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for(i = 0; i < N-2; i++) {
  for(k = 1;  k <= (N-i)/2; k++) {
    s = 1;
    for(j = 0; j < k; j++)
       if (x[i+j] != x[i+k+j]) {s=0; break; }
    if (s) printf(“square of length %d at position %d\n”,k,i);
  }
}

Trivial, brute force   O(n3) algorithm for
computing of all squares.
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Crochemore (1981) designed the first
O(n log n) algorithms to compute all the
repetitions in a string.

One of the main ideas of the approach
concerns successive refinements of
classes of equivalence of indices
(positions) of the input string.

Two positions on level p are equivalent,
if two identical substrings of length p
start there.
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a b a a b a b a a b  a a  b  a   b
0  1  2  3 4  5 6  7  8  9 10 11 12 13 14

{0,2,3,5,7,8,10,11,13}a {1,4,6,9,12,14}b

level

1

{2,7,10}aa {1,4,6,9,12}ba2 {0,3,5,8,11,13}ab {14}b$

{2,7,10}aab {1,6,9}baa3 {0,3,5,8,11}aba {4,12}bab{13}ab$

{2,7,10}aaba {1,6,9}baab4 {0,5,8}abaa {4}baba{3,11}abab {12}bab$

{7}aabaa {1,6,9}baaba5 {0,5,8}abaab{3}ababa{2,10}aabab {11}abab$

6 {0,5,8}abaaba{2}aababa {10}aabab$ {6}baabaa

7 {5,8}abaabaa {0}abaabab {1}baababa

{1,9}baabab

{9}baabab$

8 {5}abaabaab {8}abaabaa$ slide PSC02: 4/16



If we do the refinement in a brute force
fashion again, immediately we have an
  O(n2) algorithm for computing of all
squares (in fact it can be shown that the
average-case complexity is O(n log n)).

The other main idea of Crochemore
was to do the refinement using other
classes and all of them, only the so-
called small classes, which brings the
worst-case complexity to O(n log n).
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Let us remark that Crochemore’s
algorithm can be used for more than
just repetitions, in fact it can be used to
compute a suffix tree of the input
string, a much stronger “description” of
the structure of the string than the
repetitions in the form of runs.

It is generally believed and all known
implementations of Crochemore’s
algorithm needed about 20NM bytes of
extra memory to work.
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Since 1981 several linear (for fixed
alphabet) or O(n log n) algorithms for
suffix trees have been presented, in
particular Ukkonen (1992), and for
suffix arrays Manber, Myers (1993), all
with small memory requirements.

So, why still bother with Crochemore’s
algorithm?

•Ease of implementation

•Implementations faster in reality
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In this talk, we present a novel
implementation of Crochemore’s algorithm
that requires about half as much memory as
the standard ones: 10NM bytes, where N is
the length of the input string and M is the
size in bytes of the integer N.

We present the implementation in two steps
as it facilitates a better understanding.
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•First we present a version requiring 15NM,
the decrease being a result of a smarter
handling of data structures representing the
classes

•Then we use some “tricks” to bring the
memory requirements down to 10NM.

Of course, this requires a certain overhead,
slowing down the execution.

The experiments carried out by the third co-
author Xia indicate a 20-30% slowdown.
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CEmptyStack
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This completed the first step - an
implementation of Crochemore’s algorithm
that requires 15NM bytes of memory.

Now we are going to use “tricks” of memory
multiplexing and memory virtualization to
bring it down to 10NM.
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Total this slide 2*N
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0 1 3 …. Memory
multiplexing

Refine[] is virtualized over FNext[], FPrev[], and FStart[]
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