Erdös' conjecture on multiplicities of complete subgraphs for nearly quasirandom graphs

F. Franek ${ }^{1} \quad$ V. Rödl ${ }^{2}$

${ }^{1}$ Department of Computing and Software
McMaster University, Hamilton, Ontartio
${ }^{2}$ Department of Mathematics
Emory University, Atlanta, Georgia
CORS-INFORMS International Conference, Toronto June 14-17, 2009

Outline

(1) Motivation

- Background
- Preliminaries
(2) The contribution
- Main Result
- Basic Ideas for the Proofs

0000000000

Background

Outline

(1) Motivation

- Background
- Preliminaries
(2) The contribution
- Main Result
- Basic Ideas for the Proofs

Franek, Rödl
Erdös' conjecture for nearly quasirandom graphs
$k_{t}(G)$ the number of cliques of order t in a graph G

$$
\begin{gathered}
c_{t}(G)=\frac{k_{t}(G)+k_{t}(\bar{G})}{\binom{|G|}{t}} \\
c_{t}(n)=\min \left\{c_{t}(G):|G|=n\right\} \\
c_{t}=\lim _{n \rightarrow \infty} c_{t}(n)
\end{gathered}
$$

A 1962 conjecture of Erdös related to Ramsey's theorem states that

$$
c_{t}=2^{1-\binom{t}{2}}
$$

The motivation for the conjecture:

- trivially true for $t=2$ (edges)
- from Goodman's (1957) work follows for $t=3$ (triangles)
- true for random graphs
(1987) Shown false by A. Thomason for all $t \geq 4$ by providing upper bounds:
- $c_{4}<0.976 \cdot 2^{-5}$
- $c_{5}<0.906 \cdot 2^{-9}$
- $c_{t}<0.936 \cdot 2^{1-\binom{t}{2} \text {, for } t>5}$
- (1993) F. and Rödl using a computer search provided a simpler counterexample for $t=4$ with the same bound
- (1996) Jagger, Štovíček, Thomason: $c_{5} \leq 0.8801 \cdot 2^{-9}$
- (2002) F.: $c_{6} \leq 0.744514 .2^{-14}$
- (1968) The only known lower bound is due to Giraud: $c_{4}>\frac{1}{46}$

Outline

(1) Motivation

- Background
- Preliminaries

The contribution
 - Main Result
 - Basic Ideas for the Proofs

Franek, Rödl
Erdös' conjecture for nearly quasirandom graphs

Quasirandom and nearly quasirandom graphs

It was known that $c_{t}(G) \sim 2^{1-\binom{t}{2}}$ whenever G is a quasirandom graph.

Quasirandom graphs - the graphs "that behave like random graphs" - were introduced and studied by F.R.K. Chung, R.L. Graham, R.M. Wilson, and A. Thomason.

The aim of this presentation is to show that for $t=4, c_{t}(G) \geq$
 from quasirandom by a small perturbation.

Quasirandom and nearly quasirandom graphs

Quasirandom graphs are defined as graphs with the property that

- $|N(v)| \sim \frac{1}{2}|V|$, and
- $|N(u) \cap N(v)| \sim \frac{1}{4}|V|$ for almost all $v \in V$ and almost all pairs $u, v \in V$.
where $N(v)$ denotes the neighbourhood of vertex v.
 large quasirandom graph R with vertex set V.

Quasirandom and nearly quasirandom graphs

A quasirandom sequence of graphs $\mathcal{R}=\left\{R_{n}\right\}_{n=0}^{\infty}$

- for all but $o\left(\left|V\left(R_{n}\right)\right|\right)$ vertices $u \in V\left(R_{n}\right), d(u)=|N(u)|$
satisfies $\left|d(u)-\frac{\left|V\left(R_{n}\right)\right|}{2}\right|<o\left(\left|V\left(R_{n}\right)\right|\right)$, and
- for all but $o\left(\begin{array}{c}\binom{\left|\left(R_{n}\right)\right|}{2}\end{array}\right)$ pairs of vertices $u, v \in V\left(R_{n}\right)$, the size $d(u, v)$ of their common neighbourhood $N(u) \cap N(v)$ satisfies $\left|d(u, v)-\frac{\left|V\left(R_{n}\right)\right|}{4}\right|<O\left(\left|V\left(R_{n}\right)\right|\right)$.

