
Two-Pattern Strings — Computing

Repetitions & Near-Repetitions

Technical Report CAS-05-11-FF

Frantisek Franek Weilin Lu W. F. Smyth ∗

Algorithms Research Group

Department of Computing & Software

McMaster University

Hamilton, Ontario

Canada L8S 4K1

November 7, 2005

Abstract

In a recent paper we introduced infinite two-pattern strings on the
alphabet {a, b} as a generalization of Sturmian strings, and we posed
three questions about them:

• Given a finite string x, can we in linear time O(|x|) recognize
whether or not x is a prefix/substring of some infinite two-
pattern string?

• If recognized as two-pattern, can all the repetitions in x be com-
puted in linear time?

• Given an integer ℓ, how many of these “two-pattern” strings x

of length ℓ are there?

In the previous paper we were able to answer the first of these ques-
tions in the affirmative, at least for “complete” two-pattern strings
x. Here we show that, once a complete two-pattern string x has

∗also at School of Computing, Curtin University, Perth WA 6845, Australia, and De-
partment of Computer Science, King’s College London.

1

been recognized, its repetitions can all be computed in linear time
using an iterative algorithm that in addition computes all the “near-
repetitions” in x. The third question is dealt with in a subsequent
paper.

1 Introduction

In a recent paper [FLS03] the notion of two-pattern binary strings as a gen-
eralization of Sturmian strings was introduced. This paper follows on imme-
diately from [FLS03], which we recommend that the reader consult. Never-
theless, to provide a measure of self-containment, we review the main ideas
here.

Suppose an integer λ ≥ 1 is given (the scope), together with two nonempty
strings p and q on {a, b} such that |p| ≤ λ, |q| ≤ λ. We call p and q pat-

terns of scope λ, and we require that they be suitable (see below for
definitions — roughly speaking, p and q are constrained to be dissimilar
enough that they can be efficiently distinguished from each other). For any
pair of positive integers i and j, i 6= j, consider a morphism σ that maps
single letters into blocks :

σ : a→ p
i
q, b→ p

j
q. (1)

We call σ an expansion of scope λ and denote it by the 4-tuple [p, q, i, j]
λ

(or just [p, q, i, j] if the scope is clear from the context).
Of course an expansion can be defined on any string x on {a, b} by

σ(x) = σ
(

x[1]
)

σ
(

x[2]
)

· · · ,

and the composition of two expansions is equally well-defined:

(σ2 ◦ σ1)(x) = σ2

(

σ1(x)
)

.

Suppose that for some positive integer k, a sequence

Sk = σ1, σ2, . . . , σk

of expansions of scope λ is given, where

σr = [pr, qr, ir, jr]λ (2)

2

for r = 1, 2, . . . , k. Then the string

x = Sk(a) = (σk ◦ · · · ◦ σ2 ◦ σ1)(a) (3)

is called a complete two-pattern string of scope λ. Here x is of course
a finite string. A complete infinite two-pattern string of scope λ is a
string x such that for every k > 0 there exists a sequence Sk of expansions
(2) such that Sk(a) is a prefix of x. Then an infinite two-pattern string

of scope λ is just any suffix of such a string x.
In the special case λ = 1, p and q must both be single letters, and the

suitability condition requires that p = a, q = b (or of course vice versa).
With the further restriction that jr = ir ± 1 in (2), every Sturmian string is
an infinite two-pattern string of scope 1 and every block-complete Sturmian
string [FKS00] is a complete infinite two-pattern string of scope 1 [FLS03].

In this paper, as in [FLS03], we concern ourselves exclusively with com-
putations on finite complete two-pattern strings, that we therefore refer to
for short simply as two-pattern strings when no ambiguity results. In
[FKS00] we showed how to recognize finite substrings of Sturmian strings in
time proportional to their length, a result extended in [FLS03] to complete
two-pattern strings. Because the patterns in two-pattern strings are much
less constrained than those in Sturmian strings, the possibility arises that a
two-pattern string x might result from two distinct expansions

x = σ1(y1), x = σ2(y2),

where y1 is a two-pattern string but y2 is not. [FLS03] essentially shows that
this circumstance is impossible, hence that an appropriate expansion can be
found without backtracking, hence that recognition requires only time linear
in |x|.

In this paper we suppose that a two-pattern string x of scope λ has
been recognized, and that a corresponding sequence of k expansions (2),
r = 1, 2, . . . , k, has been identified that produces it. Our task here is to
compute all the runs in x in linear time. As discussed in [FLS03], a recent
algorithm [KK00] can compute the runs of any string in linear time, but
nevertheless questions remain about the possibility of discovering other more
direct and therefore more efficient approaches. Thus, while the algorithm
presented in this paper is more restricted than that of [KK00], we believe
that it may contribute to our theoretical understanding of periodicity, as
well as to the design of future repetitions algorithms. Essentially the results

3

presented here are generalizations of those given in [FKS00] for Sturmian
strings and in [IMS97] for Fibonacci strings.

In Section 2 we state the main result of this paper and provide an overview
of the algorithm. Section 3 provides further explanation about the formation
of repetitions (runs) in two-pattern strings as a result of expansions (2). Then
Section 4 provides a high-level description of the algorithm that is reinforced
in Section 5 by a specification of the mechanisms by which each run and
near-repetition is derived. Finally, Section 6 provides concluding remarks
and links to detailed proofs.

We conclude this section by giving the promised definition of suitability:

Definition 1 An ordered pair (p, q) of nonempty binary strings is said to
be suitable if and only if

• p is primitive (that is, p has no nonempty border);

• p is not a suffix of q;

• q is neither a prefix nor a suffix of p;

• q is not p-regular.

Definition 2 Given binary strings p and q, q is said to be p-regular if and
only if q = upvu for some choice of (possibly empty) substrings u and v.

Actually, the second definition is a simplified one used in [FLS03], where it
was mentioned that the algorithm would actually work for a more restrictive
definition of p-regularity.

The more restrictive definition, according to Definition 1, permits a greater
number of suitable patterns to be used. The proofs of the lemmas and theo-
rems of this paper all use the more restrictive definition, however, similarly
as in [FLS03], the precise nature of the definition has no direct bearing on
the workings and nature of the repetition algorithm.

The more restrictive definition as given in [FLS03] contains typos, and so
we repeat it here in corrected form:

Definition 3 Given binary strings p and q, q is said to be p-regular if
and only if there exist (possibly empty) strings u, v together with nonnegative
integers n1, n2, . . . , nk, k ≥ 1, r ≥ 1, such that

4

• the integers ni assume at most two distinct values — that is,

∣

∣{ni : i ∈ 1..k}
∣

∣ ≤ 2;

• q = (up
r
vp

n1)(up
r
vp

n2) · · · (up
r
vp

nk)u for some u, v, r ≥ 0, where
v = ε (the empty string) if r = 0.

Also for clarity and economy of presentation, we confine ourselves in this
paper, without loss of generality, to the case i < j; that is, to expansions in
which a always maps into the short block p

i
q, b into the long block p

j
q.

2 Overview

It is well known [C81] that a string x[1..n] can contain O(n log n) distinct
repetitions x[s..f] = u

e, where 1 ≤ s < f ≤ n, u is the generator (and
not a repetition), |u| the period, and e ≥ 2 the exponent. Thus a repetition
in x can be specified by a triple

(s, g, e),

where g = |u| is the minimum period and (s, g, e + 1) is not a repetition. A
run (maximal periodicity) in x is a nonempty substring x[s..f] = u

e
u

′ of
minimum period |u| > |u′|, e ≥ 2, that is nonextendible (neither x[s−1..f]
nor x[s..f+1] is a substring of period |u|). We call u

′ the right extension

of the run. Thus a run in x can be specified by a 4-tuple

(s, g, e, t),

where t = |u′| ∈ 0..g− 1 is the length of the right extension that we call the
tail. The run was first defined and used in [M89]; it was shown in [KK00]
that the number of runs in x is O(n). As explained in [M89], computing all
the runs in x implicitly yields all the repetitions.

Suppose that a sequence of expansions (2) has been found that operates
on x0 = a, yielding successively

xr = σr(xr−1), r = 1, 2, . . . , k,

where x = xk is a two-pattern string of scope λ. Of course if a run u
t
u

′

exists in xr−1, then its expansion σr(u
t
u

′) is a substring of a run of minimum

5

period |σr(u)| in xr. Thus every run in xr−1 expands into a corresponding
run in xr.

