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Consider a random colouring of
K, by two colours and ‘“calcu-
late” the number of monochro-
matic t-cliques:
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The probability that a randomly
choosen t-subset is a monochro-
matic clique is

o1-(5)

Consider a graph G of order n
ki(G) = # of t-cliques in G

kt(n) = min {kt(G) + k(G) - |G| = n}
_ k(n)

ci(n) = ~m

The probabiliy that G “contains”
a given t-clique =

quotient of # of all graphs on
n—t vertices and # of all graphs




on n vertices = =—5— < 2_(2) for
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n >t t

Therefore k(G) < (?)2_@ and so

k(G)+he(G) < 2() 2~ () = (7)21- ()

ci(n) < t)

From ramsey theory 4% < ¢t(n)
when n > t.

Thus
t! t
— < e(n) < 2170)
4t

when n > t.

For a given t, {c(n)} is increas-

ing, so ¢t = nli_}mooct(n) exists.



Erdos (1962) conjectured (sort
of) that for ¢ > 2,

— — 21-(3)
Ct nlgnooct(n) 2°7\2

Trivially true for ¢ = 2:
ko(G) + ko(G) = (|§|), and thus

co(n) =1 and hence ¢y = 1.

Also true for ¢t = 3:
from Goodman’s work (1959)
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e is the # of edges, and using
Schwartz’s inequality
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The concjecture can naturally be

modified for “counting” of other

than complete subgraphs in other
than complete graphs:

Erdos, Moon (1964) showed it
true for “counting” complete bi-
partite subgraphs in bipartite
graphs.

Sidorenko (1986-1993) showed it
true for “cycles” in complete



graphs, and false for some in-
complete subgraphs.

Giraud (1977) using geometrical
interpretation and computational
methods showed ¢4 > %

How does it relate to ramsey

theory?

What must be the smallest
order of graph G that any
colouring by two colours yields
a monochromatic K; (diagonal
Ramsey number r(¢,1))?

The knowledge of ¢; can improve
the bounds of r(t,t) (communi-

cated to me by Rodl, more about
it at the end of the talk).



Pseudorandom or Quasirandom
graphs - graphs that in some ways
“behave” like random graphs.
Introduced in many ways (Chung,
Graham, Wilson 1989, Thoma-
son 1985, 1987).

Frankl, Rodl, Wilson (1988),
Thomason (1985) showed that
Erdos’s conjecture holds true for
pseudorandom graphs, and hence
not good to look for counterex-
amples there.

The following argument occurred
in Thomason (1987), but I heard
it from Rodl earlier, possibly folk-
lore?

Consider a graph G. “Blow up”
every vertex v of G to nv, a set



of verteces of size n. If v,u is
an edge of (G, then every vertex
from nv forms an edge with ev-
ery vertex from nu. Also, ev-
ery two verteces from nv form
an edge. The resulting graph is
nG of order n|G|. Let us count
4-cliques in nG:
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G|*

Can be generalized for any ¢, thus
¢t = 0¢(G) for any graph G. And
thus a counterexample to the con-
jecture my be obtained by find-
ing a suitable G.

Early 1980’s: Rodl, Graham,
Sinajova unsuccesfully tried com-
puter search for such a (small) G
(computational limitations, be-
gun with “pseudorandom” like
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trying to improve on it).

Thomason (1987, the main pa-
per 1989) disaproved the conjec-
ture; found suitable G’s construct-
ed as “orthogonal towers” of cer-
tain vectors in orthogonal geome-
tries V" (V,7) of dimension 2¢ over
F9 with maximal (minimal) Witt
indexes.

Thomason obtained the follow-
ing upper bounds:

¢y < 0.967-27°: ¢s < 0.906-277

1-(3)

ct < 0.936-:2°\2/,t > 6

In the late 1980’s, Rodl and
Franek set to find out why the
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computational search failed and
provide a simpler counterexam-
ple(s), possibly with better up-
per bound(s).

1989 (appeared 1992) Franek and
Rodl showed that the conjecture
for t = 4 is true for “nearly quasir-
andom” graphs, or graphs ob-
tained from quasirandom by small
“perturbations”. That explained
to some degree (besides compu-
tational limitations) the earlier
failure, for in essence they were
searching among “nearly quasir-
andom” graphs. The idea to make
more “robust” perturbations in
the search panned out and in 1993
Franek and Rodl provided a sim-
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ple Cayley graph of order 2!V as
a counterexample for ¢t = 4 with
the same upper bound as Thoma-
son.

A sequence of graphs R = {Rp} 2,
1s a pseudorandom sequence iff
for all but o(|V (Ry,)|) vertices u€V (Ry,),

d(u) = |N(u)| satisfies |d(u)— Ll

< o(|V(Ry)|), and for all but
0 (W(?”) )) pairs of vertices
u, VEV (Ry), the size d(u,v)of their
common neighborhood N(u) N N(v)

satisfies d(u,v)—Lﬁw < o(|[V(Rn)])-
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Pseudorandom graphs have the
following property

Theorem Let R = {R,} be a pseu-
dorandom sequence of graphs, then
there exists a sequence of positive re-
als {en} so that e, — 0 as n — 00
and so that for every V. C V(Ry),

VI > enlV(Ra)l, (% _5n)(|g|) <

e < %—I— En (|‘2/|)) where e 1s the

number of edges of R, induced on a

set V.

