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2. known facts and conjectures
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A run captures the notion of a maximal 
non-extendible repetition in a string x 
                          (s,p,e,t) 

s

p

 starting position (leftmost)

 period

e power, exponent

t tail (rightmost)

irreducible generator
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 ρ(n) = max { R(x) | |x|=n }

maxrun function
where R(x) is number of runs in x

P1:  ρ(n+1) ≥ ρ(n)

P2:  ρ(n+2) ≥ ρ(n)+1

P3:  ρ(n+1) ≤ ρ(n)+ n
2
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P4:  ρ(n+1) = ρ(n) for some n
       [ ρ(33)=ρ(34)=27, 
         is it asymptotic? ]

P5:  ρ(n+1) ≥ ρ(n)+2 for some n
       [ ρ(13)=8, ρ(14)=10, 
        is it asymptotic? ]
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Values of ρ(n) computed by Kolpakov
& Kucherov for n ≤ 32

Franek & Smyth computed all run-
maximal strings up to n = 35

Trivial lower bound: ρ(n) ≥ 0.5 n
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                CONJECTURES  
                  (Smyth et al)
C1:  ρ(n) < n

C2:  ρ(n+1) ≤ ρ(n)+2

C3:  ρ(n) attained by a binary cube-
        free string of length n

C1’ : ρ(n)
n

lim
n ∞ 1+  5

3

α

= ≅ 0.927

∃ ?
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ρ(n) ≤ k1n - k2 log2 n  n

2000 Kolpakov & Kucherov

2003 Franek, Simpson, Smyth
A recursive construction of an
infinite sequence {xn} of binary 
strings of increasing length so that

R(xn)
|xn|

lim
n ∞ α=
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ρ(n) ≤ 5n     3.5n 3.44n 1.6n  1.18n ? 

2006 Rytter

2006 Franek, Yang
Franek-Simpson-Smyth method
can be used to get a family of 
asymptotic lower bounds:
(∀ε > 0)(∃ Ν)(∀n ≥ Ν)( ρ(n) ≥ (α−ε)n )
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2006 Franek, Yang

R(xn)
|xn|

lim
n ∞ α=

A recursive construction (based on 
a different philosophy) of an infinite 
sequence {xn} of binary strings of 
increasing length so that

This result strengthens the case 
for C1’
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Franek-Simpson-Smyth
The motivation for concatenation
                       x ¤ y 

x ¤ y 

x
y

All the runs from x and y are preserved



  

010010¤101101=0100101101  
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x[1..n] ¤ y[1..m] =  

x[1..n]y[2..m]        if x[n]=y[1]=
  x[1..n-1]y[2..m]     if x[n]≠y[1]

  
we are working with two patterns

p0=010010 and p1=101101   
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we preserved all the runs, gained one 
run, while shortening the length by 
one or two characters

g(x[1..n])=
p0=010010  if x[1]=0 & n=1
p1=101101  if x[1]=1 & n=1
g(x[1])¤g(x[2])¤ ... ¤g(x[n])

Fact1:  |g(x)|= 4|x|+λ(x)+2 where
            λ(x) is the number of 00 and 11

Fact2: λ(g(x))=|x|
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Fact3:  R(g(x))= R(x)+3|x|-1
This gives a recursive construction:

x0 an arbitrary binary string
xn+1 = g(xn)

and working out the recurrence 
relations for |  |, λ( ), and R( ) lead to

R(xn)
|xn|

lim
n ∞ α=
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How quickly it converges?
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Franek-Yang

according to C3 we should be 
"playing" with cube-free strings

Hence we define ¤ so to make sure 
that cubes of period 1 (000 or 111) 
and 2 ( 010101, or 101010) are 
eliminated during concatenation. We 
call such strings loose cube-free.
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x[1..n] ¤ y[1..m] =  

x[1..n]y[1..m]           if x[n]=y[1]=
  x[1..n]y[1]y[1..m]     if x[n]≠y[1]

we are working with two patterns
p0=0101 and p1=1010   

0101¤0101=010110101  
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0101¤1010=01011010  

we preserved all the runs, gained two 
runs, while increasing the length by 1

we preserved all the runs, gained two 
runs, while preserving the length
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Fact1:  If x is loose cube-free, so is g(x)

g(x[1..n])=

p0=0101  if x[1]=0 & n=1
p1=1010  if x[1]=1 & n=1
g(x[1])¤g(x[2])¤ ... ¤g(x[n])

Fact3:  λ(g(x)) = |x| - 1
Fact2:  |g(x)| = 4|x| + λ(x)



  

Fact4: R(g(x))=R(x)+3|x|-2-Rbad(x)

Bad run:

is lost during transformation by g()

However, we can control it, so that
|Rbad(x)| < 2. 
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aa a a b
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This again gives a recursive 
construction:

x0 a "properly" chosen loose cube-free 
string, xn+1 = g(xn)

and working out the recurrence 
relations for |  |, λ( ), and R( ) lead to

R(xn)
|xn|

lim
n ∞ α=
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How quickly it converges?
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Franek-Yang method converges faster
than Franek-Simpson-Smyth, however
to the same limit.

Such a sequence is not enough to 
establish a lower bound, not even an 
asymptotic lower bound:
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The strategy -- let us put in several 
sequences, so that the distances 
between two points on the x-axis 
are small enough (depending on a 
given ε) so that ρ(x) does not dip 
below (α-ε)x.
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The proof is technical and requires 
that the size of the strings during the 
recursive construction is divisible by 
certain parameters. That requires 
small modifications of the presented 
constructions and a careful 
selection of a finite number of 
"starting" strings.
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This research is a result of an effort 
to settle the conjectures C1-C3. 
This effort has not been completed 
yet, as none of the conjectures has 
been settled. If the upper bound for 
ρ() can really be pushed as low as 
1.5n, then we do know something 
about ρ():

          0.92n  ≤ ρ(n)   ≤ 1.6n
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So, the future research will continue 
with attempts to settle the 
conjectures. Among the 
conjectures, C3 is the most 
interesting, for it is the only one that 
describes structural properties of 
run-maximal strings. This is the 
ultimate goal -- to describe 
structurally run-maximal strings and
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method how to generate them 
(could be very useful for testing of 
many algorithms)

http://www.cas.mcmaster/~franek


