
Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Lyndon factors and periodicities in strings

Franya Franek

Advanced Optimization Laboratory
Department of Computing and Software

McMaster University, Hamilton, Ontario, Canada

AdvOL seminar talk
April 2016

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Outline

1 Motivation and background

2 Lyndon words

3 Lyndon roots and L-roots

4 Lyndon arrays

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

A repetition of a substring (i.e. a tandem repeat) in a string is
a simple concept:

· · · abba abba · · ·︸ ︷︷ ︸ ︸ ︷︷ ︸
A very natural question is how many repetitions there can be in
a string? Why this is not simple?

· · · abaababaab · · ·︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸
O(log(n)) repetitions can start at the same position!

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

· · · aba aba aba · · ·︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
A bigger repetition represents several repetitions

It is enough to determine (count) maximal repetitions:

Crochemore 1978 – there are at most O(n log(n)) maximal
repetitions in a string of length n. It is an optimal upper bound,
as it is attained by Fibonacci strings.

(Let F0 = a and F1 = ab. Define Fn = Fn−1Fn−2.)

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

· · · abaabaab · · ·︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸
Even incomplete repetitions represent several repetitions

· · · abaabaabaaba · · ·︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Moreover, non-primitive repetitions represent several repetitions

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

This leads to the notion of run: maximal fractional repetition
that can be extended neither to the left nor to the right.

· · · babaabaabb · · ·︸ ︷︷ ︸ ︸ ︷︷ ︸—– is a run︸ ︷︷ ︸ ︸ ︷︷ ︸— not a run︸ ︷︷ ︸ ︸ ︷︷ ︸– not a run

Moreover the root (the repeating part) must be primitive (not a
repetition)

Run can be fully described by 3 integers: starting position,
ending position, and the period.

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Now the question becomes more interesting: how many runs
there can be in a string? O(n log(n)) ? O(n) ?

In 1999 Kolpakov+Kucherov proved that the maximum number
of runs in a string is linear in the string’s length and conjectured
that it is in fact bounded by the length.

Many additional researchers (Bannai, Crochemore, Ilie, Ishino,
Kusano, Matsubara, Puglisi, Rytter, Shinohara, Simpson,
Smyth, F.) contributed to improving the asymptotic lower and
upper bounds

0.944565n ≤ ρ(n) ≤ 1.029n

where ρ(n) = max{r(x) : |x | = n } and
r(x) denotes the # of runs in x

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

In 2013, Dez+F. introduced d-step approach:

considering the role played by the size of the alphabet of the
string and investigated the function ρd(n), i.e. the maximum
number of respectively runs, over all strings of length n
containing exactly d distinct symbols.

They conjectured that
ρd(n) ≤ n − d for all n ≥ d ≥ 2
There is unique (up to relabeling) run-maximal string of
length 2d with d symbols: (aa)(bb)(cc) · · ·

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

In 2014, Bannai et al. introduced a powerful method of
mapping runs into partitions of the positions via L-roots of the
runs, thus proving that ρ(n) ≤ n − 1 for any n ≥ 1, i.e. gave a
universal upper bound.

In 2015, Deza+F., and simultaneously and independently
Bannai et al. proved the d-step conjectures utilizing the L-roots,
i.e.:
(a) ρd(n) ≤ n − d for n ≥ d ≥ 2
(b) ρd(n) ≤ n − d − 1 for n > 2d ≥ 4

This gives ρ(n) ≤ n − 3 for n > 4 and (a)+(b) give in turn the
uniqueness of the run-maximal (d ,2d)-strings.

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Recently, Deza+F., refined the method and showed that in
addition

ρd(n) ≤ n − d − 2 for n > 2d + 4 ≥ 8

which gives

ρ(n) ≤ n − 4 for n > 8

and Fischer+Holub+I+Lewenstein used L-roots to improve the
upper bound for runs for binary strings from
ρ2(n) ≤ n − 4 for n > 8 to ρ2(n) ≤ 22

23n ≤ 0.957n

The L-roots of a run are those Lyndon roots of the run that do
not start at the beginning of the run, which brings us to the topic
of Lyndon words.

