Introduction	Basic notions	Main results	Applications	References
	Two square	e canonical ·	factorization	
	Two Square	s canonicai	ιασιοπεαιιοπ	
	Haovue Bai, Fran	wa Franek and	William F Smyth	
	ridoyuc bai, ria	lya i ranok and		
	Departm	ent of Computing and	Software	
	McMaster Ur	iversity, Hamilton, On	tario, Canada	

Prague Stringology Conference 2014

Two squares canonical factorization

Introduction	Basic notions	Main results	Applications	References
Outline				

Introduction	Basic notions	Main results	Applications	References
Introduct	ion			

a configuration of two *proportional* squares u^2 and v^2

V		V	
и	и		

has been investigated in many different contexts:

Two squares canonical factorization

Introduction	Basic notions	Main results	Applications	References

• *Smyth et al.*: investigating three squares with intention to find a position for amortization argument for the runs conjecture a unique factorization of the type

 $\boldsymbol{u} = \boldsymbol{u}_1 \boldsymbol{u}_2 \boldsymbol{u}_1, \, \boldsymbol{v} = \boldsymbol{u}_1 \boldsymbol{u}_2 \boldsymbol{u}_1 \boldsymbol{u}_1 \boldsymbol{u}_2 \iff \frac{3|\boldsymbol{u}|}{2} < |\boldsymbol{v}| < 2|\boldsymbol{u}|$

in a computational framework for computations of σ_d(n) developed by *Deza*, *F*, and *Jiang*: such configurations are used in *Liu*'s PhD thesis to speed up computation of certain values σ_d(n) in the (d, n-d) table

 $\sigma_d(n)$ denotes the maximum number of distinct squares in a string of length *n* with *d* distinct symbols

Two squares canonical factorization

PSC 2014, Czech Technical University, Prague, Czech Republic

・ロ・ ・ 回 ・ ・ ヨ ・ ・ ヨ ・

≡ • ク ۹ ()

• <i>Lam</i> : two rightmost squares $u^2 \triangleleft v^2$ in x have a very particular structure $u = u_1^{e_1} u_2$ and $v = u_1^{e_1} u_2 u_1^{e_2}$ a primitive u_1 and a non-trivial proper prefix u_2 of u_1 , and $e_1 \ge e_2 \ge 1$.

note that two rightmost squares in **x** are necessarily proportional

• *Deza*, *F.*, *Thierry*: two proportional squares $u^2 \triangleleft v^2$ form a *factorizable double square* if either *u* or *v* is primitive or u^2 is rightmost in v^2

A factorizable double square has a *unique factorization* (u_1, u_2, e_1, e_2) : $u = u_1^{e_1} u_2$ and $v = u_1^{e_1} u_2 u_1^{e_2}$

Introduction

Basic notions

<ロ> <同> <同> < 同> < 同>

References

```
Introduction Basic notions Main results Applications References
```

```
where u_1 is primitive, u_2 a non-trivial proper prefix of u_1, and e_1 \ge e_2 \ge 1.
```

moreover, there are some additional constrains to the structure of a factorizable double square

in this contribution we generalize and extend the factorization to all pairs of proportional squares starting at the same position

Introduction	Basic notions	Main results	Applications	References
Basic no	otions			

x is primitive $\iff x \neq y^p$ for any string *y* and any integer $p \ge 2$

Ex: <u>aab aab</u> is not primitive, while <u>aabaaba</u> is

primitive root of *x*: the smallest *y* s.t. $x = y^p$ for some integer $p \ge 1$ (*is unique and primitive*)

 u^2 is primitively rooted $\iff u$ is a primitive string

x and y are *conjugates* if x = uv and y = vu for some u, v

 $x \triangleleft y \iff x$ is a proper prefix of y

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Introduction	Basic notions	Main results	Applications	References	
A doub	ole square DS(u , v	$v)$: $u^2 \lhd v^2$ and	u < v < 2 u .		
Note th double	Note that in <mark>Deza, F., Thierry</mark> this would be called a balanced double square				
Lemma	a (Synchronization	n Principle)			
Given a primitive string \mathbf{x} , a proper suffix \mathbf{y} of \mathbf{x} , a proper prefix \mathbf{z} of \mathbf{x} , and $m \ge 0$, there are exactly m occurrences of \mathbf{x} in $\mathbf{y}\mathbf{x}^m\mathbf{z}$.					

