
THE SIMULATION OF BUSINESS RULES
IN ACTIVE DATABASES USING EXPERT
SYSTEM APPROACH

Ivan Bruha, Frantisek Franek (McMaster
University), and Vladimir L. Rosicky (Terren
Corp.)

• AUGMENTATION OF DBMS WITH
RULES TO SAFEGUARD THE INTEGRITY
OF DATA IN THE DATABASE

• TWO BASIC CATEGORIES OF RULES

1. PASIVE RULES – ALSO CALLED
INTEGRITY CONSTRAINTS – THEY
NEVER CAUSE A MODIFICATION OF
THE CONTENTS OF THE DATABASE
(HENCE “PASIVE” RULES), JUST
INDICATE WHEN A CONSTRAINT IS
VIOLATED. PASIVE RULES MOSTLY
STATED IN A DECLARATIVE LAN-
GUAGE (E.G. REFERENCE INTEGRI-
TY, NULL VALUES, DUPLICATE VA-
LUES ETC.)

2. ACTIVE RULES – ALSO CALLED
TRIGGERS – VERY OFTEN USED TO
REPAIR CONSTRAINT VIOLATIONS
OR TO EMULATE ADDITIONAL CON-
STRAINTS. THEY MODIFY THE CON-
TENTS OF THE DATABASE (HENCE
“ACTIVE” RULES). MOSTLY EX-
PRESSED IN A PROCEDURAL LAN-
GAUGE.

• RECENT RESEARCH TOPIC IN THE
AREA OF ACTIVE RULES – BUSINESS
RULES – THEY ARE MENT TO SAFE-
GUARD THE APPLICATION SPECIFIC
(BUSINESS) INTEGRITY OF THE DATA
IN THE DATABASE.

• BUSINESS RULES MOSTLY EXPRESSED
IN THE SAME PROCEDURAL LANGU-
AGE AS ALL OTHER ACTIVE RULES.

• AIM OF OUR RESEARCH:

1. EMULATE BUSINESS RULES ON TOP
OF A GIVEN RELATIONAL DATABA-
SE.

2. EXPERIMENT WITH BUSINESS
RULES EXPRESSED MOSTLY IN A
DECLARATIVE LANGAUGE.

THIS WAS ACHIEVED USING THE
FOLLOWING SETUP (FRAMEWORK)

REGULAR QUERIES THROUGH A TRIG-
GER INVOKE McESE TO PROCESS A
PARTICULAR RULESET.

FIG 1

McESE RULES – DECLARATIVE, ORDER
NOT RELEVANT, STRATIFIED, NO
“CYCLES” (NO LOOPS OR RECURSION).

r1: 0.3*P1(”abc”)[>=.3] & ~P2(x,y) & P3(2,3.4,y)
 = f =>

S(y,x)[>.6]

SQL-AUGMENTED McESE RULES – RE-
SULTS OF SQL QUERIES CAN BE USED AS
VALUES, WHILE THE QUERIES THEM-
SELVES CAN BE USED AS PREDICATES.

PROCEDURAL ASPECTS OF McESE
RULES:
1. CVPF’s: Certainty Value Propagation

functions (f above)
2. Atomic predicates (not occuring on the righ-

hand-side of any rule) – correspond to built-in
procedures with paramaters.

THUS, PROCEDURAL ASPECTS OF
BUSINESS RULES DEFERRED TO THE
LOWEST LEVEL POSSIBLE.

CASE STUDY – AUTOMATIC INVENTORY
RELEASE.

A travel agency may purchase a block of airline
tickets for a particular flight and if they are not
sold by 30 days prior to the flight, the allotment
of tickets that can be sold, is reduced by 50%
and thus the travel agency can sell fewer tickets
and all additional sales must be done through the

airline; 5 days prior to the flight, the whole
allotment of tickets that can be sold is reduced to
0 and thus the travel agency cannot sell any
more tickets on its own and all sales must be
done through the airline.

table inventory_block has attributes
• BlockId (unique block identifier)
• SupplyId (unique supply identifier)
• Date (date for which the inventory in the

block is destined)
• Status (there are three possible values: FREE

indicating that any unsold quantity from the
inventory block can be freely sold, REQST
indicating that any sale must go through a
request to the supplier, and finally STOP
indicating no further sale is possible)

• Allotment (the original quantity)
• Unsold (unsold portion of the original

allotment).

Rule1: 20 days prior Date, reduce Unsold by
50%

Rule2: 10 days prior Date change Status to
REQST and reduce Unsold by 50%

Rule3: 2 days prior Date change Status to
STOP

DEF %date=(SELECT Date
 FROM inventory_block
 WHERE SupplyId=%supply_id)

DEF %status=(SELECT Status
 FROM inventory_block
 WHERE SupplyId=%supply_id)

R1:%date<=%today+20 &
%status=FREE & ~R2 & ~R3

==>
(UPDATE inventory_block
 SET Unsold=Unsold*0.5
 WHERE SupplyId=%supply_id)

R2: %date<=%today+10 &
%status=FREE & ~R1 & ~R3

==>
(UPDATE inventory_block
 SET Unsold=Unsold*0.5,
 Status=REQST
 WHERE SupplyId=%supply_id)

R3:%date<=%today+2 & ~R1 & ~R2
==>

(UPDATE inventory_block
 SET Status=STOP
 WHERE SupplyId=%supply_id)

CONCLUSION

The above described case study of automatic
inventory block release indicates, despite the
simplicity with which it was presented here, that
SQL-augmented expert systems like McESE
could be successfully utilized as tools for design
of active business rules. The main contribution
of this approach is the declarative aspect brought

to the design of business rules which facilitates
understanding and easier development. The
additional contribution can be seen in the
processing of uncertainty which is very often a
part of business activities and cannot be
accommodated by the traditional business rules
in active databases.

Data in/out
Database
access

Triggered
Inventory Release

Update Request

Request
Failed/Succeeded

Application

 DBMS

 McESE
 Inference
 Engine

	S(y,x)[>.6]

