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inverted file (postings file or inverted index) is an 
index data structure storing a mapping from words, to 
its membership in the given text (or a set of texts). The 
purpose is to allow word search. 

T0 = CanaDAM is a great conference
T1 = A conference really great
T2 = Best conference

Canadam
is
a
great
conference
really
best

vocabulary
(small space)

occurences
(big space)

{0}
{0}
{0,1}
{0,1}
{0,1,2}
{1}
{2}
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Searching for great CanaDAM:   {0,1}∩ {0}={0}
directs us to the text T0

Not all words might be stored, not all forms of
words might be stored (lower/upper case, plurals, etc.)

May contain “address”
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To reduce space, blocking may be used (fewer pointers,
so pointers can be smaller)

T0 = CanaDAM is a   great conference
T1 = A conference really great
T2 = Best conference
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stopword = frequently occurring words that
carry no meaning    e.g.  the a an
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Building an inverted file is a relatively cheap task: O(n)

vocabulary can be maintained as hash table, trie, or B-tree,
however a simple list in lexicographic order is better for 
space and competitive in search (binary search O( log n)) 

Practical figures show space requirement and text to be
traversed sublinear (close to O(n0.85) ). No other index
can do that.

Disadvantage - queries for phrases are expensive to perform.
Since the text is viewed as a sequence of words,
no subword search possible (not good, for instance, for
analyses of DNA or protein sequences).
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Suffix-based indices: suffix trees and suffix arrays
allow equal retrieval of any subword -- suitable for
substring problem.

The task is to identify all occurrences of a substring fast 
and efficiently. Instead of re-scanning the string every 
time we are looking for a pattern, we “prepare” a data 
structure to do the search easily.

The basic idea -- any substring is a prefix of a suffix:

a b c a a b c a b a c  c a b a  a c  b
1   2   3  4   5  6   7  8  9  10 11 12 13 14 15  16 17 18
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A common data structure trie (pronounced try) for 
retrieval

A trie on a set X ={x1, x2, .. xn} of pairwise distinct strings 
is a search tree with n+1 leaves. The edges are labelled by
characters, a path to a leaf “spells” a string from X. For 
technical reasons, each strings is terminated by the lexico-
graphically smallest sentinel symbol $.

      (For C/C++ aficionados, think of $ as NULL)
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A trie on X = { ab, abc, ba }

a b$

b

$

ab

c

$

abc

c

bc
$

$
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Patricia trie (compacted trie, radix tree) all internal 
nodes of degree 2 are eliminated and the edges are 
labelled by substrings

A Patricia trie on X = { ab, abc, ba }

ab bc$

$

ab

c

$

abc

bc
$

$

(Practical Algorithm To Retrieve Information Coded In 
 Alphanumeric)  Morrison (1968)
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Suffix tree of a string x = Patricia trie of the set of all 
nontrivial suffixes of x  Weiner (1973)

0

1 1 1

2 2 2 18 2 3 2 17 11

3 4

12 7

14 9 2 64 15 16 10

3 4

13 8 1 5

a

a
b

c

a ca

b

a
ca

c

a

ba

abcabaccabaacb$

bcabaccabaacb$

baccabaacb$ccabaacb$acb$

cb$ b$

cabaacb$

$

acb$ ccabaacb$

abcabaccabaacb$

baccabaacb$

abcabaccabaacb$

ccabaacb$

cabaacb$

acb$

b$

a b c a a b c a b a c  c a  b a  a c  b $
1   2   3  4   5  6   7  8  9  10 11 12 13 14  15  16 17 18
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Applications -- search for substrings in a string:

•  Check if a string P of length m is a substring in 
   O(m log α), where α is the size of the alphabet.
•  Find the first occurrence of the patterns P1,...,Pq of total
   length m as substrings in O(m log α).
•  Find all k occurrences of the patterns P1,...,Pq of total
   length m as substrings in O ((m + k) log α).
•  Find the longest common prefix between two suffixes 
    in Θ(log α)   (requires preprocessing of the tree)
•  Find all k tandem repeats in O((n log n + k) log α) 
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Applications -- determine properties of a string:

•  Find the longest common substrings of strings s1 and
    s2 in Θ(|s1|+|s2|).
•  Find all k maximal repeats in Θ(n+k) .
•  Find the Lempel-Ziv decomposition in Θ(n).
•  Find the longest repeated substrings in Θ(n).
•  Find the most frequently occurring substrings of a
   minimum length in Θ(n).
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To construct a suffix tree

•   naïve iterative algorithm O(n2)

•   smarter constructions in O(n log n) - iterative:
    Weiner (1973), McCreight (1976) -faster and less
    memory, Crochemore (1981) - via all maximal
    repetitions, Ukkonen (1995) - suffix links, online
    These are linear, if alphabet size is fixed, i.e. for
    small alphabets.

