

Suffix-based text indices, construction
algorithms, and applications.

F. Franek
Computing and Software

McMaster University
Hamilton, Ontario

2nd CanaDAM Conference
Centre de recherches

mathématiques in Montréal

 May 25-28, 2009

CanaDAM2009 slide 1/32

CanaDAM2009 slide 2/32

inverted file (postings file or inverted index) is an
index data structure storing a mapping from words, to
its membership in the given text (or a set of texts). The
purpose is to allow word search.

T0 = CanaDAM is a great conference
T1 = A conference really great
T2 = Best conference

Canadam
is
a
great
conference
really
best

vocabulary
(small space)

occurences
(big space)

{0}
{0}
{0,1}
{0,1}
{0,1,2}
{1}
{2}

CanaDAM2009 slide 3/32

Searching for great CanaDAM: {0,1}∩ {0}={0}
directs us to the text T0

Not all words might be stored, not all forms of
words might be stored (lower/upper case, plurals, etc.)

May contain “address”

{0

1

}
{0

9

}
{0

12

,1

1

}
{0

14

,1

21

}
{0

20

,1

3

,2

6

}
{1

14

}
{2

1

}

Canadam
is
a
great
conference
really
best

vocabulary
(small space)

occurences
(big space)

CanaDAM2009 slide 4/32

To reduce space, blocking may be used (fewer pointers,
so pointers can be smaller)

T0 = CanaDAM is a great conference
T1 = A conference really great
T2 = Best conference

{0

1

}
{0

1

}
{0

1

,1

1

}
{0

2

,1

1

}
{0

2

,1

1

,2

1

}
{1

2

}
{2

1

}

Canadam
is
a
great
conference
really
best

vocabulary
(small space)

occurences
(big space)

CanaDAM2009 slide 5/32

stopword = frequently occurring words that
carry no meaning e.g. the a an

CanaDAM2009 slide 6/32

Building an inverted file is a relatively cheap task: O(n)

vocabulary can be maintained as hash table, trie, or B-tree,
however a simple list in lexicographic order is better for
space and competitive in search (binary search O(log n))

Practical figures show space requirement and text to be
traversed sublinear (close to O(n0.85)). No other index
can do that.

Disadvantage - queries for phrases are expensive to perform.
Since the text is viewed as a sequence of words,
no subword search possible (not good, for instance, for
analyses of DNA or protein sequences).

CanaDAM2009 slide 7/32

Suffix-based indices: suffix trees and suffix arrays
allow equal retrieval of any subword -- suitable for
substring problem.

The task is to identify all occurrences of a substring fast
and efficiently. Instead of re-scanning the string every
time we are looking for a pattern, we “prepare” a data
structure to do the search easily.

The basic idea -- any substring is a prefix of a suffix:

a b c a a b c a b a c c a b a a c b
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

CanaDAM2009 slide 8/32

A common data structure trie (pronounced try) for
retrieval

A trie on a set X ={x1, x2, .. xn} of pairwise distinct strings
is a search tree with n+1 leaves. The edges are labelled by
characters, a path to a leaf “spells” a string from X. For
technical reasons, each strings is terminated by the lexico-
graphically smallest sentinel symbol $.

 (For C/C++ aficionados, think of $ as NULL)

CanaDAM2009 slide 9/32

A trie on X = { ab, abc, ba }

a b$

b

$

ab

c

$

abc

c

bc
$

$

CanaDAM2009 slide 10/32

Patricia trie (compacted trie, radix tree) all internal
nodes of degree 2 are eliminated and the edges are
labelled by substrings

A Patricia trie on X = { ab, abc, ba }

ab bc$

$

ab

c

$

abc

bc
$

$

(Practical Algorithm To Retrieve Information Coded In
 Alphanumeric) Morrison (1968)

CanaDAM2009 slide 11/32

Suffix tree of a string x = Patricia trie of the set of all
nontrivial suffixes of x Weiner (1973)

0

1 1 1

2 2 2 18 2 3 2 17 11

3 4

12 7

14 9 2 64 15 16 10

3 4

13 8 1 5

a

a
b

c

a ca

b

a
ca

c

a

ba

abcabaccabaacb$

bcabaccabaacb$

baccabaacb$ccabaacb$acb$

cb$ b$

cabaacb$

$

acb$ ccabaacb$

abcabaccabaacb$

baccabaacb$

abcabaccabaacb$

ccabaacb$

cabaacb$

acb$

b$

a b c a a b c a b a c c a b a a c b $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

CanaDAM2009 slide 12/32

Applications -- search for substrings in a string:

• Check if a string P of length m is a substring in
 O(m log α), where α is the size of the alphabet.
• Find the first occurrence of the patterns P1,...,Pq of total
 length m as substrings in O(m log α).
• Find all k occurrences of the patterns P1,...,Pq of total
 length m as substrings in O ((m + k) log α).
• Find the longest common prefix between two suffixes
 in Θ(log α) (requires preprocessing of the tree)
• Find all k tandem repeats in O((n log n + k) log α)

CanaDAM2009 slide 13/32

Applications -- determine properties of a string:

• Find the longest common substrings of strings s1 and
 s2 in Θ(|s1|+|s2|).
• Find all k maximal repeats in Θ(n+k) .
• Find the Lempel-Ziv decomposition in Θ(n).
• Find the longest repeated substrings in Θ(n).
• Find the most frequently occurring substrings of a
 minimum length in Θ(n).

