The contribution

Summary

# Erdös' conjecture on multiplicities of complete subgraphs for nearly quasirandom graphs

#### F. Franek<sup>1</sup> V. Rödl<sup>2</sup>

<sup>1</sup>Department of Computing and Software McMaster University, Hamilton, Ontartio

<sup>2</sup>Department of Mathematics Emory University, Atlanta, Georgia

#### CORS-INFORMS International Conference, Toronto June 14-17, 2009

Franek, Rödl

The contribution

Summary

Thanks

## Outline



#### **Motivation**

- Background
- Preliminaries

#### 2 The contribution

- Main Result
- Basic Ideas for the Proofs

・ロト・日本・日本・日本・日本・日本

Franek, Rödl

| Motivation<br>● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ | The contribution<br>000<br>00000000 | Summary |  |
|-------------------------------------------------------|-------------------------------------|---------|--|
| Background                                            |                                     |         |  |
| Outline                                               |                                     |         |  |



Preliminaries

#### 2 The contribution

- Main Result
- Basic Ideas for the Proofs

Franek, Rödl

Background

#### $k_t(G)$ the number of cliques of order t in a graph G

The contribution

$$c_t(G) = rac{k_t(G) + k_t(\overline{G})}{{|G| \choose t}}$$

$$c_t(n) = \min \{c_t(G) : |G| = n\}$$

$$c_t = \lim_{n \to \infty} c_t(n)$$

A 1962 conjecture of Erdös related to Ramsey's theorem states that

$$c_t = 2^{1 - \binom{t}{2}}$$

Franek, Rödl

Erdös' conjecture for nearly quasirandom graphs

2



The motivation for the conjecture:

- trivially true for t = 2 (edges)
- from Goodman's (1957) work follows for t = 3 (triangles)
- true for random graphs

(1987) Shown false by *A. Thomason* for all  $t \ge 4$  by providing upper bounds:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへで

• 
$$c_4 < 0.976 \cdot 2^{-5}$$
  
•  $c_5 < 0.906 \cdot 2^{-9}$   
•  $c_t < 0.936 \cdot 2^{1-\binom{t}{2}}$ , for  $t > 5$ 



- (1993) *F*. and *Rödl* using a computer search provided a simpler counterexample for t = 4 with the same bound
- (1996) Jagger, Šťovíček, Thomason:  $c_5 \le 0.8801 \cdot 2^{-9}$
- (2002) *F*.:  $c_6 \le 0.744514 \cdot 2^{-14}$
- (1968) The only known lower bound is due to *Giraud*:  $c_4 > \frac{1}{46}$

Franek, Rödl

| Motivation<br>○○○○<br>●○○○○○○○○○○ | The contribution<br>000<br>00000000 | Summary |  |
|-----------------------------------|-------------------------------------|---------|--|
| Preliminaries                     |                                     |         |  |
| Outline                           |                                     |         |  |



Preliminaries

#### 2 The contribution

- Main Result
- Basic Ideas for the Proofs

Franek, Rödl

Motivation ○○○○ ○●○○○○○○○○○

Preliminaries

The contribution

Summary

Thanks

## Quasirandom and nearly quasirandom graphs

It was known that  $c_t(G) \sim 2^{1-\binom{t}{2}}$  whenever *G* is a quasirandom graph.

Quasirandom graphs - the graphs "that behave like random graphs" - were introduced and studied by *F.R.K. Chung*, *R.L. Graham*, *R.M. Wilson*, and *A. Thomason*.

The aim of this presentation is to show that for t = 4,  $c_t(G) \ge 2^{1-\binom{t}{2}}$ , if *G* is a nearly quasirandom graph, i.e. a graph arising from quasirandom by a small perturbation.

Motivation ○○○○ ○○●○○○○○○○○

Preliminaries

The contribution

Summary

Thanks

## Quasirandom and nearly quasirandom graphs

Quasirandom graphs are defined as graphs with the property that

- $|N(v)| \sim \frac{1}{2}|V|$ , and
- $|N(u) \cap N(v)| \sim \frac{1}{4}|V|$  for almost all  $v \in V$  and almost all pairs  $u, v \in V$ .

where N(v) denotes the neighbourhood of vertex v.