However there may in addition be runs in xr that do not result from runs
in xr−1. To take a very simple example, every mapping under σr of a single
letter into p

h
q, h ≥ 2, must yield a run of minimum period |p| (since by

the definition of regularity, p must be primitive). As for Sturmian strings
[FKS00], it turns out that, except for “short” runs (defined below), every run
in xr can be identified as either an expansion of a run in xr−1 or derived
from a run in xr−1 or from one of only three other configurations in xr−1:

aubu, buau, buaaub, (4)

where u can be any substring (including ε, a or b) of xr−1. It is natural to call
these configurations near-repetitions: reversing the first letter (a→ b, b→
a) of the first two configurations, and reversing both the first and last letters
of the last configuration transforms it into squares. For obvious reasons we
call the configuration aubbua also a near-repetition and will include it in
the set of configurations computed by our algorithm though it is not really
needed for the computation of runs.

Definition 4 A run u
e
u

′ or a near-repetition (4) in a two-pattern string of
scope λ is said to be short if |u| ≤ 3λ; otherwise, long.

We are now able to state the fundamental result of this paper:

Theorem 1 Every long run or long near-repetition in an expanded two-
pattern string xr = σr(xr−1), r = 1, 2, . . . , k, can be computed in O(1)
steps from exactly one of the runs or near-repetitions in xr−1.

Proof See Sections 3–5. 2

Based on this result, our algorithmic strategy for the computation of runs
in a two-pattern string (3) is simple. For each r = 1, 2, . . . , k, we

(1) scan xr to compute the short configurations (runs and near-repetitions)
by brute force;

(2) compute the long runs in xr from the configurations already computed
in xr−1;

6

L ← ∅
for g ← 1 to 3λ do

s0 ← 1
while s0 ≤ n−2g+1 do

s← s0

while x[s] = x[s+g] do
s← s+1

if s−s0 ≥ g then

L
+
←

(

s0, g, ⌊(s+g−1)/g⌋, (s+g−1) mod g
)

s0 ← s+1

Figure 1: Brute Force for Short Runs

(3) compute the long near-repetitions in xr from the configurations of
xr−1.

Thus, after k steps, the runs in x = xk are computed, as required.
Figure 1 shows the brute force algorithm that computes a list L of 4-tuples

that identify all the short runs of period at most 3λ in x[1..n]. It is not hard
to show that this algorithm requires exactly 3λ(n−3λ) letter comparisons,
hence Θ(n) time when λ is a constant. The brute force calculations for short
near-repetitions are similar.

Since by Theorem 1 every long configuration (run or near-repetition) can
be computed in O(1) time, and since the total number of configurations is

linear in |xr| [KK00], it follows that the rth step of this iteration requires
Θ(|xr|) time for the calculation of long configurations. Since by (1)

|xr| ≥ 2|xr−1|,

we conclude that the total time requirement for computing all short and long
configurations in x is Θ(|x|).

3 Runs & Their Expansions

In this section we first provide a complete explanation of the processing
required to compute a run in an expansion σ(x) from an existing run in x.
The explanation is nontechnical and makes use of an extended example to
clarify the situations that can arise.

7

Of course the computation of runs in σ(x) from runs in x is just one
of many possible cases: runs from near-repetitions of type aubu, or near-
repetitions of type aubbua from runs, and so on. At the end of this section
we again use examples in order to provide insight into these cases. But the
main point is this: the pattern of processing is in all cases the same, the
variations are in detail only.

Observe that since i < j, in every expansion a is transformed into a short

block, b into a long block. Thus expansions may affect the starting position
s of an expanded run, its period g, and its tail t, according to the number of
occurrences of a and b in p and q. To make the calculations associated with
runs easier, we represent them as follows:

(s, g, e, t) =
(

(sa, sb), (ga, gb), e, (ta, tb)
)

,

where

• sµ is the number of occurrences of letter µ preceding the starting posi-
tion of the run;

• gµ is the number of occurrences of letter µ in the generator;

• tµ is the number of occurrences of letter µ in the run’s right extension.

Consider for instance a string

1 2 3 4 5 6 7 8

x = a a a b a b a a
(5)

In our notation the run (3, 2, 2, 1) will be designated
(

(2, 0), (1, 1), 2, (1, 0)
)

.
Note that simply summing the elements in each pair (adding 1 in the case of
the starting position) enables us to recapture the usual representation. Now
suppose that x is expanded by σ = [ab, bbb, 2, 3]3, yielding y = σ(x):

1234567 8911111 1111122 222222223 3333333 334444444 4445555 5555556

01234 567890 1 234567890 1234567 890123456 7890123 4567890

ababbbb ababbbb ababbbb abababbbb ababbbb abababbbb ababbbb ababbbb
(6)

Let pµ (respectively, qµ) denote the number of occurrences of µ in p

(respectively, q), where µ = a or b. Each a in x contributes ipa + qa new
a’s in the expanded string y, while each b in x contributes jpa + qa new a’s.

8

Similarly, each a in x contributes ipb + qb new b’s in y, and each b jpb + qb

new b’s. Thus in order to compute the effect of σ on each pair (ha, hb) listed
in the run for x, we need only compute a transformation τ as follows:

τ(ha, hb) =
(

ha(ipa + qa) + hb(jpa + qa), ha(ipb + qb) + hb(jpb + qb)
)

=
(

(hai + hbj)pa + (ha + hb)qa, (hai + hbj)pb + (ha + hb)qb

)

.

In our example, pa = 1, pb = 1, qa = 0, qb = 3, i = 2, and j = 3, so that

τ(2, 0) =
(

(2·2 + 0·3)·1 + (2 + 0)·0, (2·2 + 0·3)·1 + (2 + 0)·3
)

= (4, 10),

while similar calculations yield τ(1, 1) = (5, 11), τ(1, 0) = (2, 5). Hence the
expanded string (6) contains the expanded run ρ0 =

(

(4, 10), (5, 11), 2, (2, 5)
)

.
Almost. Examination of (6) reveals that ρ0 is not really a run since the
leading square can be extended to the left by 8 positions — more precisely,
by (2, 6).

In general, we must recognize three situations:

1. The original run starts at position 1 of the original string. Then the
leading square of the expanded run is not left-extendible.

2. The run starts at position 2. Then the leading square of the expanded
run can be left-extended by i|p| positions; that is, by (ipa, ipb). The
starting position must be decrement accordingly.

3. The run starts at a position ≥ 3. Then the expanded run can be
left-extended by (ipa, ipb) as in case 2, but in addition by gcs(p, q) =
|GCS(p, q)|, the length of the greatest common suffix of p and q.
Let gcsa(p, q) denote the number of a’s in GCS(p, q), gcsb(p, q) the
number of b’s. The total left extension of the run therefore amounts to
(

ipa + gcsa(p, q), ipb + gcsb(p, q)
)

. Again, the starting position must
be decrement by this amount.

In our example case 3 applies. GCS(p, q) = b, and so gcsa(p, q) = 0 and
gcsb(p, q) = 1. Hence the total left extension will be (2·1+0+0, 2·1+3+1) =
(2, 6). Therefore we must update the starting position to (4, 10) − (2, 6) =
(2, 4), yielding the expanded run ρ1 =

(

(2, 4), (5, 11), 2, (2, 5)
)

. This looks
much better, but it is still not correct: it can easily be checked that the right
extension should have been (4, 7) rather than (2, 5).

In general, we must recognize two situations:

9

1. The right extension of the original run extends all the way to the end of
the string; that is, there is no extra letter beyond the end of the exten-
sion. Then there is no additional right extension to the one computed
directly.

2. Otherwise there is an additional right extension of i|p| positions plus
gcp(p, q) = |GCP (p, q)| positions, where GCP (p, q) is the greatest
common prefix of p and q. More precisely, there is an additional right-
extension

(

ipa + gcpa(p, q), ipb + gcpb(p, q)
)

.

In our example, case 2 applies. Thus there is (2·1 + 0, 2·1 + 0) = (2, 2)
additional right extension. Hence we must modify the run to include the
additional right extension:

(

(2, 4), (5, 11), 2, (4, 7)
)

. This almost looks correct
except for one problem: a careful examination of (6) reveals that in fact the
run contains a cube, so we should have e = 3. The explanation is simple: by
expansion, the run gained (2, 6) in left extension and (4, 7) in right extension,
altogether (6, 13), enough gain to make another repeat of the generator that
requires (5, 11). Hence we increment the exponent and reduce the right
extension:

(

(2, 4), (5, 11), 2, (6, 13)
)

=
(

(2, 4), (5, 11), 3, (1, 2)
)

.

Finally we have the proper expanded run! Observe the calculation requires
only a restricted number of elementary operations on the four elements of
the run together with knowledge of gcs(p, q) and gcp(p, q) (of course pre-
computed once only).