•   complex construction in O(n) for any indexed
     alphabet - recursive:   Farach (1997)
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Construct suffix tree for odd suffixes of the input
string x by recursion:

a b c a a b c a b a c  c a b a  a c  b $
1   2   3  4   5  6   7  8  9  10 11 12 13 14 15  16 17 18

Use radix sort to sort the pairs (x[i],x[i+1]) for odd i:

aa=>1, ab=>2, ba=>3, ca=>4, cb=>5, cc=>6

Create a new string y = 2 4 2 4 3 6 2 1 5 $
and by a recursive call, obtain its suffix tree

2 2 2 134 4 56

1

The basic ideas of Farach’s construction
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0

8

15$

 Suffix tree for  y = 2 4 2 4 3 6 2 1 5 $
1   2   3  4   5   6   7  8   9

2 36215$ 4
5$

6215$

1

7

15$

2

4

1

2436215$ 36215$4

3

5 1

2

2436215$ 36215$4

4

9

6

Massage it into a suffix tree of odd 
suffixes of x in linear time:
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0

1 1

2 2 17 11

3 7

9

15

413

1 5

a

acb$
b

ca

c

a

abcabaccabaacb$ baccabaacb$

aacb$

abccabaacb$

abcabaccabaacb$ baccabaacb$

cabaacb$b$

From this tree create the suffix tree for 
even suffixes, also in linear time (again 
using radix sort):

2
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0

1 1

2 18 3

12

14

2 6

4

16 10

8

a

c

b

caabcabaccabaacb$

baccabaacb$ b$ cabaacb$

$

aacb$

abcabaccabaacb$

baccabaacb$

cabaacb$

Now merge these two suffix trees into 
one, also in linear time.

3
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The problem with suffix tree --- too much memory!

5|x| to 10|x| machine words required - Kurtz (1999) 
reduced suffix tree!

The construction also requires a lot of additional
(working) memory. 

This is unfeasible and impractical for large strings (e.g. 
DNA  - tens/hundreds of millions of “letters”).

Manber+Mayers (1993) introduced suffix arrays as an 
alternative to suffix trees.
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0

1 1 1

2 2 2 18 2 3 2 17 11

3 4

12 7

14 9 2 64 15 16 10

3 4

13 8 1 5

a

a
b

c

a ca

b

a
ca

c

a

ba

abcabaccabaacb$

bcabaccabaacb$

baccabaacb$ccabaacb$acb$

cb$ b$

cabaacb$

$

acb$ ccabaacb$

abcabaccabaacb$

baccabaacb$

abcabaccabaacb$

ccabaacb$

cabaacb$

acb$

b$

a b c a a b c a b a c  c a  b a  a c  b $
1   2   3  4   5  6   7  8  9  10 11 12 13 14  15  16 17 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

4 15 13 8 1 5 16 10 18 14 9 2 6 3 12 7 17 11

1 3 2 4 1 2 0 1 2 1 3 0 2 4 1 1lcp

suff

2
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M+M: Search for a substring u in O(|u| log n), 
construct suff in O(n log n), expected O(n), construct 
lcp in O(n log n), expected O(n).

Kasai et al (2001): linear time algorithm to compute 
lcp from suff. Problem reduced to suffix sorting.

Abouelhoda et al (2002): search for u in O(|u|),  with 
additional linear time preprocessing. 

Problems requiring top-down or bottom-up traversal 
of suffix tree can be performed with the same 
asymptotic complexity using suffix arrays.
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Suffix sorting in linear time

Three papers came out in 2003 giving linear time 
recursive algorithms for suffix sorting. They all tried 
“Farach’s” approach:

split suffixes into G1 and G2

1. sort G1 using recursive reduction of the problem
2. sort G2 using the order of G1

3. merge G1 and G2

Kärkkäinen+Sanders: the simplest, the most elegant, 
the most memory efficient. The question is: how fast?
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Then        ~         determined by x[6] ~ x[9], or if

x[6]=x[9], determined by        ~ 

Thus radix sort with keys of size 2 will do. So we 
have all gray suffixes sorted.