PSC 2014, Czech Technical University, Prague, Czech Republic

ヘロン 人間 とくほど 人間と

McMaster University

≡ • ク へ (~

Introduction	Basic notions	Main results	Applications	References
Lemma	(Common Facto	or Lemma)		
	•	,		

For any strings x and y, if a non-trivial power of x and a non-trivial power of y have a common factor of length |x|+|y|, then the primitive roots of x and y are conjugates.

In particular, if x and y are primitive, then x and y are conjugates.

Note that both x and y must repeat at least twice

these lemmas are really a folklore, but we included proofs as we did not know of a published proof of the Common Factor Lemma

Introduction	Basic notions	Main results	Applications	References
A simple	e corollary of Cor	nmon Factor Le	emma.	
7. 611191	o coronary or cor		, initia.	
Corollar	y (Uniqueness L	emma)		
x and y	nrimitivo strinas	$n \alpha > 1$		
	printitive strings,	$p, q \geq 1$.		
(a) x ^p	$= \mathbf{y}^q \Rightarrow \mathbf{x} = \mathbf{y}$	p = q		
(b) p, c	$\gamma > 2$, $\boldsymbol{x}_1 \triangleleft \boldsymbol{x}_2$	y 1 ⊲ y		

 $x^{p}x_{1} = y^{q}y_{1} \Rightarrow x = y \& x_{1} = y_{1} \& p = q$

Two squares canonical factorization

Introduction	Basic notions	Main results	Applications	References
(a) x ^p	$\mathcal{Y}^q = \mathcal{Y}^q$			
	● <i>p</i> = 1			
	then $\pmb{x}=\pmb{y}^q$, \pmb{x} p	rimitive $\Rightarrow q = 1$	and $\boldsymbol{x} = \boldsymbol{y}$	
	● <i>p</i> , <i>q</i> ≥ 2			
	x ^p and y ^q have a Common Factor	a common factor o Lemma $oldsymbol{x} \sim oldsymbol{y}$, he	of length $\geq m{x} + m{y} $ ence $m{x} = m{y}$, by the

(b)
$$\mathbf{x}^{p}\mathbf{x}_{1} = \mathbf{y}^{q}\mathbf{y}_{1}, p, q \geq 2$$

 $x^{p}x_{1} = y^{q}y_{1}$ have a common factor of length |x|+|y|, hence x = y

the requirement $p, q \ge 2$ is essential – for instance:

$$\mathbf{x} = aabb, \ \mathbf{x}_1 = aa \text{ and } p = 2:$$

 $\mathbf{x}^2 \mathbf{x}_1 = aabbaabbaa$

 $y = aabbaabba, y_1 = a and q = 1:$ $y^1 y_1 = aabbaabbaa$

 $\boldsymbol{x}^2\boldsymbol{x}_1 = \boldsymbol{y}^1\boldsymbol{y}_1$

Two squares canonical factorization

Lemma (Two Squares Factorization Lemma)

```
    ∀ DS(u, v) ∃ unique u<sub>1</sub>, u<sub>2</sub>, e<sub>1</sub>, e<sub>2</sub> such that

u = u<sub>1</sub><sup>e<sub>1</sub></sup> u<sub>2</sub> and v = u<sub>1</sub><sup>e<sub>1</sub></sup> u<sub>2</sub>u<sub>1</sub><sup>e<sub>2</sub></sub>

u<sub>1</sub> primitive

u<sub>2</sub> is a possibly trivial proper prefix of u<sub>1</sub>

e<sub>1</sub> ≥ e<sub>2</sub> ≥ 1

Moreover,

            (a) |u<sub>2</sub>| = 0 ⇒ e<sub>1</sub> > e<sub>2</sub> ≥ 1
            (b) |u<sub>2</sub>| > 0 ⇒ v primitive

</sup>
```

(c) $|\boldsymbol{u}_2| > 0 \& \boldsymbol{e}_1 \geq 2 \Rightarrow \boldsymbol{u}$ primitive

Two squares canonical factorization

PSC 2014, Czech Technical University, Prague, Czech Republic

э.