Based on this example, we make the following claim:

a proper expansion of a run in x to a run in σ(x) is computable in
O(1) time

(7)

However, as noted above, runs in σ(x) do not arise solely as expansions of
runs in x. For instance, in our example, each a in (5) gives rise to a substring
ababbb of (6) that contains two runs, ababbbbb and ababbbb. These new runs
are of course short and easy to determine using brute force.

But there are less obvious runs that arise during an expansion. Take for
instance an expansion σ = [aabb, ab, 2, 3]4, and consider a near-repetition ab
in the string x to be expanded: ab will expand to

aabb aabb ab aabb aabb aabb ab

10

that contains a run with generator u = ba. So we must somehow track near-
repetitions of type ab in x in order to keep track of all runs as they arise in
σ(x).

One more example. Consider a near-repetition aabaa in a string x to be
expanded by σ = [ab, bbb, 2, 3]3: aabaa expands to

ababbbb ababbbb abababbbb ababbbb ababbbb

that contains the run (ababbbb ababbbb ab)(ababbbb ababbbb ab)ab. So we must
somehow track near-repetitions of type aabaa in x in order to keep track of
all runs as they arise in σ(x). Note that, unlike the previous example, the
near-repetition ab here does not give rise to any new run.

At this point the reader may believe that there simply is no possibility of
tracking all the possible ways that runs can arise in σ(x). But it is actually
straightforward, though broken down into many special cases that result from
the combinations of configurations we need to track.

4 The Algorithm

In this section we return to the overview of the algorithm given in Section 2,
interpreted now in the light of the examples and analysis of Section 3.

As indicated in Section 2, our algorithm is a simple iteration that, for
each r = 1, 2, . . . , k, computes the configurations (runs and near-repetitions)
in xr = σr(xr−1) based on those already computed for xr−1. The iteration
begins with x0 = a.

list type of
configuration

L1 runs
L2 aubu
L3 buau

L4 buaaub
L5 aubbua

Table 1: Lists & Configurations

For each r, we maintain five lists Lm(xr), m = 1, 2, . . . , 5, corresponding
to the five types of configurations, as shown in Table 1. When xr has been

11

completely processed, then, L1(xr) lists all the runs in xr, L2(xr) all the
near-repetitions of type aubu, and so on. For r = 0, all the lists Lm(x0) are
of course empty. Note that while a 4-tuple is required to specify each run, a
near-repetition can be specified using only a pair (s, g), where g = |u|. This
is because the form of each near-repetition is known in advance — there is
no exponent e and no right extension u

′.

xr−1

L1 L2 L3 L4

L1 (7), (9) (10) (11) (12)
L2 (13) (14) (15) (16)

xr L3 (17) (18) (19) (20)
L4 (21) (22) (23) (24)
L5 (25) (26) (27) (28)

Table 2: Dependency of Lm(xr) on Lm′(xr−1)

For each r = 1, 2, . . . , k, we begin by computing the short configurations
of each type m, using algorithms similar to the one specified in Figure 1, and
placing them in their corresponding lists Lm(xr). Then the lists are updated
from the lists Lm′(xr−1) for xr−1, according to procedures πm as follows:

Lm(xr)
+
← πm

(

L1(xr−1),L2(xr−1),L3(xr−1),L4(xr−1)
)

, (8)

m = 1, 2, . . . , 5. In other words, the long configurations in each list Lm(xr)
are computed from the configurations (long and short) in the four lists
Lm′(xr−1), m′ = 1, 2, 3, 4. The relationship between the lists for xr and
those for xr−1 is shown explicitly in Table 2, where the reference numbers in
each position refer to the calculations specified in the text ((7) in Section 3
and (9)–(28) in Section 5).

With the information provided by (8) and Table 2, we can now give
a structured overview of the processing that computes the runs in a two-
pattern string x. The algorithm is given in Figure 2, where we suppose that
the scope λ and k expansions σr = [pr, qr, ir, jr]λ, r = 1, 2, . . . , k, are given.
The algorithm stores only two sets of list for each r, those corresponding to
xr−1 and xr.

In order to establish both the correctness and complexity of the all-runs
algorithm, we need essentially to establish Theorem 1. We have already seen

12

δ ← 0; x
(δ) ← a

for m← 1 to 5 do
L

(δ)
m ← ∅

for r ← 1 to k do
x

(1−δ) ← σr

(

x
(δ)

)

for m← 1 to 5 do
L

(1−δ)
m ← short configs (|u| ≤ 3λ)

of type m in x
(1−δ)

for m← 1 to 5 do
L

(1−δ)
m

+
← πm

(

L
(δ)
1 ,L

(δ)
2 ,L

(δ)
3 ,L

(δ)
4

)

δ ← 1−δ
output L

(δ)
1

Figure 2: Computing All the Runs in Sk(a)

(Figure 1) that the short configurations can be computed in time linear in
string length, and it is straightforward to verify that the calculations (7) and
(9)–(28) can all be performed in constant time given a precomputation of gcs
and gcp values. Thus, as observed in Section 2, the overall time requirement
of the algorithm is Θ(|x|).

It remains then to be shown that

• The calculations (7) and (9)–(28) are correct; that is, that the runs
specified are in fact those that arise as a result of an expansion. These
proofs are available in the web supplement identified for each calcula-
tion in Section 5.

• The calculations are complete; that is, that no runs other than those
specified can occur in an expansion σ(x). As discussed in Section 6,
the completeness proof is also available on the web.

5 Deriving the Runs and Near-Repetitions

In this section we give the conditions under which a configuration (run or
near-repetition) in an expanded string y = σ(x) can be derived from a
configuration in x, and we specify in each case the form of the expanded
configuration. We work with a general expansion σ = [p, q, i, j]; for the sake
of brevity, we use u to denote the expansion σ(u) of u.

13

Deriving run from run (not run expansion!). (9)

1. The run in x has generator a, q = p1p2, p1 6= ε, p2 6= ε, p = p1p̂1 =
p̂2p2.
For every 2 ≤ r < i and every square aa in the run: σ(aa) =
p

i−r−1
p

r+1
qp

r+1
p

i−r−1
q = p

i−r−1
pp

r
qp

r
pp

i−r−1
q =

p
i−r−1

p̂2

[

p2p
r
p1

][

p2p
r
p1

]

p̂1p
i−r−1

q.
The derived run has exponent 2 and the square

[

p2p
r
p1

][

p2p
r
p1

]

has maximal left-extension of size gcs(p1, p̂2) and has maximal right-
extension of size gcp(p2, p̂1).
(See Corollary 1, case 3 for aa, in web supplement for proof.)
(Note: the conditions imply that p1 6= p̂2 and p2 6= p̂2 — otherwise
p = q, and p1 6= p2 — otherwise p has a non-trivial border p1, and so
the squares produced by this derivation are distinct from the expansion
of aa)

2. The run in x has generator b, q = p1p2, p1 6= ε, p2 6= ε, p = p1p̂1 =
p̂2p2.
For every 2 ≤ r < j and every square bb in the run: σ(bb) =
p

j−r−1
p

r+1
qp

r+1
p

j−r−1
q = p

j−r−1
pp

r
qp

r
pp

j−r−1
q =

p
j−r−1

p̂2

[

p2p
r
p1

][

p2p
r
p1

]

p̂1p
j−r−1

q.
The derived run has exponent 2 and the square

[

p2p
r
p1

][

p2p
r
p1

]

has maximal left-extension of size gcs(p1, p̂2) and has maximal right-
extension of size gcp(p2, p̂1).
(See Corollary 1, case 3 for bb, in web supplement for proof.)
(Note: the conditions imply that p1 6= p̂2 and p2 6= p̂2 — otherwise
p = q, and p1 6= p2 — otherwise p has a non-trivial border p1, and so
the squares produced by this derivation are distinct from the expansion
of bb)

3. The run in x has a string a as a generator, p = q1q2, q1 6= ε, q2 6= ε,
q = q1q̂1 = q̂2q2, i = 2r+1 for some r ≥ 2.
σ(aa) = p

i
qp

i
q = p

i
qp

2r+1
q = q̂2

[

q2p
r
q1

][

q2p
r
q1

]

q̂1q.
The derived run has exponent 2 and the square

[

q2p
r
q1

][

q2p
r
q1

]

has
maximal left-extension of size gcs(q1, q̂2) and maximal right-extension
of size gcp(q2, q̂1).
(See Corollary 1, case 6, for aa in the web supplement for proof.)