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Lyndon words

Definition
A string x is a Lyndon word if x is lexicographically
strictly smaller than any non-trivial rotation of x .
Trivially true when |x | = 1, so-called trivial Lyndon word.

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

The following are all equivalent:

x is a non-trivial Lyndon word

x [1..n] ≺ x [i ..n] for any 1 < i ≤ n

x [1..i] ≺ x [i+1..n] for any 1 ≤ i < n

there is 1 ≤ i < n so that x [1..i] ≺ x [i+1..n] and both
x [1..i] and x [i+1..n] are Lyndon (standard
factorization when x [i+1..n] is the longest)

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

abb is Lyndon (abb bba bab)

aba is not (aba baa aab)

abab is not (none of the rotations is strictly
smallest: abab baba abab baba)

Lyndon⇒ unbordered⇒ aperiodic⇒ primitive

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Lyndon words have an application to the description
of free Lie algebras, this was Lyndon’s original
motivation for introducing these words.

Linear time constant space generation of Lyndon
words provides an efficient method for constructing a
particular de Bruijn sequence in linear time and
logarithmic space.

Radford’s theorem states that the Lyndon words are
algebraically independent elements of the shuffle
algebra, and generate it.

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Lyndon words correspond to aperiodic necklace class
representatives and can thus be counted with
Moreau’s necklace-counting function.

Given a string s, find its Lyndon rotation. Problem
arises in chemical databases for circular
molecules.The canonical representation is the
lexicographically smallest rotation.

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Theorem (Chen+Fox+Lyndon, 1958, Lyndon factorization)
For any string x there are unique Lyndon words u1, ..., uk
so that ui+1 � ui and x = u1u2...uk .

Duval, 1983, presented an efficient elegant linear time
constant space algorithm to compute Lyndon
factorization.

Each ui is in fact a maximal Lyndon factor, some may
even be non-extendible Lyndon factors.

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Lyndon roots and L-roots

A repetition in a string can be considered a sequence of right
cyclic shifts of its root:

. . . babbababba . . .

. . . babbababba . . .

. . . babbababba . . .

. . . babbababba . . .

. . . babbababba . . .

. . . babbababba . . .

If the root of the repetition is primitive, one of the shifts is
guaranteed to be Lyndon !

Hence, every run has one or more Lyndon roots !

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

L-roots of a run are defined as the Lyndon roots of the run
except the one that starts at the beginning of the run. Why?

We want to achieve that no two L-roots start at the same
position.

Note that we can afford it – it only affects the runs whose root is
Lyndon, and in this case we are guaranteed at least two
Lyndon roots, hence at least one L-root.

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

But this is still not good enough:

but when this happen, the blue symbols “disagree” suggesting
a way out: if the blue letters are in this way ≺, we use to
determine the Lyndoness by the reverse order �−1, otherwise
by the order �.

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Theorem (Bannai et al., 2015)
For any string x, there are no two L-roots that start at the same
position.

The proof is simple – the trick with reversing the order makes
every L-root a non-extendible Lyndon factor !

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

An easy consequence – ρ(n) ≤ n – as we can map every
run to the starting positions of all its L-roots. These sets
of positions are mutually disjoint.

Since the very first position is excluded by definition from
hosting an L-root, in fact ρ(n) ≤ n − 1 .

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Canonical form of a string (Deza+F.):

12{a1,a2}*3{a1,a2,a3}*d{a1,a2,.., ad}*

bd b3 b2 b1

ud u3 u2

a1
r3

ad
rd

a3
r1a2

r2

Any string can be modified to be in canonical form, by
relabeling:

abcbcaabccc c -> a
ababaaabaaa b -> b
cbabaccbaaa a -> c

B2 B1u3 B3

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Lemma (Deza+F.)

ρd(n) ≤ n − d for any n ≥ d ≥ 2.

Proof.

12u23u3dud

bd b3 b2 b1

There cannot be an L-root starting at any bk

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Lemma (Deza+F.)