How to merge brown and gray suffixes?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a b c a a b c a b a c c a b a a c b

Suppose to have all brown suffixes (       and      ) sorted.

6 9

7 10
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Simple comparison-based merge:

       ~              determined by the first letter or by

       ~

       ~              determined by the first letter or by

       ~

So, how to sort the brown suffixes? Like Farach!

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a b c a a b c a b a c c a b a a c b
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B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a b c a a b c a b a c c a b a a c b

AC DEH

F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a b c a a b c a b a c c a b a a c b

CG IJB

Using radix sort, sort the triples.
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C A H E B D G C B J F I
  1   4     7   10 13  16   2    5   8   11 14 17

C B J F I   5

B D G C B J F I   13
B J F I   8

C A H E B D G C B J F I   1

A H E B D G C B J F I   4

D G C B J F I   16
E B D G C B J F I   10

F I   14
G C B J F I   2

H E B D G C B J F I   7
I   17
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This approach works for any “division” as long as the 
beige blocks are bigger than the gray blocks. Of course, 
using bigger beige blocks requires longer radix sort, 
however it decreases the recursion and memory use.

In many ways, using blocks of size 3 optimizes the 
solution, see results of a crude simulation:



  

N=100
2+1: total=1415.000000,rec=8,mem=943.333333
3+2: total=1541.866667,rec=6,mem=566.400000
N=1000
2+1: total=14890.000000,rec=14,mem=9926.666667
3+2: total=16202.666667,rec=10,mem=5952.000000
N=10000
2+1: total=149855.000000,rec=20,mem=99903.333333
3+2: total=163209.200000,rec=15,mem=59954.400000
N=100000
2+1: total=1499840.000000,rec=25,mem=999893.333333
3+2: total=1633170.000000,rec=19,mem=599940.000000
N=1000000
2+1: total=14999770.000000,rec=31,mem=9999846.666667
3+2: total=16333150.400000,rec=24,mem=5999932.800000
N=10000000
2+1: total=14999770.000000,rec=31,mem=9999846.666667
3+2: total=16333150.400000,rec=24,mem=5999932.800000
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Are the linear suffix sorting algorithms practical? They 
seem to require at least 4|x| working memory. 
Larsson+Sadakane (1999): sorting suffixes as 
independent strings - for most real-world data very fast, 
though worst-case complexity is Ω(n2), requires very 
little extra space (for instance bzip2 by Seward).

Manzini+Ferragina (2002): very fast, very little extra 
memory (0.03n), however worst-case complexity is Ω(n2).

They posed a problem: 
lightweight (O(n log n), sublinear memory) algorithm?
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Burkhardt+Kärkkäinen (2003): an O(n log n) suffix 
sorting algorithms with O(n / √log n ) memory 
requirement. Based on the idea of difference covers 
(VLSI design, distributed mutual exclusion -- 
Colbourn+Ling (2000)).

For any pair of suffixes x[i..n], x[j..n] find the smallest k 
such that the order of x[i+k..n] and x[j+k..n] is known 
(anchor pair).

A difference cover D modulo v: set of integers 0..v-1 such 
that for any 0 < i < v there are i1, i2∈ D so that 
i = i1-i2 (mod v). For ∀ i, j compute k=δ(i, j)∈[0,v) so that 
((i+k) mod v), and ((j+k) mod v) are both in D (can be done 
in O(v)). 
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Then sort all suffixes whose starting position is in D. The 
sort of all suffixes is transformed to a sort on keys of length
 ≤ v+1.

Note that Kärkkäinen+Sanders algorithm uses D modulo 3!

Colbourn+Ling (2000): For every v, a difference cover D 
modulo v of size |D| √1.5v+6 can be computed in O(√v) 
time.

Currently the fastest linear suffix sorting algorithm is
due to Maniscalco+Puglisi 2008.



  
CanaDAM2009                                                                                      slide 32/32

Can suffix array really “replace” the string?
Bannai, Inenaga, Shinohara, and Takeda (2003): given an 
array, conditions can be checked if it is a suffix array of a 
string (must be a permutation of n) and such a string with a 
minimal alphabet is inferred from the array in O(n) time.