14

(Note: the conditions imply that q1 6= q̂2 and q2 6= q̂2 — otherwise
p = q, and q1 6= q2 — otherwise p has a non-trivial border q1, and so
the squares produced by this derivation are distinct from the expansion
of aa)

4. The run in x has a string b as a generator, p = q1q2, q1 6= ε, q2 6= ε,
q = q1q̂1 = q̂2q2, j = 2r+1 for some r ≥ 2.
σ(aa) = p

j
qp

j
q = p

j
qp

2r+1
q = q̂2

[

q2p
r
q1

][

q2p
r
q1

]

q̂1q.
The derived run has exponent 2 and the square

[

q2p
r
q1

][

q2p
r
q1

]

has
maximal left-extension of size gcs(q1, q̂2) and maximal right-extension
of size gcp(q2, q̂1).
(See Corollary 1, case 6 for bb, in the web supplement for proof.)
(Note: the conditions imply that q1 6= q̂2 and q2 6= q̂2 — otherwise
p = q, and q1 6= q2 — otherwise p has a non-trivial border q1, and so
the squares produced by this derivation are distinct from the expansion
of bb)

Deriving run from near-repetition aubu. (10)

1. The near-repetition aubu in x is followed by an a, j ≤ 2i. σ(aubua) =
p

i
qup

j
qup

i
q =

[

p
i
qup

j−i
][

p
i
qup

j−i
]

p
2i−j

q.
The derived run has exponent 2 and the square

[

p
i
qup

j−i
][

p
i
qup

j−i
]

has maximal left-extension of size 0 (if aubua is an initial segment of
x) or of size gcs(p, q) and has maximal right-extension of size (i|p| +
gcp(p, q)).
(See Corollary 1, case 2, in web supplement for proof.)

2. u = ε, q = p1p2, p1 6= ε, p2 6= ε, p = p1p̂1 = p̂2p2.
For every 2 ≤ r < i: σ(ab) = p

i−r−1
p

r+1
qp

r+1
p

j−r−1
q =

p
i−r−1

pp
r
qp

r
pp

j−r−1
q = p

i−r−1
p̂2

[

p2p
r
p1

][

p2p
r
p1

]

p̂1p
j−r−1

q.
The derived run has exponent 2 and the square

[

p2p
r
p1

][

p2p
r
p1

]

has maximal left-extension of size gcs(p1, p̂2) and has maximal right-
extension of size gcp(p2, p̂1).
(See Corollary 1, case 3 for ab, in web supplement for proof.)

3. u = ε, p = q1q2, q1 6= ε, q2 6= ε, q = q1q̂1 = q̂2q2, j = 2r+1 for some
r ≥ 2.

15

σ(ab) = p
i
qp

j
q = p

i
qp

2r+1
q = q̂2

[

q2p
r
q1

][

q2p
r
q1

]

q̂1q.
The derived run has exponent 2 and the square

[

q2p
r
q1

][

q2p
r
q1

]

has
maximal left-extension of size gcs(q1, q̂2) and maximal right-extension
of size gcp(q2, q̂1).
(See Corollary 1, case 6 for ab, in the web supplement for proof.)

4. The near-repetition aubu is followed by an a and is not an initial seg-
ment of x. p = q1q2, q1 6= ε, q2 6= ε, q = q1q̂1 = q̂2q2, j = 2i+1.
σ(·aubua) = ··qp

i
qup

j
qup

i
q = ··q̂2

[

q2p
i
qup

j−i−1
q1

][

q2p
i
up

i
q1

]

q̂1 =
··q̂2

[

q2p
i
qup

i
q1

][

q2p
i
up

i
q1

]

q̂1.
The derived run has exponent 2 and the square

[

q2p
i
qup

i
q1

][

q2p
i
up

i
q1

]

has maximal left-extension of size gcs(q1, q̂2) and maximal right-extension
of size gcp(q2, q̂1).
(See Corollary 1, case 7, in the web supplement for proof.)

Deriving run from near-repetition buau. (11)

1. σ(buau) = p
j
qup

i
qu = p

j−i
[

p
i
qu

][

p
i
qu

]

.
The derived run has exponent 2 and the square

[

p
i
qu

][

p
i
qu

]

has max-
imal left-extension of size gcs(p, q) and maximal right-extension of size
0 (if buau is an end segment of x) or of size (i|p|+ gcp(p, q)).
(See Corollary 1, case 5, in the web supplement for proof.)

2. u = ε, q = p1p2, p1 6= ε, p2 6= ε, p = p1p̂1 = p̂2p2.
For every 2 ≤ r < j: σ(ba) = p

j−r−1
p

r+1
qp

r+1
p

i−r−1
q =

p
j−r−1

pp
r
qp

r
pp

i−r−1
q = p

j−r−1
p̂2

[

p2p
r
p1

][

p2p
r
p1

]

p̂1p
j−r−1

q.
The derived run has exponent 2 and the square

[

p2p
r
p1

][

p2p
r
p1

]

has maximal left-extension of size gcs(p1, p̂2) and has maximal right-
extension of size gcp(p2, p̂1).
(See Corollary 1, case 3 for ba, in web supplement for proof.)

3. u = ε, p = q1q2, q1 6= ε, q2 6= ε, q = q1q̂1 = q̂2q2, i = 2r+1 for some
r ≥ 2.
σ(ba) = p

j
qp

i
q = p

j
qp

2r+1
q = q̂2

[

q2p
r
q1

][

q2p
r
q1

]

q̂1q.
The derived run has exponent 2 and the square

[

q2p
r
q1

][

q2p
r
q1

]

has
maximal left-extension of size gcs(q1, q̂2) and maximal right-extension
of size gcp(q2, q̂1).
(See Corollary 1, case 6 for ba, in the web supplement for proof.)

16

Deriving run from near-repetition buaaub. (12)

1. q = p1p2, p1 6= ε, p2 6= ε, p = p1p̂1 = p̂2p2.
σ(buaaub) = p

j
qup

i
qp

i
qup

j
q =

p
j−i−1

p̂2

[

p2p
i
qup

i
p1

][

p2p
i
qup

i
p1

]

p2p
j−i−1

q.
The derived run has exponent 2 and the square

[

p2p
i
qup

i
p1

][

p2p
i
qup

i
p1

]

has maximal left-extension of size gcs(p1, p̂2) and maximal right-extension
of size gcp(p2, p̂1).
(See Corollary 1, case 4, in the web supplement for proof.)

Deriving near-repetition aubu from run. (13)

1. The run in x has a string a as a generator, q = p1bp2, p = p̂2ap2 =
p1p̂1, for some p1, p̂1, p̂2.
For every 2 ≤ r < i and every square aa in the run: σ(aa) = p

i
qp

i
q =

p
i−r−1

p
r+1

qp
r+1

p
i−r−1

q = p
i−r−1

pp
r
qp

r
pp

i−r−1
q =

p
i−r−1

p̂2

[

a
[

p2p
r
p1

]

b
[

p2p
r
p1

]]

p̂1p
i−r−1

q.
(See Theorem 2 , case 1 for aa, in web supplement for proof.)

2. The run in x has a string b as a generator, q = p1bp2, p = p̂2ap2 =
p1p̂1, for some p1, p̂1, p̂2.
For every 2 ≤ r < j and every square aa in the run: σ(bb) = p

j
qp

j
q =

p
j−r−1

p
r+1

qp
r+1

p
j−r−1

q = p
j−r−1

pp
r
qp

r
pp

j−r−1
q =

p
j−r−1

p̂2

[

a
[

p2p
r
p1

]

b
[

p2p
r
p1

]]

p̂1p
j−r−1

q.
(See Theorem 2, case 1 for bb, in web supplement for proof.)

3. The run in x has generator a, p = q1bq2, q = q̂2aq2, for some q1, q2,
q̂2.
For every 2 ≤ r ≤ i/2−1 and every square aa in the run: σ(aa) =
p

i
qp

i
q = p

i
qp

2r+2
q = p

i
qp

r
pp

r
pq = p

i
q̂2

[

a
[

q2p
r
q1

]

b
[

q2p
r
q1

]]

bq2q.
(See Theorem 2, case 5 for aa, in web supplement for proof.)

4. The run in x has generator b, p = q1bq2, q = q̂2aq2, for some q1, q2,
q̂2.
For every 2 ≤ r ≤ j/2−1 and every square bb in the run: σ(bb) =
p

j
qp

j
q = p

j
qp

2r+2
q = p

j
qp

r
pp

r
pq = p

j
q̂2

[

a
[

q2p
r
q1

]

b
[

q2p
r
q1

]]

bq2q.
(See Theorem 2, case 5 for bb, in web supplement for proof.)