Quasirandom and nearly quasirandom graphs

Theorem (Chung,Graham,Wilson,Thomason)

Let $\mathcal{R}=\left\{R_{n}\right\}$ be a quasirandom sequence of graphs, then there exists a sequence of positive reals $\left\{\varepsilon_{n}\right\}$ so that $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ and so that for every $V \subset V\left(R_{n}\right),|V| \geq \varepsilon_{n}\left|V\left(R_{n}\right)\right|$, $\left(\begin{array}{l}\frac{1}{2}-\varepsilon_{n}\end{array}\right)\binom{|V|}{2}<e<\left(\frac{1}{2}+\varepsilon_{n}\right)\binom{|V|}{2}$, where the e is the number of edges of R_{n} induced on a set V.

Quasirandom and nearly quasirandom graphs

For a graph $D=(V, E)$ and $U \subset V$ let $\delta_{D}(U)=\frac{E_{n}(U)^{2}}{\binom{\left(U_{2}\right)}{2}}$ denote the edge density of the subgraph induced on U.

For a sequence $\mathcal{D}=\left\{D_{n}\right\}$ and $0<p \leq 1$ let $p \mathcal{D}=\left\{p D_{n}\right\}$ be any sequence with the following property: $V_{n}=V\left(p D_{n}\right)=V\left(D_{n}\right)$, and there exists $\varepsilon_{n} \rightarrow 0$ such that $\left|\delta_{p D_{n}}(U)-p \delta_{D_{n}}(U)\right|<\varepsilon_{n}$ as $n \rightarrow \infty$ for any $U \subset V_{n}$, $|U|>\varepsilon_{n}\left|V_{n}\right|$.

Quasirandom and nearly quasirandom graphs

We can think of $p D$ as a graph obtained from the graph D by flipping a p-biased coin for each edge of D to decide to remove it or to leave it. (p remove it, $(1-p)$ leave it)
$\mathcal{D}=\left\{D_{n}\right\}$ an arbitrary sequence of graphs
$\mathcal{R}=\left\{R_{n}\right\}$ a quasirandom sequence
$p(\mathcal{R}, \mathcal{D})=\left\{p\left(R_{n}, D_{n}\right)\right\}=\left\{R_{n} \triangle p D_{n}\right\}$
\triangle denotes symmetric difference

Quasirandom and nearly quasirandom graphs

Quasirandom and nearly quasirandom graphs

$p(\mathcal{R}, \mathcal{D})=\left\{p\left(R_{n}, D_{n}\right)\right\}$ has the following property:
there exists a sequence $\left\{\varepsilon_{n}\right\}$ of positive reals such that $\varepsilon_{n} \rightarrow 0$ and for every $U \subset V_{n},|U|>\varepsilon_{n}\left|V_{n}\right|$,
$\left|\delta_{p\left(R_{n}, D_{n}\right)}(U)-\delta_{R_{n}-D_{n}}(U)-(1-p) \delta_{R_{n} \cap D_{n}}(U)-p \delta_{D_{n}-R_{n}}(U)\right|<\varepsilon_{n}$.
So the farther we go in the sequence, the more it looks like the diagram

Quasirandom and nearly quasirandom graphs

$d_{H}(G)=\frac{i_{H}(G)+i_{H}(\bar{G})}{2}$, where $i_{H}(G)$ is the number of isomorphic copies (not necessarily induced) of H in G.
$Z=K_{4}$ less one edge

$d(G)=d_{Z}(G)$.
For $\mathcal{G}=\left\{G_{n}\right\}, d(\mathcal{G})=\liminf d\left(G_{n}\right)$.

Outline

(9) Motivation
 - Background
 - Preliminaries

(2) The contribution

- Main Result
- Basic Ideas for the Proofs

Franek, Rödl
Erdös' conjecture for nearly quasirandom graphs

Theorem 1

Theorem

Let \mathcal{G} be a sequence of graphs. Then $d(\mathcal{G}) \geq \frac{3}{8}$ and equality holds if and only if \mathcal{G} is a quasirandom sequence.