For a graph D = (V F) and U C

Vet dp(U) = ET[%] denote the

edge density of the subgraph in-
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duced on U. For a sequence D =
{Dp} and 0 < p < 1 let pD =
{pD,} be any sequence with the
following property: V,, = V(pD,) =
V(Dyp), and there exists ¢, — 0

such that [6,p (U) — pip (U)| <

en as n — oo for any U C V,,
\U| > en|Vn|. We can think of
pD as a graph obtained from the
graph D by flipping a p-biased
coin for each edge of D, if the
heads shows up the edge is left
there, otherwise the edge is re-
moved.

For a sequence G = {G,,} of graphs
with |V (G,)| — o0 as n — o0, let
d(G) = lim inf d(Gp).
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Let H = {H,} be an arbitrary
sequence of graphs and let R =
{R,} be a pseudorandom sequence
with V(R,) = V(H,) = V, for all
n. Let D, = R, - H,, be a graph
whose edges are formed by all
pairs one needs to change to ob-
tain H, from R, (i.e. FE(D,) is
formed by symmetric difference
E(H,) ~ E(Ry)). It follows that
H, = R, - D, as well. Suppose
that we will not carry all the
“changes” corresponding to D,
to obtain H, from R, but only
“changes” on a “random” sub-
graph pD, of D,. This way we
obtain a graph sequence
{p(Rn,Dn)} = {Rn + pDyn}. More
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formally p(R,, Dy) is a graph se-
quence that satisfies:

e there exists a sequence {¢,} of
positive reals such that ¢, — 0
and for every U C V,, |U| >
enlVals 10y, D) (U) = 0y, (V)
(1=p)oRr,nD,(U)— pép,—Rr,U)| <
Ene

The diagram bellow shows the
relative position of edge sets of
R, D, pD, and p(R, D).

(1-p)(D NR)
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If V.WW are disjoint sets of ver-
tices of GG, then e(V, W) denotes
the number of edges of G with
one endpoint in V' and the other

in W. 6(V,W) = f‘</|vj|VVVV)| is the
edge-density between V' and V.
If £ > 0, we say that V,I1V is an
e-uniform pair if

6(V, W) —6(V!,W")| < € whenever
V' cVand |V/| > e|V],and W' C
W and |[W'| > & |W].

Let ¢t be a positive integer. 7 is
a t-vector if it is a vector with ¢
real valued entries z; ;, 1 <14,7 <
t and so that z;; = z,;;. By =

{fERt2 . 7 is a t-vector & |z; ;| < 1
for all 1 <i,5 <t}
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Let G be a graph. Let ¢ > 0, and
let ¢ be a positive integer. We
say that a t-vector & e-represents
graph G iff the vertex set of G
can be partitioned into ¢ disjoint
classes Ay, ..., A; so that

| 4| —|Aj]| < 1forall 1 <i,j<t,
and all but t%¢ pairs {4;, A}, are
e-uniform, and where 0(4;,A4;) =
Y1+ ;) for all 1 <i,j <t,i#j,
and 0(A;, A;) = 0(4;) for all 1 <
1 < t. If G is an infinite sequence
of graphs and 7 is a t-vector, we
say that ¥ represents sequence ¢
iff there is a sequence of positive
reals {¢,} so that ¢, — 0 and 7
en-represents Gy, for every n.
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We use t-vectors as representa-
tives of sequences of graphs. For
technical reasons the coordinates
of t-vectors are not edge-densities
directly, but edge-densities trans-
formed by p; ; = %(H—xi,j). Hence-
forth B; defined above is the part
of RtQ which is meaningful for us.
Note also that the origin then
represents pseudorandom graphs
as p; j = % corresponds to ; ; =
0.

Theorem. A t-vector T represents a
pseudorandom sequence iff ¥ = 0.

We need a few polynomials in ¢
variables:
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1<4,7,k,1<t
[(1‘|‘$i,j) <1+xz,k) (1+xi,l> (1+$j,k) (1+$j,l) (1—|—£U]€’l)

+ (1= ) (1—zi ) A=z ) (1—2j ) (1—21) (1= )]

1<i j k<t
[(14‘5132',]') (1—1—513/,;7]{;) (1—1—5191',1) (1—|-£Cj,k) (1—|—£Uj,l)

+(1=zij)(1=zi 1) (1= ) 1=z 1) (1—2;7)]

( —%(475 Z {ISZ]QS]]{;—F Z CE”{Ekl>

1<4,5,k<t 1<4,5,k, 1<t

b(f) — QL ( Z L jLi 1 L5 kL, I

1<a,5,k, 1<t
1 E fl?z',sz',ﬂj,ﬂkl)
1§27j7k7l<t
a1
A(T) = 31 Y T T kT 1T kT T

1<i,j,k, 1<t
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Lemma.