17

5. The run in x has generator a, p = q1bq2, q = q̂2aq2 = q1q̂1, for some
q1, q2, q̂1, q̂2, i = 2r+1 for some 2 ≤ r.
For any square aa in the run: σ(aa) = p

i
qp

i
q = p

i
qp

2r+1
q =

p
i
qp

r
pp

r
q = p

i
q̂2

[

a
[

q2p
r
q1

]

b
[

q2p
r
q1

]]

q̂1.
(See Theorem 2, case 9 for aa, in web supplement for proof.)

6. The run in x has generator b, p = q1bq2, q = q̂2aq2 = q1q̂1, for some
q1, q2, q̂1, q̂2, j = 2r+1 for some 2 ≤ r.
For any square bb in the run: σ(bb) = p

j
qp

j
q = p

j
qp

2r+1
q =

p
j
qp

r
pp

r
q = p

j
q̂2

[

a
[

q2p
r
q1

]

b
[

q2p
r
q1

]]

q̂1.
(See Theorem 2, case 9 for bb, in web supplement for proof.)

Deriving near-repetition aubu from near-repetition aubu. (14)

1. u = ε, q = p1bp2, p = p̂2ap2 = p1p̂1, for some p1, p̂1, p̂2.
For every 2 ≤ r < j: σ(ab) = p

i
qp

j
q =

p
i−r−1

p
r+1

qp
r+1

p
j−r−1

q = p
i−r−1

pp
r
qp

r
pp

j−r−1
q =

p
i−r−1

p̂2

[

a
[

p2p
r
p1

]

b
[

p2p
r
p1

]]

p̂1p
j−r−1

q.
(See Theorem 2, case 1 for ab, in web supplement for proof.)

2. u = ε, p = q1bq2, q = q̂2aq2, for some q1, q2, q̂2.
For every 2 ≤ r ≤ j/2−1: σ(ab) = p

i
qp

j
q = p

i
qp

2r+2
q = p

i
qp

r
pp

r
pq =

p
i
q̂2

[

a
[

q2p
r
q1

]

b
[

q2p
r
q1

]]

bq2q.
(See Theorem 2, case 5 for ab, in web supplement for proof.)

3. The near-repetition aubu is followed by a b and it is not an initial
segment of x, p = q1bq2, q = q̂2aq2, for some q1, q2, q̂2, i < j+1/2.
σ(·aubub) = ··qp

i
qup

j
qup

j
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
pp

i
q =

··q̂2

[

a
[

q2p
i
qup

j−i−1
q1

]

b
[

q2p
i
qup

j−i−1
q1

]]

bq2p
i
q.

(See Theorem 2, case 6, in web supplement for proof.)

4. The near-repetition aubu is followed by a a and it is not an initial
segment of x, p = q1bq2, q = q̂2aq2, for some q1, q2, q̂2, i ≥ j+1/2.
σ(·aubua) = ··qp

i
qup

j
qup

i
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
pp

2i−j−1
q =

··q̂2

[

a
[

q2p
i
qup

j−i−1
q1

]

b
[

q2p
i
qup

j−i−1
q1

]]

bq2p
2i−j−1

q.
(See Theorem 2, case 7, in web supplement for proof.)

18

5. The near-repetition aubu is followed by a a and it is not an initial
segment of x, p = q1bq2, q = q̂2aq2, for some q1, q2, q̂2, j = 2i.
σ(·aubua) = ··qp

i
qup

j
qup

i
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
pq =

··q̂2

[

a
[

q2p
i
qup

j−i−1
q1

]

b
[

q2p
i
qup

j−i−1
q1

]]

bq2q.
(See Theorem 2, case 8, in web supplement for proof.)

6. u = ε, p = q1bq2, q = q̂2aq2 = q1q̂1, for some q1, q2, q̂1, q̂2, j = 2r+1
for some 2 ≤ r.
σ(ab) = p

i
qp

j
q = p

i
qp

2r+1
q = p

i
qp

r
pp

r
q =

p
j
q̂2

[

a
[

q2p
r
q1

]

b
[

q2p
r
q1

]]

q̂1.
(See Theorem 2, case 9 for ab, in web supplement for proof.)

7. The near-repetition aubu is followed by an a and it is not an initial
segment of x, p = q1bq2, q = q̂2aq2 = q1q̂1, for some q1, q2, q̂1, q̂2,
j = 2i+1.
σ(·aubua) = ··qp

i
qup

j
qup

i
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
q =

··q̂2

[

a
[

q2p
i
qup

j−i−1
q1

]

b
[

q2p
i
qup

j−i−1
q1

]]

q̂1.
(See Theorem 2, case 10, in web supplement for proof.)

Deriving near-repetition aubu from near-repetition buau. (15)

1. u = ε, q = p1bp2, p = p̂2ap2 = p1p̂1, for some p1, p̂1, p̂2.
For every 2 ≤ r < i: σ(ba) = p

j
qp

j
q =

p
j−r−1

p
r+1

qp
r+1

p
i−r−1

q = p
j−r−1

pp
r
qp

r
pp

i−r−1
q =

p
j−r−1

p̂2

[

a
[

p2p
r
p1

]

b
[

p2p
r
p1

]]

p̂1p
i−r−1

q.
(See Theorem 2, case 1 for ba, in web supplement for proof.)

2. u = ε, q = q1bp2, p = p̂2ap2, for some q1, p2, p̂2.
σ(ba) = p

j
qp

i
q = p

j−i−1
ppiqp

i
q = p

j−i−1
p̂2

[

a
[

p2p
i
q1

]

b
[

p2p
i
q1

]]

bp2.
(See Theorem 2, case 3, in web supplement for proof.)

3. u 6= ε, q = q1bp2, p = p̂2ap2, for some q1, p2, p̂2.
Since u 6= ε, u = u1q for some u1. Thus σ(buau) = p

j
qup

i
qu =

p
j
qu1qp

i
qu1q = p

j−i−1
pp

i
qu1qp

i
qu1q =

p
j−i−1

p̂2

[

a
[

p2pp
i
qu1q1

]

b
[

p2p
i
qu1

]]

bp2.
(See Theorem 2, case 4, in web supplement for proof.)

19

4. u = ε, p = q1bq2, q = q̂2aq2, for some q1, q2, q̂2.
For every 2 ≤ r ≤ i/2−1: σ(ba) = p

j
qp

i
q = p

j
qp

2r+2
q = p

j
qp

r
pp

r
pq =

p
j
q̂2

[

a
[

q2p
r
q1

]

b
[

q2p
r
q1

]]

bq2q.
(See Theorem 2, case 5 for ba, in web supplement for proof.)

5. u = ε, p = q1bq2, q = q̂2aq2 = q1q̂1, for some q1, q2, q̂1, q̂2, i = 2r+1
for some 2 ≤ r.
σ(ba) = p

j
qp

i
q = p

j
qp

2r+1
q = p

j
qp

r
pp

r
q =

p
j
q̂2

[

a
[

q2p
r
q1

]

b
[

q2p
r
q1

]]

q̂1.
(See Theorem 2, case 9 for ba, in web supplement for proof.)

Deriving near-repetition aubu from near-repetition buaaub. (16)

1. q = p1bp2, p = p̂2ap2 = p1p̂1, for some p1, p2, p̂2.
σ(buaaub) = p

j
qup

i
qp

i
qup

j
q = p

j−i−1
pp

i
qup

i
qp

i
qup

i
pp

j−i−1
q =

p
j−i−1

p̂2

[

a
[

p2p
i
qup

i
p1

]

b
[

p2p
i
qup

i
p1

]]

p̂1p
j−i−1

q.
(See Theorem 2, case 2, in web supplement for proof.)

Deriving near-repetition buau from run. (17)

1. The run in x has a string a as a generator, q = p1ap2, p = p̂2bp2 =
p1p̂1, for some p1, p̂1, p̂2.
For every 2 ≤ r < i and every square aa in the run: σ(aa) = p

i
qp

i
q =

p
i−r−1

p
r+1

qp
r+1

p
i−r−1

q = p
i−r−1

pp
r
qp

r
pp

i−r−1
q =

p
i−r−1

p̂2

[

b
[

p2p
r
p1

]

a
[

p2p
r
p1

]]

p̂1p
i−r−1

q.
(See Theorem 3, case 1 for aa, in web supplement for proof.)