For any fixed t,  $k_t(R) + k_t(\overline{R}) \sim 2^{1-\binom{t}{2}}\binom{|V|}{t}$  for any sufficiently large quasirandom graph R with vertex set V.

Franek, Rödl

| Motivation                              |
|-----------------------------------------|
| 0000                                    |
| 000000000000000000000000000000000000000 |

Preliminaries

The contribution

Summary

Thanks

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

## Quasirandom and nearly quasirandom graphs

A quasirandom sequence of graphs  $\mathcal{R} = \{R_n\}_{n=0}^{\infty}$ 

• for all but  $o(|V(R_n)|)$  vertices  $u \in V(R_n)$ , d(u) = |N(u)|satisfies  $\left| d(u) - \frac{|V(R_n)|}{2} \right| < o(|V(R_n)|)$ , and • for all but  $o\left( \binom{|V(R_n)|}{2} \right)$  pairs of vertices  $u, v \in V(R_n)$ , the size d(u, v) of their common neighbourhood  $N(u) \cap N(v)$ satisfies  $\left| d(u, v) - \frac{|V(R_n)|}{4} \right| < o(|V(R_n)|)$ .

Franek, Rödl

Preliminaries

The contribution

Summary

Thanks

◆□ > ◆□ > ◆三 > ◆三 > ・三 の < ⊙

## Quasirandom and nearly quasirandom graphs

#### Theorem (Chung,Graham,Wilson,Thomason)

Let  $\mathcal{R} = \{R_n\}$  be a quasirandom sequence of graphs, then there exists a sequence of positive reals  $\{\varepsilon_n\}$  so that  $\varepsilon_n \to 0$  as  $n \to \infty$  and so that for every  $V \subset V(R_n)$ ,  $|V| \ge \varepsilon_n |V(R_n)|$ ,  $\left(\frac{1}{2} - \varepsilon_n\right) \binom{|V|}{2} < e < \left(\frac{1}{2} + \varepsilon_n\right) \binom{|V|}{2}$ , where the *e* is the number of edges of  $R_n$  induced on a set *V*.

Franek, Rödl

Preliminaries

The contribution

Summary

イロン イヨン イヨン ・

2

Thanks

## Quasirandom and nearly quasirandom graphs

For a graph D = (V, E) and  $U \subset V$  let  $\delta_D(U) = \frac{E \cap [U]^2}{\binom{|U|}{2}}$  denote the edge density of the subgraph induced on U.

For a sequence 
$$\mathcal{D} = \{D_n\}$$
 and  $0 let
 $p\mathcal{D} = \{pD_n\}$  be any sequence with the following property:  
 $V_n = V(pD_n) = V(D_n)$ , and there exists  $\varepsilon_n \to 0$  such that  
 $\left|\delta_{pD_n}(U) - p\delta_{D_n}(U)\right| < \varepsilon_n \text{ as } n \to \infty \text{ for any } U \subset V_n,$   
 $|U| > \varepsilon_n |V_n|.$$ 

Franek, Rödl

Preliminaries

The contribution

Summary

Thanks

## Quasirandom and nearly quasirandom graphs

We can think of pD as a graph obtained from the graph D by flipping a p-biased coin for each edge of D to decide to remove it or to leave it. (p remove it, (1-p) leave it)

$$\mathcal{D} = \{D_n\}$$
 an arbitrary sequence of graphs  $\mathcal{R} = \{R_n\}$  a quasirandom sequence

$$\boldsymbol{p}(\mathcal{R},\mathcal{D}) = \{\boldsymbol{p}(\boldsymbol{R}_n,\boldsymbol{D}_n)\} = \{\boldsymbol{R}_n \triangle \boldsymbol{p} \boldsymbol{D}_n\}$$