This answered a question of Erdös

Theorem 2

Theorem

For every $\lambda>\frac{3}{8}$ there exists $p_{\lambda}, 0<p_{\lambda} \leq 1$, such that for every quasirandom sequence of graphs $\mathcal{R}=\left\{R_{n}\right\}$, and for every sequence of graphs $\mathcal{D}=\left\{D_{n}\right\}$ with $d(\mathcal{R} \triangle \mathcal{D}) \geq \lambda$, if $c_{4}(p(\mathcal{R}, \mathcal{D}))$ exists, then $c_{4}(p(\mathcal{R}, \mathcal{D})) \geq \frac{1}{32}+\frac{1}{8}\left(\lambda-\frac{3}{8}\right) p^{4}$ whenever $0<p \leq p_{\lambda}$.

Loosely speaking: counterexamples to Erdös' conjecture have to differ essentially from quasirandom graphs.

We call $p(\mathcal{R}, \mathcal{D})$ a nearly quasirandom sequence.

Outline

(1) Motivation
 - Background
 - Preliminaries

(2) The contribution

- Main Result
- Basic Ideas for the Proofs

Basic Ideas for the Proofs

We use t-vectors to represent sequences of graphs.
\vec{x} is a t-vector with t^{2} real valued entries $x_{i, j}, 1 \leq i, j \leq t$ and so that $x_{i, j}=x_{j, i}$.
$B_{t}=\left\{\vec{x} \in R^{t^{2}}: \vec{x}\right.$ is a t-vector $\&\left|x_{i, j}\right| \leq 1$ for all $\left.1 \leq i, j \leq t\right\}$. unit ball
V, W disjoint sets of vertices of a graph G are ε-uniform if $\left|\delta(V, W)-\delta\left(V^{\prime}, W^{\prime}\right)\right|<\varepsilon$ whenever $V^{\prime} \subset V$ and $\left|V^{\prime}\right| \geq \varepsilon \cdot|V|$, and $W^{\prime} \subset W$ and $\left|W^{\prime}\right| \geq \varepsilon \cdot|W|$.

Basic Ideas for the Proofs

t-vector $\vec{x} \varepsilon$-represents a graph G

- the vertex set of G can be partitioned into t disjoint classes
A_{1}, \ldots, A_{t}
- $\left|\left|A_{i}\right|-\left|A_{j}\right|\right| \leq 1$ for all $1 \leq i, j \leq t$, and
- all but $t^{2} \varepsilon$ pairs $\left\{A_{i}, A_{j}\right\}$, are ε-uniform, and
- $\delta\left(A_{i}, A_{j}\right)=\frac{1}{2}\left(1+x_{i, j}\right)$ for all $1 \leq i, j \leq t, i \neq j$, and
- $\delta\left(A_{i}, A_{i}\right)=\delta\left(A_{i}\right)$ for all $1 \leq i \leq t$.

Basic Ideas for the Proofs

t-vector \vec{x} represents a sequence of graphs \mathcal{G} iff there is a sequence of positive reals $\left\{\varepsilon_{n}\right\}$ so that $\varepsilon_{n} \rightarrow 0$ and \vec{x} ε_{n}-represents G_{n}, for every n.

Theorem 1 can be reformulated as: \vec{x} represents a quasirandom sequence iff $\vec{x}=\overrightarrow{0}$.

Basic Ideas for the Proofs

- $C_{4}(\vec{x})=$

$$
\begin{aligned}
& \frac{1}{2^{6} \cdot t^{4}} \sum_{1 \leq i, j, k, l \leq t}\left[\left(1+x_{i, j}\right)\left(1+x_{i, k}\right)\left(1+x_{i, l}\right)\left(1+x_{j, k}\right)\left(1+x_{j, l}\right)\left(1+x_{k, l}\right)+\right. \\
& \left.\left(1-x_{i, j}\right)\left(1-x_{i, k}\right)\left(1-x_{i, l}\right)\left(1-x_{j, k}\right)\left(1-x_{j, l}\right)\left(1-x_{k, l}\right)\right]
\end{aligned}
$$

- $D(\vec{x})=$

$$
\begin{aligned}
& \frac{6}{2^{5} \cdot t^{4}} \sum_{1 \leq i, j, k, l \leq t}\left[\left(1+x_{i, j}\right)\left(1+x_{i, k}\right)\left(1+x_{i, l}\right)\left(1+x_{j, k}\right)\left(1+x_{j, l}\right)+\right. \\
& \left.\left(1-x_{i, j}\right)\left(1-x_{i, k}\right)\left(1-x_{i, l}\right)\left(1-x_{j, k}\right)\left(1-x_{j, l}\right)\right]
\end{aligned}
$$

