Two-pattern strings

F.Franek, J. Jiang, W. Lu, and W.F. Smyth

Algorithms Research Group
Department of Computing & Software
McMaster University

Hamilton, Ontario
L8S 4L7, Canada

Motivation: Investigate period-
icities in strings, in particular
tandem repetitions in binary
strings that can be computed in
linear time.

1997 Iliopoulos, Moore, Smyth
Squares in (a finite fragment of)
Fibonacci string can be
computed in linear time.

Fibonacci (infinite) string:

Fo=b,F1 =a,Fy, =F, 1F,_»
abaababaabaab.........

Fibonacci string is a special case
of infinite Sturmian strings:
balanced and not ultimately pe-

riodic = consisting of short
blocks a'b and long blocks a*11b.

2000 Franek, Karaman, Smyth
Repetitions in finite fragments
of Sturmian strings can be com-
puted in linear time.

A characteristics of Sturmian
strings: replace each short block
by a and each long block by b,

you again get a Sturmian string.

This RECURSIVE nature of
Sturmian strings was used for
linear time recognition of finite
Sturmian strings and repetitions
algorithms.

Our research focused on as wide
generalization of Sturmian

strings as possible while still pre-
serving linear time recognition
and computation of repetitions.

Meanwhile: 1997 Farach ©(n)
computation of suffix tree
1977-78 Ziwv, Lampel ©(n) com-
putation of s-factorization

1989 Main ©(n) computation of

runs
2000 Kolpakov, Kucherov

at most O(n) runs in a string
based on s-factorization.

Thus, in essence there is a linear
way of computing all the repeti-
tions. But the actual algorithm
never given and never investi-
gated as to its practicality (es-
pecially the space complexity of
Farach’s algorithm is very large).
Also does not give any insight
into the periodicity.

Therefore, understanding strings
that have a ”natural” linear time
repetitions algorithm is still use-
ful. This was an additional mo-

tivation for our research.

Finite Sturmian strings are char-
acterized by REDUCTION
PROPERTY: replace each short
block by a and each long block
by b and you get a shorter Stur-
mian string. Repeating (recur-
sively) this, it can be reduced to
a single letter.

We generalized it to two-pattern
strings: a string consists of short
blocks piq and long blocks pj q
(¢ < 7) for some strings p and g
(p and q must be sufficiently dis-
tinct). Reducing it by replacing
each short block by a and each
long block by b, we again get

a two-pattern string or a single
letter string.

This recursive definition is in the
heart of the recognition algorithm
for the input string x:

1. If |x| = 1, output TRUE.

2. Find (canonical) p, q, %, j so
that the string x« is a concate-
nation of short blocks piq and
long blocks p/q. If found, out-

put [p,q,t,j], otherwise out-
put FAIL.

3. Reduce = to y by replacing
each p'q by a and each pJq by
b.

4. Repeat recursively with the
new string y as input.

Since each reduction shortens
the input string by at least a
half, it is a linear time algorithm.
When a two-pattern string is rec-
ognized, its reduction sequence
is output as well.

Of course, searching for possible
p and g may be a problem, in
order to keep it linear, we intro-
duce an outside parameter, A,
the scope and we require that all
p’s and all g’s are of size < A.
If is a two-pattern string with
scope A < 0, then = is a two-
pattern string with scope 9.

- “w

- e @ an
- -~

Fibonacci
p=a,q=b,i=1,j=2
scope=1

Sturmian
\\\ p:a’q:b,i,j:i+1 ”I
Ss.scope=1_-“

two-pattern
scope=1

- -
e ccae=="

Consider =
(abb)aa(abb)*aa(abb)aa(abb)?
aa(abb)*aa(abb)aa.

Set p = abb,q = aa,1 = 1,7 = 4.
Reduce, and we get (ab)?ba.
Set p = ab,q = ba,1 = 2,5 = 3.

Reduce, and we get a.

Thus, {[ab, ba, 2, 3], [abb, aa,1,4]|}
is the reduction sequence of x
(may be considered a compressed
form of) and = is two-pattern
string with scope 3.

When searching for suitable p
and q of size < A, we may find
more than one solution. It is
conceivable that some will not
lead to a single letter reduction
and some will. This stumbling
block is alleviated by the follow-
ing theorem:

x 1S a two-pattern string iff there
1S a sequence of canonical re-
ductions.

Thus, the recognition algorithm
only searches for canonical p’s
and ¢’s (in a sense leading to
the ”shortest” sequence of re-
ductions).

To compute repetitions, we fully
utilize the reduction sequence as
the primary information of the
structure of the string. All rep-
etitions (runs) in x arise from
certain linear configurations or
runs on lower level of reduction
Y. So they can be computed and
tallied recursively along the ” con-
struction” of the string (as given
by the reduction sequence) and
propagated from the lower level
to the higher level.

10

* *

aa, ab, ba, bb

a*b*a aa, ab, ba, bb
b*a*b b*aa*b
b*aa*b a*b*a

b*a*] e— a*b*]e— a*b*]

11

An illustration of expansion of runs

..baab.. p=abba, g=aba
- i=1,j=2

...abba abba aba abba aba abba aba abba abba aba...

(baabaa)* and 4 right shifts (right rotations)

12

Complicated? Yes, but there is
a formula!

Conclusion and future work

The project on generalization
of Sturmian strings proved in-
teresting and fruitful. For two
graduate students (W. Lu and
J. Jiang) who co-authored this
paper, this research constituted
a significant part of their gradu-
ate work.

At the moment, only complete
two-pattern strings have been
dealt with. It is our aim to ex-
tend the results reported here to
incomplete two-pattern strings,
similarly as we did for Sturmian

13

strings.

Papers related to this topic,
including these slides, can be
viewed at the web site

www.cas.mcmaster.ca/~franek

®

14