ρd(n) ≤ n − d − 1 for any n > 2d, d ≥ 2.

Proof.

12u23u3dud

bd b3 b2 b11

The size guarantees that ud is not empty. There cannot be an
L-root starting at any bk , and no L-root at position 1

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Lemma (Deza+F.)

ρd(n) ≤ n − d − 2 for n > 2d + 4, d ≥ 2.

Proof.

12mumdud

bd bm b2 b11

m-1

bm-1p

The size guarantees that ud is not empty and um is big enough
to have a position p with no L-root. There cannot be an L-root
starting at any bk , and no L-root at position 1

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Lyndon arrays

Bannai et. al used the knowledge of all maximal Lyndon factors
of a string w.r.t. � and �−1 to compute all runs in linear time.

This gives credence to the notion of Lyndon array of a string x
and the efforts to compute the Lyndon array in linear time.

Definition
x = x [1..n] a string over ordered alphabet (A,�).
An integer array L[1..n] (or alternatively λ[1..n]) is a Lyndon
array of x w.r.t. � iff L[i] is the length of the maximal Lyndon
factor of x starting at i (or λ[i] is the end position of the maximal
Lyndon factor of x starting at i).

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Lyndon factors:

a b b a b a b a a a b a
Lyndon array:

3 1 1 2 1 2 1 4 3 2 1 1

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Lemma (Hohlweg+Reutenauer, 2003)

For any string x = x [1..n], x [i ..j] is a maximal Lyndon factor of x
iff x [j+1..n] ≺ x [i ..n].

Definition
Suffix array s[i] of a string x = x [1..n] is an integer array so
that s[i] = j iff x [i ..n] is the j-th suffix in the lexicographic
ordering.

Suffix array can be computed in linear time!! (Ka̋rkka̋inen+
Sanders, Kim+Sim+Park+Park, Ko+Aluru).

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Inverse suffix array s−1[j] = i iff s[i] = j .

Can also be computed from the suffix array in linear time.

Thus, s−1[i] < s−1[j] iff x [i ..n] ≺ x [j ..n].

Lyndon array can be computed in linear time using stack from
the inverse suffix array by NSV (next smallest value) algorithm.

Lyndon array can be computed in linear time

A small beauty fault: computing suffix array in linear time is
quite laborious and involved. Hence: a goal is to find a direct
linear time algorithm to compute Lyndon array bypassing the
computation of the suffix array altogether.

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

But, is it possible? What if by computing Lyndon array one
actually sorts out the suffixes?

Holub+Islam+Smyth+F. : For a binary alphabet, except a
special case when the Lyndon array is all 1’s, one can
determine in linear time the unique string of which it is the
Lyndon array, i.e. in linear time we can sort the suffixes from
the Lyndon array.

Thus, for binary strings, computing the Lyndon array is as hard
as sorting suffixes.

This is not true for alphabet of bigger sizes.

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Mantaci+Restivo+Rosone+Sciortino: sorting suffixes from
Lyndon decomposition.

No complexity given explicitly, but looks like O(n2).

Proposition
Let u1..uk be the Lyndon factorization of x. Then
sort(u1..uk) = merge(sort(u1..ur), sort(ur+1..uk)).

Can easily be reformulated in terms of Lyndon array as it gives
more information than just Lyndon factorization.

The real question is whether it can be done in linear time

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

Which array can be a Lyndon array of some string?

Holub+Islam+Smyth+F. : Any integer array satisfying Monge
condition is a Lyndon array of some string.

Definition
Monge condition for L[1..n]:
For any i , 1 ≤ i < n and any j , i < j < i + L[i], j + L[j] ≤ i + L[i].

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

Motivation and background Lyndon words Lyndon roots and L-roots Lyndon arrays Thanks

T HANK YOU

Lyndon factors and periodicities in strings AdvOL seminar, McMaster, April 2016

	Motivation and background
	Lyndon words
	Lyndon roots and L-roots
	Lyndon arrays