2. The run in x has a string b as a generator, q = p1ap2, p = p̂2bp2 =
p1p̂1, for some p1, p̂1, p̂2.
For every 2 ≤ r < j and every square aa in the run: σ(bb) = p

j
qp

j
q =

p
j−r−1

p
r+1

qp
r+1

p
j−r−1

q = p
j−r−1

pp
r
qp

r
pp

j−r−1
q =

p
j−r−1

p̂2

[

b
[

p2p
r
p1

]

a
[

p2p
r
p1

]]

p̂1p
j−r−1

q.
(See Theorem 3, case 1 for bb, in web supplement for proof.)

20

3. The run in x has generator a, p = q1aq2, q = q̂2bq2, for some q1, q2,
q̂2.
For every 2 ≤ r ≤ i/2−1 and every square aa in the run: σ(aa) =
p

i
qp

i
q = p

i
qp

2r+2
q = p

i
qp

r
pp

r
pq = p

i
q̂2

[

b
[

q2p
r
q1

]

a
[

q2p
r
q1

]]

aq2q.
(See Theorem 3, case 5 for aa, in web supplement for proof.)

4. The run in x has generator b, p = q1aq2, q = q̂2bq2, for some q1, q2,
q̂2.
For every 2 ≤ r ≤ j/2−1 and every square bb in the run: σ(bb) =
p

j
qp

j
q = p

j
qp

2r+2
q = p

j
qp

r
pp

r
pq = p

j
q̂2

[

b
[

q2p
r
q1

]

a
[

q2p
r
q1

]]

aq2q.
(See Theorem 3, case 5 for bb, in web supplement for proof.)

5. The run in x has generator a, p = q1aq2, q = q̂2bq2 = q1q̂1, for some
q1, q2, q̂1, q̂2, i = 2r+1 for some 2 ≤ r.
For any square aa in the run: σ(aa) = p

i
qp

i
q = p

i
qp

2r+1
q =

p
i
qp

r
pp

r
q = p

i
q̂2

[

b
[

q2p
r
q1

]

a
[

q2p
r
q1

]]

q̂1.
(See Theorem 3, case 9 for aa, in web supplement for proof.)

6. The run in x has generator b, p = q1aq2, q = q̂2bq2 = q1q̂1, for some
q1, q2, q̂1, q̂2, j = 2r+1 for some 2 ≤ r.
For any square bb in the run: σ(bb) = p

j
qp

j
q = p

j
qp

2r+1
q =

p
j
qp

r
pp

r
q = p

j
q̂2

[

b
[

q2p
r
q1

]

a
[

q2p
r
q1

]]

q̂1.
(See Theorem 3, case 9 for bb, in web supplement for proof.)

Deriving near-repetition buau from near-repetition aubu. (18)

1. u = ε, q = p1ap2, p = p̂2bp2 = p1p̂1, for some p1, p̂1, p̂2.
For every 2 ≤ r < j: σ(ab) = p

i
qp

j
q =

p
i−r−1

p
r+1

qp
r+1

p
j−r−1

q = p
i−r−1

pp
r
qp

r
pp

j−r−1
q =

p
i−r−1

p̂2

[

b
[

p2p
r
p1

]

a
[

p2p
r
p1

]]

p̂1p
j−r−1

q.
(See Theorem 3, case 1 for ab, in web supplement for proof.)

2. u = ε, p = q1aq2, q = q̂2bq2, for some q1, q2, q̂2.
For every 2 ≤ r ≤ j/2−1: σ(ab) = p

i
qp

j
q = p

i
qp

2r+2
q = p

i
qp

r
pp

r
pq =

p
i
q̂2

[

b
[

q2p
r
q1

]

a
[

q2p
r
q1

]]

aq2q.
(See Theorem 3, case 5 for ab, in web supplement for proof.)

21

3. The near-repetition aubu is followed by a b and it is not an initial
segment of x, p = q1aq2, q = q̂2bq2, for some q1, q2, q̂2, i < j+1/2.
σ(·aubub) = ··qp

i
qup

j
qup

j
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
pp

i
q =

··q̂2

[

b
[

q2p
i
qup

j−i−1
q1

]

a
[

q2p
i
qup

j−i−1
q1

]]

aq2p
i
q.

(See Theorem 3, case 6, in web supplement for proof.)

4. The near-repetition aubu is followed by a a and it is not an initial
segment of x, p = q1aq2, q = q̂2bq2, for some q1, q2, q̂2, i ≥ j+1/2.
σ(·aubua) = ··qp

i
qup

j
qup

i
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
pp

2i−j−1
q =

··q̂2

[

b
[

q2p
i
qup

j−i−1
q1

]

a
[

q2p
i
qup

j−i−1
q1

]]

aq2p
2i−j−1

q.
(See Theorem 3, case 7, in web supplement for proof.)

5. The near-repetition aubu is followed by a a and it is not an initial
segment of x, p = q1aq2, q = q̂2bq2, for some q1, q2, q̂2, j = 2i.
σ(·aubua) = ··qp

i
qup

j
qup

i
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
pq =

··q̂2

[

b
[

q2p
i
qup

j−i−1
q1

]

a
[

q2p
i
qup

j−i−1
q1

]]

aq2q.
(See Theorem 3, case 8, in web supplement for proof.)

6. u = ε, p = q1aq2, q = q̂2bq2 = q1q̂1, for some q1, q2, q̂1, q̂2, j = 2r+1
for some 2 ≤ r.
σ(ab) = p

i
qp

j
q = p

i
qp

2r+1
q = p

i
qp

r
pp

r
q =

p
j
q̂2

[

b
[

q2p
r
q1

]

a
[

q2p
r
q1

]]

q̂1.
(See Theorem 3, case 9 for ab, in web supplement for proof.)

7. The near-repetition aubu is followed by an a and it is not an initial
segment of x, p = q1aq2, q = q̂2bq2 = q1q̂1, for some q1, q2, q̂1, q̂2,
j = 2i+1.
σ(·aubua) = ··qp

i
qup

j
qup

i
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
q =

··q̂2

[

b
[

q2p
i
qup

j−i−1
q1

]

a
[

q2p
i
qup

j−i−1
q1

]]

q̂1.
(See Theorem 3, case 10, in web supplement for proof.)

Deriving near-repetition buau from near-repetition buau. (19)

1. u = ε, q = p1ap2, p = p̂2bp2 = p1p̂1, for some p1, p̂1, p̂2.
For every 2 ≤ r < i: σ(ba) = p

j
qp

j
q =

p
j−r−1

p
r+1

qp
r+1

p
i−r−1

q = p
j−r−1

pp
r
qp

r
pp

i−r−1
q =

p
j−r−1

p̂2

[

b
[

p2p
r
p1

]

a
[

p2p
r
p1

]]

p̂1p
i−r−1

q.
(See Theorem 3, case 1 for ba, in web supplement for proof.)

22

2. u = ε, q = q1ap2, p = p̂2bp2, for some q1, p2, p̂2.
σ(ba) = p

j
qp

i
q = p

j−i−1
ppiqp

i
q = p

j−i−1
p̂2

[

b
[

p2p
i
q1

]

a
[

p2p
i
q1

]]

ap2.
(See Theorem 3, case 3, in web supplement for proof.)

3. u 6= ε, q = q1ap2, p = p̂2bp2, for some q1, p2, p̂2.
Since u 6= ε, u = u1q for some u1. Thus σ(buau) = p

j
qup

i
qu =

p
j
qu1qp

i
qu1q = p

j−i−1
pp

i
qu1qp

i
qu1q =

p
j−i−1

p̂2

[

b
[

p2pp
i
qu1q1

]

a
[

p2p
i
qu1

]]

ap2.
(See Theorem 3, case 4, in web supplement for proof.)

4. u = ε, p = q1aq2, q = q̂2bq2, for some q1, q2, q̂2.
For every 2 ≤ r ≤ i/2−1: σ(ba) = p

j
qp

i
q = p

j
qp

2r+2
q = p

j
qp

r
pp

r
pq =

p
j
q̂2

[

b
[

q2p
r
q1

]

a
[

q2p
r
q1

]]

aq2q.
(See Theorem 3, case 5 for ba, in web supplement for proof.)

5. u = ε, p = q1aq2, q = q̂2bq2 = q1q̂1, for some q1, q2, q̂1, q̂2, i = 2r+1
for some 2 ≤ r.
σ(ba) = p

j
qp

i
q = p

j
qp

2r+1
q = p

j
qp

r
pp

r
q =

p
j
q̂2

[

b
[

q2p
r
q1

]

a
[

q2p
r
q1

]]

q̂1.
(See Theorem 3, case 9 for ba, in web supplement for proof.)

