
A note on Crochemore's
repetitions algorithm, a fast

space-efficient approach
F. Franek, W.F. Smyth, and X. Xia

Algorithms Research Group
Computing and Software

McMaster University
Hamilton, Ontario, Canada

slide PSC02: 1/16

PSC 2002, Prague Stringology Conference,
Prague, Czech Republic,
September 22-23, 2002

for(i = 0; i < N-2; i++) {
 for(k = 1; k <= (N-i)/2; k++) {
 s = 1;
 for(j = 0; j < k; j++)
 if (x[i+j] != x[i+k+j]) {s=0; break; }
 if (s) printf(“square of length %d at position %d\n”,k,i);
 }
}

Trivial, brute force O(n3) algorithm for
computing of all squares.

slide PSC02: 2/16

Crochemore (1981) designed the first
O(n log n) algorithms to compute all the
repetitions in a string.

One of the main ideas of the approach
concerns successive refinements of
classes of equivalence of indices
(positions) of the input string.

Two positions on level p are equivalent,
if two identical substrings of length p
start there.

slide PSC02: 3/16

a b a a b a b a a b a a b a b
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

{0,2,3,5,7,8,10,11,13}a {1,4,6,9,12,14}b

level

1

{2,7,10}aa {1,4,6,9,12}ba2 {0,3,5,8,11,13}ab {14}b$

{2,7,10}aab {1,6,9}baa3 {0,3,5,8,11}aba {4,12}bab{13}ab$

{2,7,10}aaba {1,6,9}baab4 {0,5,8}abaa {4}baba{3,11}abab {12}bab$

{7}aabaa {1,6,9}baaba5 {0,5,8}abaab{3}ababa{2,10}aabab {11}abab$

6 {0,5,8}abaaba{2}aababa {10}aabab$ {6}baabaa

7 {5,8}abaabaa {0}abaabab {1}baababa

{1,9}baabab

{9}baabab$

8 {5}abaabaab {8}abaabaa$ slide PSC02: 4/16

If we do the refinement in a brute force
fashion again, immediately we have an
 O(n2) algorithm for computing of all
squares (in fact it can be shown that the
average-case complexity is O(n log n)).

The other main idea of Crochemore
was to do the refinement using other
classes and all of them, only the so-
called small classes, which brings the
worst-case complexity to O(n log n).

slide PSC02: 5/16

Let us remark that Crochemore’s
algorithm can be used for more than
just repetitions, in fact it can be used to
compute a suffix tree of the input
string, a much stronger “description” of
the structure of the string than the
repetitions in the form of runs.

It is generally believed and all known
implementations of Crochemore’s
algorithm needed about 20NM bytes of
extra memory to work.

slide PSC02: 6/16

Since 1981 several linear (for fixed
alphabet) or O(n log n) algorithms for
suffix trees have been presented, in
particular Ukkonen (1992), and for
suffix arrays Manber, Myers (1993), all
with small memory requirements.

So, why still bother with Crochemore’s
algorithm?

•Ease of implementation

•Implementations faster in reality
slide PSC02: 7/16

In this talk, we present a novel
implementation of Crochemore’s algorithm
that requires about half as much memory as
the standard ones: 10NM bytes, where N is
the length of the input string and M is the
size in bytes of the integer N.

We present the implementation in two steps
as it facilitates a better understanding.

slide PSC02: 8/16

•First we present a version requiring 15NM,
the decrease being a result of a smarter
handling of data structures representing the
classes

•Then we use some “tricks” to bring the
memory requirements down to 10NM.

Of course, this requires a certain overhead,
slowing down the execution.

The experiments carried out by the third co-
author Xia indicate a 20-30% slowdown.

slide PSC02: 9/16

CNext[]

CPrev[]

CEnd[]

CStart[]

CSize[]3

c1={2,4,5}

0 1 2 3 4 5 6

4 5 O

42O

2

5

CMember[]111

indexesN

Total this slide 6*N
subtotal 6*Nslide PSC02: 10/16

CEmptyStack

SelQueue

ScQueue

RefStack

Refine[]

0 1 2 3 4 5 6 indexesN

Total this slide 5*N
subtotal 11*N

0 1 3 ….

slide PSC02: 11/16

FNext[]

FPrev[]

FStart[]

FMember[]

f2={3,5}

0 1 2 3 4 5 6

5 O

3O

indexesN

3

Total this slide 4*N
overall total 15*N

2 2

slide PSC02: 12/16

slide PSC02: 13/16

This completed the first step - an
implementation of Crochemore’s algorithm
that requires 15NM bytes of memory.

Now we are going to use “tricks” of memory
multiplexing and memory virtualization to
bring it down to 10NM.

CNext[]

CPrev[]

CEnd[]

CStart[]

CSize[]

c1={2,4,5}

0 1 2 3 4 5 6

4 5 3

2

2

CMember[]111

indexesN

Total this slide 4*N
subtotal 4*N

5 Memory
virtualization

slide PSC02: 14/16

CEmptyStack

SelQueue

ScQueue

Refine[]

RefStack

0 1 2 3 4 5 6 indexesN

Total this slide 2*N
subtotal 6*N

0 1 3 …. Memory
multiplexing

Refine[] is virtualized over FNext[], FPrev[], and FStart[]

slide PSC02: 15/16

FNext[]

FPrev[]

FStart[]

FMember[]

f2={3,5}

0 1 2 3 4 5 6

5

3

indexesN

3

Total this slide 4*N
overall total 10*N

2 2

Refine[] is virtualized over

Memory
virtualization

slide PSC02: 16/16