riangle denotes symmetric difference

イロト イヨト イヨト イヨト

Preliminaries

The contribution

Summary

Thanks

## Quasirandom and nearly quasirandom graphs



Franek, Rödl

Preliminaries

The contribution

Summary

Thanks

## Quasirandom and nearly quasirandom graphs

 $p(\mathcal{R}, \mathcal{D}) = \{p(R_n, D_n)\}$  has the following property:

there exists a sequence  $\{\varepsilon_n\}$  of positive reals such that  $\varepsilon_n \to 0$ and for every  $U \subset V_n$ ,  $|U| > \varepsilon_n |V_n|$ ,  $|\delta_{p(R_n,D_n)}(U) - \delta_{R_n-D_n}(U) - (1-p)\delta_{R_n\cap D_n}(U) - p\delta_{D_n-R_n}(U)| < \varepsilon_n$ .

So the farther we go in the sequence, the more it looks like the diagram

・ロト・日本・日本・日本・日本・日本

Franek, Rödl

Preliminaries

The contribution

Summary

<ロ> <同> <同> < 回> < 回> < 回> = 三

Thanks

## Quasirandom and nearly quasirandom graphs

 $d_H(G) = \frac{i_H(G)+i_H(\overline{G})}{2}$ , where  $i_H(G)$  is the number of isomorphic copies (not necessarily induced) of *H* in *G*.

 $Z = K_4$  less one edge



$$d(G) = d_Z(G).$$
  
For  $\mathcal{G} = \{G_n\}, d(\mathcal{G}) = lim inf d(G_n).$ 

Franek, Rödl

| <b>/lotivation</b><br>0000<br>000000000 | The contribution<br>●oo<br>○○○○○○○○ | Summary |  |
|-----------------------------------------|-------------------------------------|---------|--|
| <i>l</i> lain Result                    |                                     |         |  |
| Outline                                 |                                     |         |  |



- Background
- Preliminaries

#### 2 The contribution

- Main Result
- Basic Ideas for the Proofs

Franek, Rödl

Main Result



## The contribution

Summary

2

#### Theorem

Let  $\mathcal{G}$  be a sequence of graphs. Then  $d(\mathcal{G}) \geq \frac{3}{8}$  and equality holds if and only if  $\mathcal{G}$  is a quasirandom sequence.

This answered a question of Erdös

Franek, Rödl

The contribution

Summary

Thanks

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Main Result

## Theorem 2

#### Theorem

For every  $\lambda > \frac{3}{8}$  there exists  $p_{\lambda}$ ,  $0 < p_{\lambda} \leq 1$ , such that for every quasirandom sequence of graphs  $\mathcal{R} = \{R_n\}$ , and for every sequence of graphs  $\mathcal{D} = \{D_n\}$  with  $d(\mathcal{R} \triangle \mathcal{D}) \geq \lambda$ , if  $c_4(p(\mathcal{R}, \mathcal{D}))$  exists, then  $c_4(p(\mathcal{R}, \mathcal{D})) \geq \frac{1}{32} + \frac{1}{8}(\lambda - \frac{3}{8})p^4$  whenever 0 .

Loosely speaking: counterexamples to Erdös' conjecture have to differ essentially from quasirandom graphs.

We call  $p(\mathcal{R}, \mathcal{D})$  a nearly quasirandom sequence.

Franek, Rödl

| Motivation<br>ວ໐໐໐<br>ວ໐໐໐໐໐໐໐໐ | The contribution<br>○○○<br>●○○○○○○○ | Summary |  |
|---------------------------------|-------------------------------------|---------|--|
| Basic Ideas for the Proofs      |                                     |         |  |
| Outline                         |                                     |         |  |



- Background
- Preliminaries

#### 2 The contribution

- Main Result
- Basic Ideas for the Proofs

Franek, Rödl

Basic Ideas for the Proofs

The contribution ○○○ ○●○○○○○○○ Summary

## Basic Ideas for the Proofs

We use *t*-vectors to represent sequences of graphs.

 $\vec{x}$  is a *t*-vector with  $t^2$  real valued entries  $x_{i,j}$ ,  $1 \le i, j \le t$  and so that  $x_{i,j} = x_{j,i}$ .