Deriving near-repetition buau from near-repetition buaaub. (20)

1. q = p1ap2, p = p̂2bp2 = p1p̂1, for some p1, p2, p̂2.
σ(buaaub) = p

j
qup

i
qp

i
qup

j
q = p

j−i−1
pp

i
qup

i
qp

i
qup

i
pp

j−i−1
q =

p
j−i−1

p̂2

[

b
[

p2p
i
qup

i
p1

]

a
[

p2p
i
qup

i
p1

]]

p̂1p
j−i−1

q.
(See Theorem 3, case 2, in web supplement for proof.)

Deriving near-repetition buaaub from run. (21)

1. The run has generator a, p̂2bp2 = p1bp̂1, q = p1aap2, for some p1, p̂1,
p2, and p̂2, i ≥ 3.
For every square aa of the run: σ(aa) = p

i
qp

i
q = pp

i−1
qp

i−1
pq =

p̂2

[

b
[

p2p
i−1

p1

]

aa
[

p2p
i−1

p1

]

b
]

p̂1q.
(See Theorem 4, case 1 for aa, in the web supplement for proof.)

23

2. The run has generator b, p̂2bp2 = p1bp̂1, q = p1aap2, for some p1, p̂1,
p2, and p̂2, j ≥ 3.
For every square bb of the run: σ(bb) = p

j
qp

j
q = pp

j−1
qp

j−1
pq =

p̂2

[

b
[

p2p
j−1

p1

]

aa
[

p2p
j−1

p1

]

b
]

p̂1q.
(See Theorem 4, case 1 for bb, in the web supplement for proof.)

3. The run has generator a, p = a, q = bq̂1 = q̂2b, i = 2r, r ≥ 3.
σ(aa) = p

i
qp

i
q = p

i
qp

2r
q = p

i
q̂2

[

b
[

p
r−1

]

aa
[

p
r−1

]

b
]

q̂1.
(See Theorem 4, case 3 for aa, in the web supplement for proof.)

4. The run has generator b, p = a, q = bq̂1 = q̂2b, j = 2r, r ≥ 3.
σ(bb) = p

j
qp

j
q = p

j
qp

2r
q = p

j
q̂2

[

b
[

p
r−1

]

aa
[

p
r−1

]

b
]

q̂1.
(See Theorem 4, case 3 for bb, in the web supplement for proof.)

5. The run has generator a, q = q̂2bq2 = q1bq̂1, p = q1aaq2, i = 2r+1,
r ≥ 3.
For any square aa in the run: σ(aa) = p

i
qp

i
q = p

i
qp

2r+1
q = qp

r
pp

r
q =

p
i
q̂2

[

b
[

q2p
r
]

q1

]

aa
[

q2p
r
q1

]

b
]

q̂1.
(See Theorem 4, case 5 for aa, in the web supplement for proof.)

6. The run has generator b, q = q̂2bq2 = q1bq̂1, p = q1aaq2, j = 2r+1,
r ≥ 3.
For any square aa in the run: σ(bb) = p

j
qp

j
q = p

j
qp

2r+1
q = qp

r
pp

r
q =

p
j
q̂2

[

b
[

q2p
r
]

q1

]

aa
[

q2p
r
q1

]

b
]

q̂1.
(See Theorem 4, case 5 for bb, in the web supplement for proof.)

Deriving near-repetition buaaub from near-repetition aubu. (22)

1. u = ε, p̂2bp2 = p1bp̂1, q = p1aap2, for some p1, p̂1, p2, and p̂2, i ≥ 3.
σ(ab) = p

i
qp

j
q = pp

i−1
qp

i−1
pp

j−i−1
q =

p̂2

[

b
[

p2p
i−1

p1

]

aa
[

p2p
i−1

p1

]

b
]

p̂1p
j−i−1

q.
(See Theorem 4, case 1 for ab, in the web supplement for proof.)

2. u = ε, p = a, q = bq̂1 = q̂2b, j = 2r, r ≥ 3.
σ(ab) = p

i
qp

j
q = p

i
qp

2r
q = p

i
q̂2

[

b
[

p
r−1

]

aa
[

p
r−1

]

b
]

q̂1.
(See Theorem 4, case 3 for ab, in the web supplement for proof.)

24

3. The near-repetition aubu in x is followed by an a and is not an ini-
tial segment of x, p = a, q = bq̂1 = q̂2b, j = 2i+2. σ(·aubua) =
··qp

i
qup

j
qup

i
q = ··q̂2

[

b
[

p
i
qup

j−i−2
]

pp
[

p
i
qup

j−i−2
]

b
]

q̂1 =
··q̂2

[

b
[

p
i
qup

j−i−2
]

aa
[

p
i
qup

j−i−2
]

b
]

q̂1.
(See Theorem 4, case 4, in the web supplement for proof.)

4. u = ε, q = q̂2bq2 = q1bq̂1, p = q1aaq2, j = 2r+1, r ≥ 3.
σ(ab) = p

i
qp

j
q = p

i
qp

2r+1
q = qp

r
pp

r
q =

p
i
q̂2

[

b
[

q2p
r
]

q1

]

aa
[

q2p
r
q1

]

b
]

q̂1.
(See Theorem 4, case 5 for ab, in the web supplement for proof.)

5. The near-repetition aubu in x is followed by an a and is not an initial
segment of x, q = q̂2bq2 = q1bq1, p = q1aaq2, j = 2i+1.
σ(·aubua) = ··qp

i
qup

j
qup

i
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
q =

··q̂2

[

b
[

q2p
i
qup

j−i−1
q1

]

aa
[

q2p
i
qup

j−i−1
q1

]

b
]

q̂1.
(See Theorem 4, case 6, in the web supplement for proof.)

Deriving near-repetition buaaub from near-repetition buau. (23)

1. u = ε, p̂2bp2 = p1bp̂1, q = p1aap2, for some p1, p̂1, p2, and p̂2, i ≥ 3.
σ(ba) = p

j
qp

i
q = p

j−i−1
pp

j−1
qp

i−1
pq =

p
j−i−1

p̂2

[

b
[

p2p
i−1

p1

]

aa
[

p2p
i−1

p1

]

b
]

p̂1q.
(See Theorem 4, case 1 for ba, in the web supplement for proof.)

2. u = ε, p = a, q = bq̂1 = q̂2b, i = 2r, r ≥ 3.
σ(ba) = p

j
qp

i
q = p

j
qp

2r
q = p

j
q̂2

[

b
[

p
r−1

]

aa
[

p
r−1

]

b
]

q̂1.
(See Theorem 4, case 3 for ba, in the web supplement for proof.)

3. u = ε, q = q̂2bq2 = q1bq̂1, p = q1aaq2, i = 2r+1, r ≥ 3.
σ(ba) = p

j
qp

i
q = p

j
qp

2r+1
q = qp

r
pp

r
q =

p
j
q̂2

[

b
[

q2p
r
]

q1

]

aa
[

q2p
r
q1

]

b
]

q̂1.
(See Theorem 4, case 5 for ba, in the web supplement for proof.)

Deriving near-repetition buaaub from near-repetition buaaub.
(24)

25

1. p̂2bp2 = p1bp̂1, q = p1aap2, for some p1, p̂1, p2, and p̂2.
σ(buaaub) = p

j
qup

i
qp

i
qup

j
q = p

j−i−1
pp

i
qup

i
qp

i
qup

i
pp

j−i−1
q =

p
j−i−1

p̂2

[

b
[

p2p
i
qup

i
p1

]

aa
[

p2p
i
qup

i
p1

]

b
]

p̂1p
j−i−1

q.
(See Theorem 4, case 2, in the web supplement for proof.)

Deriving near-repetition aubbua from run. (25)

1. The run has generator a, p̂2ap2 = p1ap̂1, q = p1bbp2, for some p1, p̂1,
p2, and p̂2, i ≥ 3.
For every square aa of the run: σ(aa) = p

i
qp

i
q = pp

i−1
qp

i−1
pq =

p̂2

[

a
[

p2p
i−1

p1

]

bb
[

p2p
i−1

p1

]

a
]

p̂1q.
(See Theorem 5, case 1 for aa, in the web supplement for proof.)

2. The run has generator b, p̂2ap2 = p1ap̂1, q = p1bbp2, for some p1, p̂1,
p2, and p̂2, j ≥ 3.
For every square bb of the run: σ(bb) = p

j
qp

j
q = pp

j−1
qp

j−1
pq =

p̂2

[

a
[

p2p
j−1

p1

]

bb
[

p2p
j−1

p1

]

a
]

p̂1q.
(See Theorem 5, case 1 for bb, in the web supplement for proof.)

