Computing quasi suffix arrays

L.Baghdadi,F.Franek, W.F.Smyth, and X.Xiao

Algorithms Research Group
McMaster University

Motivation: in order to identify all
substrings in a given string (needed
for instance for data compression)
or identifying all repeats (in pat-
tern matching), or fast search for
substrings, we have to know” the
structure of the string. Several data
structures have been developed to
allow sophisticated algorithms (usu-
ally of complexity (O(n log n) or
O(n)) to do so.



1968 Morrison introduced Patri-
cita trie.

1972 Weiner introduced suflix
trees, based on Patricia trie.

Suffix trees can be constructed ef-
fectively in O(n log n) time, e.g.
1992 Ukkonen. But both, the con-
struction and the tree require a lot
of space.

1997 Farach ©(n) construction of
suffix tree, with very significant in-
crease in space complexity.

The space requirements both, for
processing and the data structure,
are so high that this approach be-
comes impractical for large strings

2



of tens of million or more charac-
ters.

1993 Manber, Myers introduced
suffix arrays and presented an
O(n log n) algorithm to compute
suffix array. Suflix array requires
2n integers for storage, and the al-
gorithm itself requires 3n integers
of additional memory to execute.
Suffix array can be transformed to
the corresponding suflix tree and
vice versa in ©(n) time.

We present something similar to
suffix array, that’s why we call it
quast suffix array. It carries suffi-
cient structural information about
the string, allows a construction of

3



the corresponding quasi suffix tree
in O(n log n) (but most likely in
O(n)) time and thus may be used
in problems that do not require full
strength of suffix array or suffix tree
(most of pattern matching prob-
lems qualify). The advantage may
be the speed with which quasi suf-
fix array can be computed com-
pared to computation of suflix ar-
ray.

We will discuss several simple, fast,
and space efficient algorithms
to compute quasi suffix arrays.



1234567 891011121314
abaabab aabaa b $

b
$
1 1 14
ab b a $
3 2 2 13
a $ a $ ab baabaab$
4 11 3 12 4 5
a
ab$ baabaab$ ab baabaab$ $
8 3 5 4 4 10
a $ ab baabaab$
6 9 7 2
ab$ baabaab$
6 1

A string and its suffix tree.

5



The corresponding suffix array:

12 3 4567 8 910 11 12 13
r=abaababaab a a b
mT=- 431653 205 4 2 1
A=8 3116194127 2 10 5 13

The A\ array is the array of lexico-
graphically sorted suffixes, where
A[t] = 5 represents the suffix of x
from the position j, i.e. x[j..13].

The w array is the lecp array, i.e.
m[i] = length of lep(A[t—1], A[Z]).

Note that the A array must be lex-
icographically sorted; to produce
an array of suffixes is trivial, A[t] = ¢
will do.



Note that depth-first traversal of
the square nodes of the suffix tree
produces the A\ array, while the
traversal of the round nodes pro-
duces the 7 array. In reverse we
can use the two arrays and con-
struct the suffix tree.

Even though not originally intended
to be so, Crochemore’s repetitions

O(n log n) algorithm (1981) can be
used to construct suffix tree or suf-

fix array.

The algorithms to compute quasi
suffix array are based on the main
ideas of Crochemore’s algorithm
concerning refinement of certain
classes of equivalence.

7



1234567 891011121314
abaabab aabaa b $

\ /
1 {1,3,4,6,89,11,12 }a {2,5,7,10,13 }b
> \/
2 {38,11}aa {1,4,6,9,12}ab {25,7,10}ba {13}b$

\///

taab{1,4,6,9 }aba { 12 }ab$ { 2,7,10 }baa { 5}bab
4 { 3,8 }aabaf{ 11}aab${ 1,6,9 }abaa{ 4 }abab { 2,7,10 }baab

I~ N\

5 {8 }aabaa {3}aabab {1,6,9}abaab{ 2,7 }baaba { 10 }baab$

_— 1 /O

7 { 1,6}abaaba {9}abaab$ {7 }baabaa{ 2 }baabab

/T

8 { 6}abaabaa {1}abaabab

3



To obtain O(n log n) complexity,
the refinement of the classes is done
via so-called ”small” classes.

The problem is that Crochemore’s
algorithm requires extensive data
structures to handle the classes and
their refinement, generally of the
order of 20n integers. With some
effort and some penalty in process-
ing speed (about 25-30%), it can
be implemented using ”only” 10n
(as we did).