Basic Ideas for the Proofs

$$
\begin{aligned}
& \text { - } c(\vec{x})=\frac{3}{2^{5} \cdot \iota^{4}}\left(4 t \sum_{1 \leq i, j, k \leq t} x_{i, j} x_{j, k}+\sum_{1 \leq i, j, k, l \leq t} x_{i, j} x_{k, l}\right) \\
& \text { - } b(\vec{x})=\frac{3}{2^{5} \cdot \iota^{4}}\left(\sum_{1 \leq i, j, k, l \leq t} x_{i, j} x_{i, l} x_{j, k} x_{k, l}+4 \sum_{1 \leq i, j, k, l \leq t} x_{i, j} x_{i, l} x_{j, l} x_{k, l}\right) \\
& \text { - } a(\vec{x})=\frac{1}{2^{5} \cdot \cdot^{4}} \sum_{1 \leq i, j, k, l \leq t} x_{i, j} x_{i, k} x_{i, l} x_{j, k} x_{j, l} x_{k, l}
\end{aligned}
$$

Basic Ideas for the Proofs

- If $\varepsilon_{n} \rightarrow 0, t_{n} \rightarrow \infty$, each t_{n}-vector $\vec{x}_{n} \varepsilon$-represents G_{n}, then $\lim _{n \rightarrow \infty} C_{4}\left(G_{n}\right)=\lim _{n \rightarrow \infty} C_{4}\left(\vec{x}_{n}\right)$
- If t-vector \vec{x} represents a graph sequence \mathcal{G}, then $d(\mathcal{G})=$ $D(\vec{x})$
- For any t-vector $\vec{x}, C_{4}(\vec{x})=\frac{1}{32}+c(\vec{x})+b(\vec{x})+a(\vec{x})$
- For any t-vector $\vec{x}, D(\vec{x})=\frac{3}{8}+4(2 c(\vec{x})+b(\vec{x}))$
- For any t-vector $\vec{x} \in B_{t},|a(\vec{x})| \leq \frac{1}{32}$
- For any t-vector $\vec{x}, c(\vec{x}) \geq 0$

Basic Ideas for the Proofs

The facts established up to here are sufficient to prove Theorem 1. More facts needed to prove Theorem 2.

- $D(\vec{x})$ is strictly minimal for $\vec{x}=\overrightarrow{0}$
- For any t-vector $\vec{x}, 2 c(\vec{x})+b(\vec{x}) \geq 0$ The equality is attained iff $\vec{x}=\overrightarrow{0}$
- For any $\lambda>\frac{3}{8}$ there is $\mu_{\lambda}, 0<\mu_{\lambda} \leq 1$, so that for any positive integer t and for any $\vec{u} \in B_{t}$ with $D(\vec{u}) \geq \lambda, f_{\vec{u}}(\mu)=$ $a(\vec{u}) \mu^{6}+b(\vec{u}) \mu^{4}+c(\vec{u}) \mu^{2} \geq \frac{1}{8}\left(\lambda-\frac{3}{8}\right) \mu^{4}$ for any $\mu \in\left[0, \mu_{\lambda}\right]$

Basic Ideas for the Proofs

- Szemerédi's Uniformity Lemma Given $\varepsilon>0$, and a positive integer I. Then there exist positive integers $m=m(\varepsilon, l)$ and $n=n(\varepsilon, l)$ with the property that the vertex set of every graph G of order $\geq n$ can be partitioned into t disjoint classes A_{1}, \ldots, A_{t} such that
(a) $I \leq t \leq m$,
(b) $\left|\left|A_{i}\right|-\left|A_{j}\right|\right| \leq 1$ for all $1 \leq i, j \leq t$,
(c) All but at most $t^{2} \varepsilon$ pairs $A_{i}, A_{j}, 1 \leq i, j \leq t$, are ε-uniform.

The facts established up to here are sufficient to prove Theorem 2.

Summary

- When counting monochromatic copies of Z, the quasirandom graph attains the minimum $\geq \frac{3}{8}$ answering a question of Erdös
- For counting monochromatic copies of K_{4}, Erdös' conjecture holds true for nearly quasirandom graphs though in general the conjecture is not true
- Further research will concentrate on pushing down the upper bounds (cf. presentation by A. Baker).

$\mathcal{T H A N K} \mathcal{Y O U}$