CanaDAM2009 slide 14/32

To construct a suffix tree

• naïve iterative algorithm O(n2)

• smarter constructions in O(n log n) - iterative:
 Weiner (1973), McCreight (1976) -faster and less
 memory, Crochemore (1981) - via all maximal
 repetitions, Ukkonen (1995) - suffix links, online
 These are linear, if alphabet size is fixed, i.e. for
 small alphabets.

• complex construction in O(n) for any indexed
 alphabet - recursive: Farach (1997)

CanaDAM2009 slide 15/32

Construct suffix tree for odd suffixes of the input
string x by recursion:

a b c a a b c a b a c c a b a a c b $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Use radix sort to sort the pairs (x[i],x[i+1]) for odd i:

aa=>1, ab=>2, ba=>3, ca=>4, cb=>5, cc=>6

Create a new string y = 2 4 2 4 3 6 2 1 5 $
and by a recursive call, obtain its suffix tree

2 2 2 134 4 56

1

The basic ideas of Farach’s construction

CanaDAM2009 slide 16/32

0

8

15$

 Suffix tree for y = 2 4 2 4 3 6 2 1 5 $
1 2 3 4 5 6 7 8 9

2 36215$ 4
5$

6215$

1

7

15$

2

4

1

2436215$ 36215$4

3

5 1

2

2436215$ 36215$4

4

9

6

Massage it into a suffix tree of odd
suffixes of x in linear time:

CanaDAM2009 slide 17/32

0

1 1

2 2 17 11

3 7

9

15

413

1 5

a

acb$
b

ca

c

a

abcabaccabaacb$ baccabaacb$

aacb$

abccabaacb$

abcabaccabaacb$ baccabaacb$

cabaacbb

From this tree create the suffix tree for
even suffixes, also in linear time (again
using radix sort):

2

CanaDAM2009 slide 18/32

0

1 1

2 18 3

12

14

2 6

4

16 10

8

a

c

b

caabcabaccabaacb$

baccabaacb$ b$ cabaacb$

$

aacb$

abcabaccabaacb$

baccabaacb$

cabaacb$

Now merge these two suffix trees into
one, also in linear time.

3

CanaDAM2009 slide 19/32

The problem with suffix tree --- too much memory!

5|x| to 10|x| machine words required - Kurtz (1999)
reduced suffix tree!

The construction also requires a lot of additional
(working) memory.

This is unfeasible and impractical for large strings (e.g.
DNA - tens/hundreds of millions of “letters”).

Manber+Mayers (1993) introduced suffix arrays as an
alternative to suffix trees.

CanaDAM2009 slide 20/32

0

1 1 1

2 2 2 18 2 3 2 17 11

3 4

12 7

14 9 2 64 15 16 10

3 4

13 8 1 5

a

a
b

c

a ca

b

a
ca

c

a

ba

abcabaccabaacb$

bcabaccabaacb$

baccabaacb$ccabaacb$acb$

cb$ b$

cabaacb$

$

acb$ ccabaacb$

abcabaccabaacb$

baccabaacb$

abcabaccabaacb$

ccabaacb$

cabaacb$

acb$

b$

a b c a a b c a b a c c a b a a c b $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

4 15 13 8 1 5 16 10 18 14 9 2 6 3 12 7 17 11

1 3 2 4 1 2 0 1 2 1 3 0 2 4 1 1lcp

suff

2

CanaDAM2009 slide 21/32

M+M: Search for a substring u in O(|u| log n),
construct suff in O(n log n), expected O(n), construct
lcp in O(n log n), expected O(n).

Kasai et al (2001): linear time algorithm to compute
lcp from suff. Problem reduced to suffix sorting.

Abouelhoda et al (2002): search for u in O(|u|), with
additional linear time preprocessing.

Problems requiring top-down or bottom-up traversal
of suffix tree can be performed with the same
asymptotic complexity using suffix arrays.

CanaDAM2009 slide 22/32

Suffix sorting in linear time

Three papers came out in 2003 giving linear time
recursive algorithms for suffix sorting. They all tried
“Farach’s” approach:

split suffixes into G1 and G2

1. sort G1 using recursive reduction of the problem
2. sort G2 using the order of G1

3. merge G1 and G2

Kärkkäinen+Sanders: the simplest, the most elegant,
the most memory efficient. The question is: how fast?