Introduction	n Basic notions		Main results	Application		References
_						
	V		V			
		Ζ				
	и		u			
				_		
Γ	V		V			
2	Ζ	Ζ				
	u		u			
	V		V			
Z	Z	Ζ	Ζ			
	и		u			
				_		
	V		V			
2	ZZZZZZZ	Ζ	ZZZZZZ	·		
	u		u			McMaster University
				_ 		
					12/12/	- <u>-</u>

Introduction	Basic notions	Main results	Applications	References
∃ <i>k</i> ≥ 1 s.t	t. $oldsymbol{u}=oldsymbol{z}^koldsymbol{z}'$ for so	me proper prefix	z' of z	
u₁ primitive	e root of <i>z</i>			
$m{z}=m{u_1}^{m{e_2}}$ fo	r some $e_2 \ge 1$			
for some e	$_1 \geq e_2 k$ and som	e prefix u 2 of u 1,		
$u = u_1^{e_1} u_2$	and $v = uz = u$	<i>I</i> 1 ^{<i>e</i>1} <i>U</i> 2 <i>U</i> 1 ^{<i>e</i>2}		

now the uniqueness and other properties:

(i)
$$|u_2| = 0$$

 $u = u_1^{e_1} \text{ and } v = u_1^{e_1+e_2} \Rightarrow v = u_1^{2(e_1+e_2)}$
 $|v| < 2|u| \text{ and } e_1 \ge e_2 \Rightarrow e_1 > e_2$
uniqueness of u_1 is a consequence of Uniqueness
Lemma (a)
(ii) $|u_2| > 0$
assume (w_1, w_2, f_1, f_2)
 $u = u_1^{e_1} u_2 = w_1^{f_1} w_2 \& v = u_1^{e_1} u_2 u_1^{e_2} = w_1^{f_1} w_2 w_1^{f_2}$

ヘロン 人間 とくほど 人間と

McMaster University

≡ • ク へ (~

$$e_1 = f_1 = 1 \Rightarrow v = uu_1 = uw_1 \Rightarrow u = v$$

Main results

WLOG assume that $f_1 > e_1 = 1$

 $\begin{array}{l} u = u_1 u_2 = w_1^{f_1} w_2 \quad \& \quad v = u_1 u_2 u_1 = w_1^{f_1} w_2 w_1^{f_2} \Rightarrow \\ u_1 = w_1^{f_2} \end{array}$

 u_1 primitive forces $f_2 = 1$ and $u_1 = w_1$

 $u_1 u_2 = w_1^{f_1} w_2 = u_1^{f_1} w_2$, implies that $f_1 = 1$ a contradiction

References

show that \mathbf{v} is primitive suppose the contrary: $\mathbf{v} = \mathbf{w}^k, k \ge 2$

$$|w| \le \frac{|v|}{2} \le |u_1^{e_1}| + |u_2|$$

$$w^{2k} = v^2 = u_1^{e_1} u_2 u_1^{e_1 + e_2} u_2 u_1^{e_2}$$

 w^{2k} and $u_1^{e_1+e_2}u_2$ have a common factor $u_1^{e_1+e_2}u_2$ of length $(|u_1^{e_1}|+|u_2|)+|u_1^{e_2}| \ge |w|+|u_1|$

apply Common Factor Lemma to conclude that $\textbf{\textit{w}} \sim \textbf{\textit{u}}_1$, thus $\textbf{\textit{w}} = \textbf{\textit{u}}_1$

primitive string $u_1 = u_2 \overline{u}_2$ aligns with $u_2 u_1$, and so \overline{u}_2 is a prefix of u_1 , in contradiction to Synchronization Principle

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Basic notions Main results References let $e_2 \ge 2$ show that **u** is primitive suppose the contrary: $\boldsymbol{u} = \boldsymbol{w}^k$, k > 2Hence $|\mathbf{w}| \leq \frac{|\mathbf{u}|}{2} = \frac{(|\mathbf{u}_1^{e_1}| + |\mathbf{u}_2|)}{2} < |\mathbf{u}_1^{e_1-1}| + |\mathbf{u}_2|$ $e_2 > 1$ and $e_2 > 2 \Rightarrow e_1 + e_2 > 3$ $U_1^{e_1}U_2 \triangleleft U^2 = W^{2k}$ so w^{2k} and $u_1^{e_1+e_2}$ have a common factor $u_1^{e_1}u_2$

since $|\boldsymbol{u_1}^{e_1}\boldsymbol{u_2}| \geq |\boldsymbol{v}| + |\boldsymbol{u_1}|$, applying Common Factor Lemma, $U_1 = W$

this in turn implies $\boldsymbol{u} = \boldsymbol{u_1}^{e_1} \boldsymbol{u_2} = \boldsymbol{u_1}^{k}$, impossible since $0 < |u_2| < |u_1|$

McMaster University

Introduction	Basic notions	Main results	Applications	References

observations:

 $|u_2| > 0$ if any one of the following conditions holds:

- (a) **v** is primitive
- (b) **u** is primitive
- (c) \boldsymbol{u}^2 is rightmost in \boldsymbol{v}^2

moreover:

