Computing all repeats using
suffix arrays

F.Franek, W.F.Smyth, Y.Tang

Algorithms Research Group
McMaster University

We describe an algorithm that iden-
tifies all the repeating substrings
(tandem, overlapping, and split) in
a given string x = x|1..n|.

Given the suffix arrays of x and z,
the algorithm requires O(n) time.
The output (in O(n) space) is either
an NE array or an NE tree.

The output substrings u are nonex-
tendible (NE) and thus the num-

1

ber of substrings output is the min-
imum required to identify all the
repeating substrings in x.

A repeat in a string x is a tuple

Mw,’u,: (p7 i17i27"' 7%‘)7 r 227

where
u = x[iy..i11+p—1] = x[ig..io+p—1] = - - -

u - repeating substring of x
u - generator of My vy
p = |u| - period of Mg v
r - exponent of Mg 4

If My 4 includes all the occurrences
of u in - then it is complete and
denoted as Mg, 4,-

Mg 4 is left-extendible (LE) iff
(p+1; i1—1,99—1, ... ,i,—1) is a repeat.

Mg 4 is right-extendible (RE) iff
(p+1; i1,19,... ,ir) is a repeat.

If Mg 4 1s neither LE nor RE, then
it is said to be nonextendible (NE).

LE or RE repeats do not need to
be identified, they are implicitly
“reported” as substrings of NE re-
peats. Thus, it suffices to compute
complete NE repeats.

1997 Gusfield, 2000 Brodal, Lyn-
gso, Pedersen, Stoye algorithms to
compute all NE repeats given the
suffix tree.

An easy observation:

Thus the algorithm we are present-
ing:

e computes all the complete NRE
repeats of * and all the com-
plete NRE repeats of Z;

e compares the complete NRE
repeats of & with the complete
NRE repeats of & to identify
those that are in both lists (the
complete NE repeats).

Computing NE tree:

1234567 891011121314
abaabab aabaa b $

0

b
$
1 1 14
ap 2 a $
3 2 2 13
a $ a $ ab baabaab$
4 11 3 12 4 5
a
ab$ baabaab$ab baabaab$ $
8 3 5 4 4 10
a $ ab baabaab$
6 9 7 2

ab$ baabaab$

All round nodes in the suffix tree
identify all complete NRE repeats:

e.g. Mz;k:,abaab = (5;9,6,1) since
x[9..13] = x[6..10] = x[1..5]

— abaab

It is NRE, for x[9..14] = abaab$
while z[6..11] = z[1..6] = abaaba

Now consider the suffix tree for z:

1234567 891011121314
baabaab abaab a$

aba
4
babaab
ababaa $
2 5 10
baaba$
baaba

12

a ba
2
$ aba
13 5 7
baaba$
ababaaba
bpaba $ baaba$ 3
6 11 1 4 9

3

Transform a square child 2z of a
round parent p ton — (¢ + p — 2).

A substring u of x is a maximal
NFE repeating substring of x if and

only if
e u occurs at least twice in x;

e u is not a proper substring of

8

any repeating substring of .

If u = x[i..i+p—1] is a maximal NE
repeating substring of x, then the
position node it occurs as a child of
the lcp node p in Ty, and n—(i—p—2)
occurs as a child of p in T%.

Strategy for identifying all NE re-
peating substrings: just find the
maximal ones (largest value of p),
then locate all their ancestors in

To.

Note that only positions 1, 6, and
9 give rise to NLE repeats.

NE tree is the subtree of T4 that
corresponds to these positions:

9

©
Q
. G
~ 9 —
1¢ © ©
© A o
o © <
N &
2 - N—r
— Mm
— P)
! by R
o o S
©
i
N—r

S

1

4
4
/
i P
' '
1 8 40 3
beel beed Laos

’
LT

(5;9,6,1) abaab

(6;6,1) abaaba

10

Given the suffiz trees Tx and T4
for x[1..n], the algorithm computes
the NE tree Th " wusing O(n) time

and O(n) additional space.

The approach using suffix arrays
rather than suffix trees is based on
similar ideas, but is combinatori-
ally more complex.

Papers related to this topic,
including these slides, can be
viewed at the web site

www.cas.mcmaster.ca/~franek

®

11