CanaDAM2009 slide 23/32

Then ~ determined by x[6] ~ x[9], or if

x[6]=x[9], determined by ~

Thus radix sort with keys of size 2 will do. So we
have all gray suffixes sorted.

How to merge brown and gray suffixes?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a b c a a b c a b a c c a b a a c b

Suppose to have all brown suffixes (and) sorted.

6 9

7 10

CanaDAM2009 slide 24/32

Simple comparison-based merge:

 ~ determined by the first letter or by

 ~

 ~ determined by the first letter or by

 ~

So, how to sort the brown suffixes? Like Farach!

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a b c a a b c a b a c c a b a a c b

CanaDAM2009 slide 25/32

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a b c a a b c a b a c c a b a a c b

AC DEH

F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a b c a a b c a b a c c a b a a c b

CG IJB

Using radix sort, sort the triples.

CanaDAM2009 slide 26/32

C A H E B D G C B J F I
 1 4 7 10 13 16 2 5 8 11 14 17

C B J F I 5

B D G C B J F I 13
B J F I 8

C A H E B D G C B J F I 1

A H E B D G C B J F I 4

D G C B J F I 16
E B D G C B J F I 10

F I 14
G C B J F I 2

H E B D G C B J F I 7
I 17

CanaDAM2009 slide 27/32

This approach works for any “division” as long as the
beige blocks are bigger than the gray blocks. Of course,
using bigger beige blocks requires longer radix sort,
however it decreases the recursion and memory use.

In many ways, using blocks of size 3 optimizes the
solution, see results of a crude simulation:

N=100
2+1: total=1415.000000,rec=8,mem=943.333333
3+2: total=1541.866667,rec=6,mem=566.400000
N=1000
2+1: total=14890.000000,rec=14,mem=9926.666667
3+2: total=16202.666667,rec=10,mem=5952.000000
N=10000
2+1: total=149855.000000,rec=20,mem=99903.333333
3+2: total=163209.200000,rec=15,mem=59954.400000
N=100000
2+1: total=1499840.000000,rec=25,mem=999893.333333
3+2: total=1633170.000000,rec=19,mem=599940.000000
N=1000000
2+1: total=14999770.000000,rec=31,mem=9999846.666667
3+2: total=16333150.400000,rec=24,mem=5999932.800000
N=10000000
2+1: total=14999770.000000,rec=31,mem=9999846.666667
3+2: total=16333150.400000,rec=24,mem=5999932.800000

CanaDAM2009 slide 28/32

CanaDAM2009 slide 29/32

Are the linear suffix sorting algorithms practical? They
seem to require at least 4|x| working memory.
Larsson+Sadakane (1999): sorting suffixes as
independent strings - for most real-world data very fast,
though worst-case complexity is Ω(n2), requires very
little extra space (for instance bzip2 by Seward).

Manzini+Ferragina (2002): very fast, very little extra
memory (0.03n), however worst-case complexity is Ω(n2).

They posed a problem:
lightweight (O(n log n), sublinear memory) algorithm?

CanaDAM2009 slide 30/32

Burkhardt+Kärkkäinen (2003): an O(n log n) suffix
sorting algorithms with O(n / √log n) memory
requirement. Based on the idea of difference covers
(VLSI design, distributed mutual exclusion --
Colbourn+Ling (2000)).

For any pair of suffixes x[i..n], x[j..n] find the smallest k
such that the order of x[i+k..n] and x[j+k..n] is known
(anchor pair).

A difference cover D modulo v: set of integers 0..v-1 such
that for any 0 < i < v there are i1, i2∈ D so that
i = i1-i2 (mod v). For ∀ i, j compute k=δ(i, j)∈[0,v) so that
((i+k) mod v), and ((j+k) mod v) are both in D (can be done
in O(v)).

CanaDAM2009 slide 31/32

Then sort all suffixes whose starting position is in D. The
sort of all suffixes is transformed to a sort on keys of length
 ≤ v+1.

Note that Kärkkäinen+Sanders algorithm uses D modulo 3!

Colbourn+Ling (2000): For every v, a difference cover D
modulo v of size |D| √1.5v+6 can be computed in O(√v)
time.

Currently the fastest linear suffix sorting algorithm is
due to Maniscalco+Puglisi 2008.

CanaDAM2009 slide 32/32

Can suffix array really “replace” the string?
Bannai, Inenaga, Shinohara, and Takeda (2003): given an
array, conditions can be checked if it is a suffix array of a
string (must be a permutation of n) and such a string with a
minimal alphabet is inferred from the array in O(n) time.