We shall first discuss the naive al-
gorithm DIST1 to introduce the
main ideas and to introduce the
quasi suffix array.



1234567891011 1213
r=abaababaa b a a b
ci1=001324568 7 9 11 10
co = 0124536 7 8 9 0
c3 = 104236 7 8 0
Cq = 0O 1236 7 0
Cy = 1206 O
cg = 10 O
c7 = 0

Setting cj is the same as in
Crochemore’s algorithm. Its com-
plexity depends on the alphabet.

We again build two arrays, & and
A as for suffix arrays.

7 [¢] = the first level p at which c¢p|1]
becomes zero.

10



1234567891011 1213
7T=0013265454 3 2 1

3] = cp—1[t] when cp[i] becomes
Zero.

1234567891011 1213
A=0011212367 8 9 10

Thus X
7t[t] = the length of lcp(z, A[z]).

Compare the quasi suffix array with
suffix array. First we note that 7
is a permutation of 7, i.e. we get
the same sizes of lcp’s. But do
we get the same substrings of x as
lcp’s? Checking the suffix tree we
see that indeed we get them:

11



8:3=8:3 3:11=11:8 11:6=3:1
6:1=6:1 1:9=9:6 9:4=4:1
4:12=12:9 12:7=7 7:2=7T7:2
2:10=10:7 10:5=5:2 5:13=13:10

So we have the same lcp’s expressed
using different suffixes. And, of
course, we have a different set of
explicit suffixes. We can build the
corresponding quasi suffix tree us-
ing the same technique as for build-
ing suffix tree from suflix array:

1

3:1

12



4:1

13

5:2



6:1

14

7:2




8:3

15



9:6

16




17

10

10:7




11

11:8

18

10




3

11 4

8 3
12:9 11

12

10

19




- -
- kY
- -
- -
> > -
- " -

3 2 13 2
11 4 12 3 5 4
8 3 4 5 10 5
9 6 7 2
13:10 ! 6 1

Thus, essentially (but the alpha-
betical ordering) we have the same
structural info as with the suffix

tree.

20



Of course, the worst-case complex-
ity of DIST1 s at least order of
n?. The biggest problem is the re-
peated traversal (skips) of the
classes during refinement.

In DIST2 we introduce some addi-
tional data structures (a bit array
S to flag what has been visited, a
stack of locations to be able to re-
trace a class, an array of alphabet
symbols to keep the current right-
most location, a stack S’ of dis-
tinct tail-letters that occurred dur-
ing traversal of a class). The pur-
pose of these structures is to tra-
verse each class just once during
refinement.

21



Since S and S’ can share the same
memory, we need 2n-+2 extra inte-
gers and n extra bits. The average
(expected) complexity of DIST?2 is
O(n log n).

There are some other possibilities
how to improve the performance of
the algorithm. The algorithm pro-
cesses the array from right to left
touching upon every entry in the
array. There are though two differ-
ent ”’blocks” that could be ”hopped”.
One is clearly a block of consecu-
tive zeroes (zero-hop) and one is a
”triangle block” (triangle-hop). A
triangle block consists of consecu-
tive entries decreasing by 1.

22



———

¢
(T
/S

e
/ —

W e

ya

DIST4 is a variant of DIST1 in which
zero-hops and triangle-hops are man-
aged at the expense of 2n integers
of extra memory. Clearly, if a string
has a lot of repeats, then triangle-
hopping pays of well, if it does not,
then the depth of processing is small.
Our hope is to prove that DIST4
has a linear expected complexity.

Preliminary testing and compari-
son of the various forms of DIST

23



by one of the authors (Xiao) point
strongly in that direction.

To conclude, we are working on ” fus-
ing” all improvements together in
DIST5 that would do both, non-
repeated traversal of classes (as
DIST2) and hopping (as DIST4).

The open problems we intend to
tackle in our future research are:
what is the complexity of construct-
ing quasi suffix tree from a quasi
suffix array, how ”expensive” is to
transform quasi suffix tree (array)
to suffix tree (array), and what is
the worst-case complexity of DIST4
and what is its average case com-
plexity.

24



Papers related to this topic,
including these slides, can be
viewed at the web site

www.cas.mcmaster.ca/~franek

®

25