(d) $|\boldsymbol{u_2}| > 0 \iff \boldsymbol{v}$ is primitive

we concluded the paper with a comment and a sketch of how the canonical factorization could be applied to New Periodicity Lemma:

Lemma (2006, Fan, Puglisi, Smyth, and Turpin)

Let $\mathbf{x} = DS(\mathbf{u}, \mathbf{v})$, where we require that \mathbf{u}^2 be regular and that \mathbf{v} be primitive. There is no square \mathbf{w}^2 starting at position *i*, $1 \le i < |\mathbf{v}| - |\mathbf{u}|$ with $|\mathbf{v}| - |\mathbf{u}| < |\mathbf{w}| < |\mathbf{v}|$ except possibly $|\mathbf{w}| = |\mathbf{u}|$.

we can report that since the final submission to PSC2014, we were able to prove using the canonical factorization an extended NPL:

Theorem

Consider a double square $DS(\boldsymbol{u}, \boldsymbol{v})$ and let \boldsymbol{u}' be a suffix of \boldsymbol{u} so that $\boldsymbol{v} = \boldsymbol{u}\boldsymbol{u}'$. Let \boldsymbol{w}^2 be any square that is a factor of \boldsymbol{v}^2 . Then exactly one of the following mutually exclusive cases holds:

$$(a) \boldsymbol{w} = \boldsymbol{v}, or$$

(b)
$$|w| < |u|$$
, or

(c) $|\mathbf{u}| \le |\mathbf{w}| < |\mathbf{v}|$ and the primitive root of \mathbf{w} is a conjugate of the primitive root of \mathbf{u}' .

Two squares canonical factorization PS

PSC 2014, Czech Technical University, Prague, Czech Republic

イロト イヨト イヨト イヨト

Introduction	Basic notions	Main results	Applications	References
	V		V	
	V		V	
	u		и	

ntroduction	Basic notions	Main results	Applications	References
Lemma	(Crochemore-R	<i>ytter</i> (1995), <i>Fra</i>	enkel-Simpson (1998))
Let u ² <	ert $m{v}^2 ert$ $m{w}^2$ and let	et u be primitive	, then $ oldsymbol{u} {+} oldsymbol{v} \leq $	w .
we can we were general	also report that s able to prove us ization of the abo	since the final su sing the canonic ove lemma:	ubmission to PSC al factorization a	2014,
Theorer	m (<i>Bai, Deza</i> , an	d <i>F.</i>)		
Let u ² < (a)	$ \mathbf{v}^2 \mathbf{w}^2$. Ther $ \mathbf{u} + \mathbf{v} < \mathbf{w} $	n either		
Ó	n i i i i i i i i i i i i i i i i i i i		(inclus	sive or)
(<i>b</i>)	u, v, and w ha	ve the same prir	nitive root	Master
				University
			・ロト ・雪 ト ・言 ト・	(目) 目 のへ(

THANK YOU

Two squares canonical factorization

M. Crochemore and W. Rytter

Squares, cubes, and time-space efficient string searching *Algorithmica*, 1995

A. Deza and F. Franek

A *d*-step approach to the maximum number of distinct squares and runs in strings

Discrete Applied Mathematics, 2014

- A. Deza, F. Franek, and A. Thierry How many double squares can a string contain? to appear in Discrete Applied Mathematics, 2014
- A. Deza, F. Franek, and M. Jiang A computational framework for determining square-maximal strings Proceedings of the Prague Stringology Conference 2012

 Bablo Hotorio	oouno rippiio		
K. Fan, S.J. Puglisi, W. F. Sr A new periodicity lemma SIAM J. Discrete Math., 200	nyth, and A.Turp 6	in	
A.S. Fraenkel and J. Simpso How many squares can a st Journal of Combinatorial Th	n ring contain? <i>eory, Series A</i> , 1	998	
F. Franek, R.C.G. Fuller, J. S. More results on overlapping Journal of Discrete Algorithm	Simpson, and W. squares. ms, 2012	F. Smyth	
E. Kopylova and W.F. Smyth The three squares lemma re <i>Journal of Discrete Algorithi</i>	evisited <i>ns</i> , 2012		McMaster

PSC 2014, Czech Technical University, Prague, Czech Republic

References

E 990

Introduction	Basic notions	Main results	Applications	References
	N. H. Lam On the number of se AdvOL-Report 2013	quares in a string 3/2, McMaster Ui) niversity, 2013	
	M. J. Liu Combinatorial optim problems <i>PhD thesis, Dept. o</i> <i>University,</i> 2013	nization approach	nes to discrete Software, McMa	aster

