constant propagation
Common-subexpression elimination
Loop-inv ariant code hoisting

Constant f olding

Peephole optimization
Dead-code elimination
Unreachable-code elimination
Straightening
If simplif ication

on MIC level

Constant f olding

Global v alue numbering
Local + global copy propagation
Sparse conditional constant propagation
Common-subexpression elimination
Loop-inv ariant code hoisting

Constant f olding

Peephole optimization
Register allocation

Advol, April 2008 67

