Crochemore’s algorithm for repetitions
revisited - computing runs

F. Franek, M. Jiang

Computing and Software
McMaster University
Hamilton, Ontario

Israel Stringology Conference

Bar-Ilan University, Tel-Aviv
March-April 2009

Israel Stringology Conference, Bar-Ilan slide 1/24

* Why we are interested in Crochemore’s repetition
algorithm

* A brief description of our implementation of
Crochemore’s algorithm.

* A simple modification of Crochemore’s algorithm to
compute runs (worsening the complexity to O(n log?(n))

* A modification of Crochemore’s algorithm to compute
runs while preserving the complexity O(n log(n))

 Conclusion

Israel Stringology Conference, Bar-Ilan slide 2/24

Why we are interested in Crochemore’s repetition
algorithm

Israel Stringology Conference, Bar-Ilan slide 3/24

A run captures the notion of a maximal non-extendible

repetition in a string x
Alternative: (s,p,end)

(s.p,e.1) e=(end-s+1)/p
t=(end-s+1)%p
p period t tail (rightmost)

e /

]

S starting position (leftmost)

e power, exponent
irreducible generator

Israel Stringology Conference, Bar-Ilan slide 4/24

Computing runs in linear time

Main (1989) introduced runs and gave the following
algorithm to compute the leftmost occurrence of every
run of a string x:

(1) Compute a suffix tree for x (linear, using Farach’s
algorithm)

(2) using the suffix tree, compute Lempel-Zi1v
factorization of x (/inear, Lempel-Ziv)

(3) using the Lempel-Ziv factorization, compute the
leftmost runs (linear, Main)

Israel Stringology Conference, Bar-Ilan slide 5/24

Lempel-Z1v factorization can be computed in linear time
using suffix array (Abouelhoda, Kurtz, & Ohlebusch 2004)

Suffix array can be computed in linear time (Kéarkkainen,
Sanders 2003, Ko, Aluru 2003)

Chen, Puglisi, & Smyth 2007, using suffix array and the
Icp array (Icp can be computed from suffix array in linear
time, Kasai et al 2001):) 1t computes Lempel-Ziv
factorization in linear time using Ukkonen’s on-line
approach.

Israel Stringology Conference, Bar-Ilan slide 6/24

All these approaches are complicated and elaborate, and
the implementations into code are not readily available.

Also, they do not lend themselves well to parallelization
(see slide 9 -- the refinement of the classes can be done
naturally in parallel as the refinement of one class 1s
independent from the refinement of another class.)

We have a good and “space efficient” implementation of
Crochemore’s algorithm, that naturally lends itself to
parallelization.

Israel Stringology Conference, Bar-Ilan slide 7/24

A brief description of our implementation of
Crochemore’s algorithm

Israel Stringology Conference, Bar-Ilan slide 8/24

abaababaabaabab$

level 01234567 89101112131415
1 {0,2,3,5,7,8,10,11,13}, {1,4,6,9,12,14}, {15}
y) {2,7,10},, {0,3,58,11,13},, {1,4,6,9,12},, {14}
‘ N
3 {2,7,10} ., {0,3,5,8,11},, {13}, 11,69} .. 4,12}, .,
W “ “

4 {297’10}aaba {09598}abaa {3911}abab {19699}baab {4}baba {lz}bab$
5 {7}aabaa{2’10}aabab{09598}abaab{3}ababa{11}abab$ {1’6’9}baaba

6 {2}aababa {lo}aababﬂi {Oﬂsﬂg}abaaba {6}baabaa {lﬂg}baabab

7 {Sﬂg}abaabaa {O}abaabab {l}baababa {9}baabab$

8 {S}abaabaab {S}abaabaa$
Israel Stringology Conference, Bar-Ilan slide 9/24

0O/1]2]3[4]5 |6 | N | indexes
N TN
z} sl | CNext[] ¢ ={2,4,5)
gl lafal | | | cprev
s CEnd]]
2 || csan]
3 CSize[]
""""" Total this slide 6*N
1 117 [CMember(] <ubtotal 6*N

Israel Stringology Conference, Bar-Ilan slide 10/24

ol1rlaf3]als 6| [N| indexes

SEREN | | cEmpystack
| seQueue
| | scQueue
L] RefStack

Refine[]

Total this slide 5*N
subtotal 11*N

Israel Stringology Conference, Bar-Ilan slide 11/24

O| 123|415 |6 N | indexes
N
5 a9 | FNext[] f={3,5)
ol 3] []] Fere
/ N
3 || Ftar]
2| J2f [] | FMember

