

On a lower bound for
the maximum number

of runs
Joint work: Q. Yang and F. Franek

Department of Computing and Software
Faculty of Engineering
McMaster University

Hamilton, Ontario, Canada

London Algorithmic Workshop, February 2007

LAW 2007, 1

LAW 2007, 2

1. notion of runs, maxrun function

2. known facts and conjectures

3. building sequences of strings "rich in
 runs" -- (a) method by Simpson, Smyth,
 and F., (b) method by Yang and F.

5. constructing asymptotic lower bound
 from the sequences

6. Further research

LAW 2007, 3

A run captures the notion of a maximal
non-extendible repetition in a string x
 (s,p,e,t)

s

p

 starting position (leftmost)

 period

e power, exponent

t tail (rightmost)

irreducible generator

LAW 2007, 4

 ρ(n) = max { R(x) | |x|=n }

maxrun function
where R(x) is number of runs in x

P1: ρ(n+1) ≥ ρ(n)

P2: ρ(n+2) ≥ ρ(n)+1

P3: ρ(n+1) ≤ ρ(n)+ n
2

LAW 2007, 5

P4: ρ(n+1) = ρ(n) for some n
 [ρ(33)=ρ(34)=27,
 is it asymptotic?]

P5: ρ(n+1) ≥ ρ(n)+2 for some n
 [ρ(13)=8, ρ(14)=10,
 is it asymptotic?]

LAW 2007, 6

Values of ρ(n) computed by Kolpakov
& Kucherov for n ≤ 32

Franek & Smyth computed all run-
maximal strings up to n = 35

Trivial lower bound: ρ(n) ≥ 0.5 n

LAW 2007, 7

 CONJECTURES
 (Smyth et al)
C1: ρ(n) < n

C2: ρ(n+1) ≤ ρ(n)+2

C3: ρ(n) attained by a binary cube-
 free string of length n

C1’ : ρ(n)
n

lim
n ∞ 1+ 5

3

α

= ≅ 0.927

∃ ?

LAW 2007, 8

ρ(n) ≤ k1n - k2 log2 n n

2000 Kolpakov & Kucherov

2003 Franek, Simpson, Smyth
A recursive construction of an
infinite sequence {xn} of binary
strings of increasing length so that

R(xn)
|xn|

lim
n ∞ α=

LAW 2007, 9

ρ(n) ≤ 5n 3.5n 3.44n 1.6n 1.18n ?

2006 Rytter

2006 Franek, Yang
Franek-Simpson-Smyth method
can be used to get a family of
asymptotic lower bounds:
(∀ε > 0)(∃ Ν)(∀n ≥ Ν)(ρ(n) ≥ (α−ε)n)

LAW 2007, 10

2006 Franek, Yang

R(xn)
|xn|

lim
n ∞ α=

A recursive construction (based on
a different philosophy) of an infinite
sequence {xn} of binary strings of
increasing length so that

This result strengthens the case
for C1’

LAW 2007, 11

Franek-Simpson-Smyth
The motivation for concatenation
 x ¤ y

x ¤ y

x
y

All the runs from x and y are preserved

010010¤101101=0100101101

LAW 2007, 12

x[1..n] ¤ y[1..m] =

x[1..n]y[2..m] if x[n]=y[1]=
 x[1..n-1]y[2..m] if x[n]≠y[1]

we are working with two patterns

p0=010010 and p1=101101

LAW 2007, 13

we preserved all the runs, gained one
run, while shortening the length by
one or two characters

g(x[1..n])=
p0=010010 if x[1]=0 & n=1
p1=101101 if x[1]=1 & n=1
g(x[1])¤g(x[2])¤ ... ¤g(x[n])

Fact1: |g(x)|= 4|x|+λ(x)+2 where
 λ(x) is the number of 00 and 11

Fact2: λ(g(x))=|x|

LAW 2007, 14

Fact3: R(g(x))= R(x)+3|x|-1
This gives a recursive construction:

x0 an arbitrary binary string
xn+1 = g(xn)

and working out the recurrence
relations for | |, λ(), and R() lead to

R(xn)
|xn|

lim
n ∞ α=

LAW 2007, 15

How quickly it converges?

LAW 2007, 16

Franek-Yang

according to C3 we should be
"playing" with cube-free strings

Hence we define ¤ so to make sure
that cubes of period 1 (000 or 111)
and 2 (010101, or 101010) are
eliminated during concatenation. We
call such strings loose cube-free.

LAW 2007, 17

x[1..n] ¤ y[1..m] =

x[1..n]y[1..m] if x[n]=y[1]=
 x[1..n]y[1]y[1..m] if x[n]≠y[1]

we are working with two patterns
p0=0101 and p1=1010

0101¤0101=010110101

LAW 2007, 18

0101¤1010=01011010

we preserved all the runs, gained two
runs, while increasing the length by 1

we preserved all the runs, gained two
runs, while preserving the length

LAW 2007, 18

Fact1: If x is loose cube-free, so is g(x)

g(x[1..n])=

p0=0101 if x[1]=0 & n=1
p1=1010 if x[1]=1 & n=1
g(x[1])¤g(x[2])¤ ... ¤g(x[n])

Fact3: λ(g(x)) = |x| - 1
Fact2: |g(x)| = 4|x| + λ(x)

Fact4: R(g(x))=R(x)+3|x|-2-Rbad(x)

Bad run:

is lost during transformation by g()

However, we can control it, so that
|Rbad(x)| < 2.

LAW 2007, 19

aa a a b

LAW 2007, 20

This again gives a recursive
construction:

x0 a "properly" chosen loose cube-free
string, xn+1 = g(xn)

and working out the recurrence
relations for | |, λ(), and R() lead to

R(xn)
|xn|

lim
n ∞ α=

LAW 2007, 21

How quickly it converges?

LAW 2007, 22

Franek-Yang method converges faster
than Franek-Simpson-Smyth, however
to the same limit.

Such a sequence is not enough to
establish a lower bound, not even an
asymptotic lower bound:

LAW 2007, 23

LAW 2007, 24

The strategy -- let us put in several
sequences, so that the distances
between two points on the x-axis
are small enough (depending on a
given ε) so that ρ(x) does not dip
below (α-ε)x.

LAW 2007, 25

LAW 2007, 26

The proof is technical and requires
that the size of the strings during the
recursive construction is divisible by
certain parameters. That requires
small modifications of the presented
constructions and a careful
selection of a finite number of
"starting" strings.

LAW 2007, 27

This research is a result of an effort
to settle the conjectures C1-C3.
This effort has not been completed
yet, as none of the conjectures has
been settled. If the upper bound for
ρ() can really be pushed as low as
1.5n, then we do know something
about ρ():

 0.92n ≤ ρ(n) ≤ 1.6n

LAW 2007, 28

So, the future research will continue
with attempts to settle the
conjectures. Among the
conjectures, C3 is the most
interesting, for it is the only one that
describes structural properties of
run-maximal strings. This is the
ultimate goal -- to describe
structurally run-maximal strings and

LAW 2007, 29

method how to generate them
(could be very useful for testing of
many algorithms)

http://www.cas.mcmaster/~franek