 $B_t = {\vec{x} \in R^{t^2} : \vec{x} \text{ is a } t \text{-vector } \& |x_{i,j}| \le 1 \text{ for all } 1 \le i, j \le t}.$  unit ball

V, W disjoint sets of vertices of a graph G are  $\varepsilon$ -uniform if  $|\delta(V, W) - \delta(V', W')| < \varepsilon$  whenever  $V' \subset V$  and  $|V'| \ge \varepsilon \cdot |V|$ , and  $W' \subset W$  and  $|W'| \ge \varepsilon \cdot |W|$ .

▲□▶▲□▶▲□▶▲□▶ □ のぐら

Franek, Rödl

The contribution

Summary

Basic Ideas for the Proofs

## Basic Ideas for the Proofs

#### *t*-vector $\vec{x} \in$ -represents a graph *G*

- the vertex set of *G* can be partitioned into *t* disjoint classes  $A_1, ..., A_t$
- $||A_i| |A_j|| \le 1$  for all  $1 \le i, j \le t$ , and
- all but  $t^2 \varepsilon$  pairs  $\{A_i, A_j\}$ , are  $\varepsilon$ -uniform, and
- $\delta(A_i, A_j) = \frac{1}{2}(1+x_{i,j})$  for all  $1 \le i, j \le t, i \ne j$ , and
- $\delta(A_i, A_i) = \delta(A_i)$  for all  $1 \le i \le t$ .

Franek, Rödl

Basic Ideas for the Proofs

The contribution

Summary

Thanks

## Basic Ideas for the Proofs

*t*-vector  $\vec{x}$  represents a sequence of graphs  $\mathcal{G}$  iff there is a sequence of positive reals  $\{\varepsilon_n\}$  so that  $\varepsilon_n \to 0$  and  $\vec{x} \in \sigma_n$ -represents  $G_n$ , for every n.

Theorem 1 can be reformulated as:  $\vec{x}$  represents a quasirandom sequence iff  $\vec{x} = \vec{o}$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Franek, Rödl

The contribution

Summary

Basic Ideas for the Proofs

#### Basic Ideas for the Proofs

• 
$$C_4(\vec{x}) = \frac{1}{2^6 \cdot t^4} \sum_{\substack{1 \le i, j, k, l \le t \\ 1 < x_{i,j})(1 - x_{i,j})(1 - x_{i,k})(1 + x_{i,l})(1 + x_{i,l})(1 + x_{j,l})(1 + x_{k,l}) + (1 - x_{i,j})(1 - x_{i,k})(1 - x_{i,l})(1 - x_{i,l})(1 - x_{j,l})(1 - x_{k,l})]}$$
  
•  $D(\vec{x}) = \frac{6}{2^5 \cdot t^4} \sum_{\substack{1 \le i, j, k, l \le t \\ 1 \le i, j, k, l \le t}} [(1 + x_{i,j})(1 + x_{i,k})(1 + x_{i,l})(1 + x_{j,k})(1 + x_{j,l}) + (1 - x_{i,j})(1 - x_{i,k})(1 - x_{i,l})(1 - x_{j,k})(1 - x_{j,l})]$ 

Franek, Rödl

The contribution

Summary

Thanks

≡ • ク ۹ ( ペ

▲口 > ▲圖 > ▲ 国 > ▲ 国 > -

Basic Ideas for the Proofs

#### Basic Ideas for the Proofs

• 
$$c(\vec{x}) = \frac{3}{2^5 \cdot t^4} \left( 4t \sum_{1 \le i,j,k \le t} x_{i,j} x_{j,k} + \sum_{1 \le i,j,k,l \le t} x_{i,j} x_{k,l} \right)$$
  
•  $b(\vec{x}) = \frac{3}{2^5 \cdot t^4} \left( \sum_{1 \le i,j,k,l \le t} x_{i,j} x_{i,l} x_{j,k} x_{k,l} + 4 \sum_{1 \le i,j,k,l \le t} x_{i,j} x_{i,l} x_{j,l} x_{k,l} \right)$   
•  $a(\vec{x}) = \frac{1}{2^5 \cdot t^4} \sum_{1 \le i,j,k,l \le t} x_{i,j} x_{i,k} x_{i,l} x_{j,k} x_{j,l} x_{k,l}$ 