Total this slide 4*N
overall total 15*N

Israel Stringology Conference, Bar-Ilan slide 12/24

O/ 1]2131]141|5 |6 N | 1indexes

N TN
4}/5/‘3 __________ CNext[| 012{2,4,5}
;% 20 1 1 CPrev[| Memory
/ N2 virtualization
I e
// __________ \ 2 W]
20 0 0 CStart[]
__________ ESizeH
1 L L CMember] 1.1 this slide 4*N

subtotal 4*N

Israel Stringology Conference, Bar-Ilan slide 13/24

ol 1]alslals o] [N
CEmptyStack ~ ScQueue
a1]a B

RefStack, SelQueue

Refine[] 1s virtualized over FNext[], FPrev|[], and FStart[]

Israel Stringology Conference, Bar-Ilan

indexes

Memory
multiplexing

Refine[]

Total this slide 2*N
subtotal 6*N

slide 14/24

Refine[] 1s virtualized over -

Israel Stringology Conference, Bar-Ilan

indexes

FNext{] £,=(3,5}

FPrev|] Memory
virtualization

FStart][]

FMember]]

Total this slide 4*N
overall total 10*N

slide 15/24

o1]2]sfals 6|
5 __________
3 __________
6 __________
A
2| [
7

Israel Stringology Conference, Bar-Ilan

indexes

Gapl]

GapList[|

GNext|[|

GPrev[]

Total this slide 4*N
overall total 14*N

slide 16/24

Though the repetitions are reported level by level, they
are not reported in any appreciable order (caused by the

manipulations of GapList)

abaababaabaabab$
01234567 89101112131415

(10,1,2) abaababaab
(7,1, 2) abaababaab
(2,1, 2) abaababaab
(11,2,2) abaababaab
(3,2, 2) abaababaab
(4, 2, 2) abaababaab
(6, 3, 2) abaababaab
(5, 3, 3) abaababaab
(0, 3, 2) abaababaab
_(7,3,2) abaababaabaabab$g
(0,5, 2) abaababaabaabab$>
(1,5, 2) abaababaabaababe§ run

L L L

T TS TToT T
7
-

(=B TR - - IR -
(=R - - - R
s o TS TITeS T
= D N - IR -

Israel Stringology Conference, Bar-Ilan slide 17/24

A simple modification of Crochemore’s
algorithm to compute runs (worsening the
complexity to O(n log?(n))

Israel Stringology Conference, Bar-Ilan slide 18/24

We have to collect repetitions and “join” them into
runs.

Collecting, “joining”, and reporting level by level,
basically in a binary search tree:

RunLeft[] (reuse FNext[|)

RunRight[] (reuse FPrev[|)
Run_s[] (reuse FMember| |)

Run _end[] (reuse FStart| |)

Complexity: need O(log(n)) for each repetition
to place 1t 1n the tree, overall O(n log*(n))

Israel Stringology Conference, Bar-Ilan slide 19/24

Collecting and “joining” in a binary search tree,
reporting at the end: the same complexity O(n log?(n)),
memory requirement increased by 5*N

__________ RunLeft[]

__________ RunRight][]

__________ Run_ s[]

__________ Run_end]]
| B Run p[] Total this slide 5*N
P overall total 19*N

Points to the “root” of the search tree for
runs of period p.
Israel Stringology Conference, Bar-Ilan slide 20/24

A modification of Crochemore’s algorithm to
compute runs while preserving the complexity

O(n log(n))

Israel Stringology Conference, Bar-Ilan slide 21/24

Collecting into buckets, “joining” and reporting

at the end.

(p1 1

S

S

__» p, lend,
% Memory: ? O(n log(n))
end

Run_s[]

Linked list of repetitions starting at s

p2

Run Last[] (reuse FNext| |)

points to the last run with period p2, so we know
with what to join the incoming repetition with (if
at all), as we sweep from left to right.

Israel Stringology Conference, Bar-Ilan

slide 22/24

Complexity: O(n log(n))

Memory: 15*N + O(n log(n))

To avoid dynamic allocation of memory, we are
using allocation from arena technique.

Israel Stringology Conference, Bar-Ilan slide 23/24

Conclusion

* Crochemore’s algorithm 1s fast, though memory
demanding

* Our implementation 1s as memory efficient as
possible

* Great potential for parallel implementation
* Preliminary test very positive

* Further research
(1) to compare performance with linear time
algorithms (problem - lack of code)
(2) to implement parallel version with little
communication overhead

Israel Stringology Conference, Bar-Ilan slide 24/24

TN,