(a) Let {en} be an infinite sequence

of positive reals so that €, — 0.
Let {tn} be an infinite sequence of
positive integers so that t, — o0o.
Let {Gn} be an infinite sequence of
graphs. Let for each n, T, be a
tn-vector such that it €y,-represents
graph Gpn. Then limy,_so0 c4(Gp) =
limp— o0 C4(Zy), andlimy o0 d(Gp) =
limy,—y 00 D(Zn).

(b) Let a t-vector T represent a graph

sequence G. Then d(G) = D(T).

Lemma. For any t-vector ,
Cy(Z) = 35 + ¢(Z) + b(Z) + a(7)
D(F) = § +4(20(2) + b(#) )
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Lemma. For any t-vector © € By,
1
a(Z)] < 35.

Lemma. For any t-vector ,
c(Z) > 0.

Theorem. Let G be a sequence of
graphs. Then d(G) > 8 and equality
holds if and only if G 1s a pseudoran-
dom sequence.

Lemma. D(Z) is strictly minimal
for x = o.

Corollary. For any t-vector x,
2¢(Z) + b(Z) > 0. The equality is at-
tained if and only if T = o.

Lemma. For any A > % there 1s
wy, 0 < puy <1, so that for any pos-
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itive integer t and for any U € By
with D(@) > X, fz(p) = a(@)p® +
b(i)ut + c(i)p? > §(A—3)ut for any
pe [07 :LL)\]'

Main theorem. For every A > %

there exists py, 0 < py < 1, such that
for every pseudorandom sequence of
graphs R = {Rn}, and for every se-
quence of graphs D = {Dn} with
d(R +D) > X, if c4(p(R,D)) exists,
then c4(p(R, D)) > s+ g(A — §)p’
whenever 0 < p < py.

It is not surprising (see the def-
inition of how a a t-vector I e-
represents a graph) that the proof
of the main theorem heavily re-
lies on
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Szemerédi’s Regularity Lemma.
Giwen ¢ > 0, and a positive inte-
ger l. Then there exist positive in-
tegers m = m(e,l) and n = n(e,l)
with the property that the verter set
of every graph G of order > n can
be partitioned into t disjoint classes
A1, ..., A such that
(a) I <t <m,
(b) || 4] = |4, <1
foralll <1,5 <t,
(c) All but at most t°e pairs A;, Aj,
1 <1,5 <t, are e-uniform.

Franek-Rodl’s counterexample

gn, r: the set of vertices consists
of all subsets of {1,2,....n}, the
cardinality family F' is a subset
of {1,2,...n}, XY C {1,2,...,n}
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form an edge iff |[XAY| e F. (A
denotes symmetric difference)

We can’t calculate k:(G,, p) directly,
but we can calculate (computer
generate) ordered sequences

(1, ..., x¢—1) so that |z;|, |z;Az;|€F.

Lemma. k¢ 1(G, F) = (tﬂ)!st(n,F).

The parameters n and I were
used for the search, while ¢ was
fixed at 4. We found many coun-
terexamples for n = 10 and 11.

n =10, F = {1,3,4,7,8,10} give

¢y < 0.967501-27° and in Gy f, ap-

proximately 1—12 of all pairs are
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edges, while % of them are non-
edges.

Jagger, Stovicek, Thomason
(1996) simplified the original
Thomason’s proof and discussed
the problem from the extremal
graph theory point of view in-
vestigating all kind of subgraphs
rather than just cliques. They
also obtained improved upper
bounds ¢; < 0.8801-277 and ¢z <
0.7641-27 14,

Thomason (1997) described a

method how to computer gener-
ate counterexamples for K, and
other graphs. Interestingly, none
improved on the upper bound.
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The method could not be really
appplied to K; for higher t.

Franek (1997, a note to appear)
extended Franek-Rodl’s approach
to t = 5,6 - search infeasable, so
worked with a fixed graph
G10,{1,34,7,8,10) that was found to
be “good” for t = 4:

cx < 0.885834-27Y and
cg < 0.744514.2714

Interestingly, a referee of the
note claimed to use the method
and the graph an obtained

c7 < 0.715527-2720,

As mentioned before, the knowl-
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edge of ¢; can lead to improve-
ments of the bounds of Ramsey
numbers:
e Weak Rodl’s conjecture:
t

ct2(2) — 0 (this improves the

bounds somehow)
e Strong Rodl’s conjecture:

t
ct2(2) — 0 exponentially fast
(this improves the bounds ex-
ponentially)

LVOOLU
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All Franek-Rodl’s papers on the
topic as well these slides can be
viewed at the web site
www.cas.mcmaster.ca/~franek
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