Franek, Rödl

The contribution

Summary

Basic Ideas for the Proofs

## Basic Ideas for the Proofs

- If  $\varepsilon_n \to 0$ ,  $t_n \to \infty$ , each  $t_n$ -vector  $\vec{x}_n \varepsilon$ -represents  $G_n$ , then  $\lim_{n\to\infty} c_4(G_n) = \lim_{n\to\infty} C_4(\vec{x}_n)$
- If *t*-vector *x* represents a graph sequence *G*, then *d*(*G*) = *D*(*x*)
- For any *t*-vector  $\vec{x}$ ,  $C_4(\vec{x}) = \frac{1}{32} + c(\vec{x}) + b(\vec{x}) + a(\vec{x})$
- For any *t*-vector  $\vec{x}$ ,  $D(\vec{x}) = \frac{3}{8} + 4(2c(\vec{x}) + b(\vec{x}))$
- For any *t*-vector  $\vec{x} \in B_t$ ,  $|a(\vec{x})| \le \frac{1}{32}$
- For any *t*-vector  $\vec{x}$ ,  $c(\vec{x}) \ge 0$

Franek, Rödl

| Motivation |
|------------|
| 0000       |
|            |

Basic Ideas for the Proofs

The contribution

Summary

## Basic Ideas for the Proofs

The facts established up to here are sufficient to prove Theorem 1. More facts needed to prove Theorem 2.

- $D(\vec{x})$  is strictly minimal for  $\vec{x} = \vec{o}$
- For any *t*-vector  $\vec{x}$ ,  $2c(\vec{x}) + b(\vec{x}) \ge 0$  The equality is attained iff  $\vec{x} = \vec{o}$
- For any  $\lambda > \frac{3}{8}$  there is  $\mu_{\lambda}$ ,  $0 < \mu_{\lambda} \le 1$ , so that for any positive integer *t* and for any  $\vec{u} \in B_t$  with  $D(\vec{u}) \ge \lambda$ ,  $f_{\vec{u}}(\mu) = a(\vec{u})\mu^6 + b(\vec{u})\mu^4 + c(\vec{u})\mu^2 \ge \frac{1}{8}(\lambda \frac{3}{8})\mu^4$  for any  $\mu \in [0, \mu_{\lambda}]$

Franek, Rödl

The contribution ○○○ ○○○○○○○○● Summary

Basic Ideas for the Proofs

## Basic Ideas for the Proofs

• Szemerédi's Uniformity Lemma Given  $\varepsilon > 0$ , and a positive integer *I*. Then there exist positive integers  $m = m(\varepsilon, I)$  and  $n = n(\varepsilon, I)$  with the property that the vertex set of every graph *G* of order  $\ge n$ can be partitioned into *t* disjoint classes  $A_1, ..., A_t$  such that

(a) 
$$l \le t \le m$$
,  
(b)  $||A_i| - |A_j|| \le 1$  for all  $1 \le i, j \le t$ ,  
(c) All but at most  $t^2$ , pairs  $A = 1 \le i, j \le t$ , are subiform

(c) All but at most  $t^2 \varepsilon$  pairs  $A_i$ ,  $A_j$ ,  $1 \le i, j \le t$ , are  $\varepsilon$ -uniform.

The facts established up to here are sufficient to prove Theorem 2.

The contribution

Summary

Thanks

## Summary

- When counting monochromatic copies of Z, the quasirandom graph attains the minimum  $\geq \frac{3}{8}$  answering a question of Erdös
- For counting monochromatic copies of *K*<sub>4</sub>, Erdös' conjecture holds true for nearly quasirandom graphs though in general the conjecture is not true
- Further research will concentrate on pushing down the upper bounds (cf. presentation by A. Baker).

Franek, Rödl

The contribution

Summary

Thanks

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣へ()>

## THANK YOU

Franek, Rödl