3. The run has generator a, p = b, q = aq̂1 = q̂2a, i = 2r, r ≥ 3.
σ(aa) = p

i
qp

i
q = p

i
qp

2r
q = p

i
q̂2

[

a
[

p
r−1

]

bb
[

p
r−1

]

a
]

q̂1.
(See Theorem 5, case 3 for aa, in the web supplement for proof.)

4. The run has generator b, p = b, q = aq̂1 = q̂2a, j = 2r, r ≥ 3.
σ(bb) = p

j
qp

j
q = p

j
qp

2r
q = p

j
q̂2

[

a
[

p
r−1

]

bb
[

p
r−1

]

a
]

q̂1.
(See Theorem 5, case 3 for bb, in the web supplement for proof.)

5. The run has generator a, q = q̂2aq2 = q1aq̂1, p = q1bbq2, i = 2r+1,
r ≥ 3.
For any square aa in the run: σ(aa) = p

i
qp

i
q = p

i
qp

2r+1
q = qp

r
pp

r
q =

p
i
q̂2

[

a
[

q2p
r
]

q1

]

bb
[

q2p
r
q1

]

a
]

q̂1.
(See Theorem 5, case 5 for aa, in the web supplement for proof.)

6. The run has generator b, q = q̂2aq2 = q1aq̂1, p = q1bbq2, j = 2r+1,
r ≥ 3.
For any square aa in the run: σ(bb) = p

j
qp

j
q = p

j
qp

2r+1
q = qp

r
pp

r
q =

p
j
q̂2

[

a
[

q2p
r
]

q1

]

bb
[

q2p
r
q1

]

a
]

q̂1.
(See Theorem 5, case 5 for bb, in the web supplement for proof.)

26

Deriving near-repetition aubbua from near-repetition aubu. (26)

1. u = ε, p̂2ap2 = p1ap̂1, q = p1bbp2, for some p1, p̂1, p2, and p̂2, i ≥ 3.
σ(ab) = p

i
qp

j
q = pp

i−1
qp

i−1
pp

j−i−1
q =

p̂2

[

a
[

p2p
i−1

p1

]

bb
[

p2p
i−1

p1

]

a
]

p̂1p
j−i−1

q.
(See Theorem 5, case 1 for ab, in the web supplement for proof.)

2. u = ε, p = b, q = aq̂1 = q̂2a, j = 2r, r ≥ 3.
σ(ab) = p

i
qp

j
q = p

i
qp

2r
q = p

i
q̂2

[

a
[

p
r−1

]

bb
[

p
r−1

]

a
]

q̂1.
(See Theorem 5, case 3 for ab, in the web supplement for proof.)

3. The near-repetition aubu in x is followed by an a and is not an ini-
tial segment of x, p = b, q = aq̂1 = q̂2a, j = 2i+2. σ(·aubua) =
··qp

i
qup

j
qup

i
q = ··q̂2

[

a
[

p
i
qup

j−i−2
]

pp
[

p
i
qup

j−i−2
]

a
]

q̂1 =
··q̂2

[

a
[

p
i
qup

j−i−2
]

bb
[

p
i
qup

j−i−2
]

a
]

q̂1.
(See Theorem 5, case 4, in the web supplement for proof.)

4. u = ε, q = q̂2aq2 = q1aq̂1, p = q1bbq2, j = 2r+1, r ≥ 3.
σ(ab) = p

i
qp

j
q = p

i
qp

2r+1
q = qp

r
pp

r
q =

p
i
q̂2

[

a
[

q2p
r
]

q1

]

bb
[

q2p
r
q1

]

a
]

q̂1.
(See Theorem 5, case 5 for ab, in the web supplement for proof.)

5. The near-repetition aubu in x is followed by an a and is not an initial
segment of x, q = q̂2aq2 = q1aq1, p = q1bbq2, j = 2i+1.
σ(·aubua) = ··qp

i
qup

j
qup

i
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
q =

··q̂2

[

a
[

q2p
i
qup

j−i−1
q1

]

bb
[

q2p
i
qup

j−i−1
q1

]

a
]

q̂1.
(See Theorem 5, case 6, in the web supplement for proof.)

Deriving near-repetition aubbua from near-repetition buau. (27)

1. u = ε, p̂2ap2 = p1ap̂1, q = p1bbp2, for some p1, p̂1, p2, and p̂2, i ≥ 3.
σ(ba) = p

j
qp

i
q = p

j−i−1
pp

j−1
qp

i−1
pq =

p
j−i−1

p̂2

[

a
[

p2p
i−1

p1

]

bb
[

p2p
i−1

p1

]

a
]

p̂1q.
(See Theorem 5, case 1 for ba, in the web supplement for proof.)

2. u = ε, p = b, q = aq̂1 = q̂2a, i = 2r, r ≥ 3.
σ(ba) = p

j
qp

i
q = p

j
qp

2r
q = p

j
q̂2

[

a
[

p
r−1

]

bb
[

p
r−1

]

a
]

q̂1.
(See Theorem 5, case 3 for ba, in the web supplement for proof.)

27

3. u = ε, q = q̂2aq2 = q1aq̂1, p = q1bbq2, i = 2r+1, r ≥ 3.
σ(ba) = p

j
qp

i
q = p

j
qp

2r+1
q = qp

r
pp

r
q =

p
j
q̂2

[

a
[

q2p
r
]

q1

]

bb
[

q2p
r
q1

]

a
]

q̂1.
(See Theorem 5, case 5 for ba, in the web supplement for proof.)

Deriving near-repetition aubbua from near-repetition buaaub.
(28)

1. p̂2ap2 = p1ap̂1, q = p1bbp2, for some p1, p̂1, p2, and p̂2.
σ(buaaub) = p

j
qup

i
qp

i
qup

j
q = p

j−i−1
pp

i
qup

i
qp

i
qup

i
pp

j−i−1
q =

p
j−i−1

p̂2

[

a
[

p2p
i
qup

i
p1

]

bb
[

p2p
i
qup

i
p1

]

a
]

p̂1p
j−i−1

q.
(See Theorem 5, case 2, in the web supplement for proof.)

6 Concluding Remarks

It is straightforward to see that the derivations described in (7)–(28) are
sound as they derive the correct runs and near-repetitions. However, it re-
mains to be shown that they are also complete; that is, that all long runs and
near-repetitions arise in the ways described in (7)–(28) and in no other way.
Otherwise, our algorithm might miss some of the runs or near-repetitions.

Note also that the fact that in an expansion σ = [p, q, i, j], the pair (p, q)
must be suitable, has not played any role in the discussions of the repetition
algorithm. The truth is that it does play the most important role in the
actual proofs of the completeness of the derivations (7)–(28).

The proofs of the completeness of the derivations (7)–(28) (and thus of
Theorem 1) are mathematically uninteresting, tedious and lengthy, as they
are based on “brute force” discussions of all possible ways a square or a near
repetition can be laid out in an expanded string. For that reason, and since
they do not facilitate understanding of how the algorithm works, we omit
them from the paper. However, the interested reader can find them in all
their gory details and length at the web site of the first author:

www.cas.mcmaster.ca/∼franek/web-publications.html

28

References

[C81] Maxime Crochemore, An optimal algorithm for computing
the repetitions in a word, IPL 12-5 (1981) 244-250.

[IMS97] C. S. Iliopoulos, Dennis Moore & W. F. Smyth, A characteri-
zation of the squares in a Fibonacci string, TCS 172 (1997)
281-291.

[FJS04] Frantisek Franek, Jiandong Jiang & W. F. Smyth, Two-pattern
strings II — frequency of occurrence, to appear in J. of Disc.
Alg.

[FKS00] Frantisek Franek, Ayşe Karaman & W. F. Smyth, Repetitions
in Sturmian strings, TCS 249-2 (2000) 289-303.

[FLS03] Frantisek Franek, Weilin Lu & W. F. Smyth, Two-pattern
strings I — a recognition algorithm, J. Discrete Algorithms,
to appear.

[KK00] Roman Kolpakov & Gregory Kucherov, On maximal repeti-
tions in words, J. Discrete Algorithms 1 (2000) 159-186.

[M89] Michael G. Main, Detecting leftmost maximal periodicities,
Discrete Applied Maths. 25 (1989) 145-153.

Acknowledgements

The authors acknowledge the support provided by the Natural Sciences &
Engineering Research Council of Canada. The first author would like to
acknowledge the support and hospitality of the Department of Computing,
Curtin University, Perth, Australia during the completion phase of this paper.

29

This appendix contains the proofs only. For the definition of two-pattern
strings and the motivation of the theorems presented here, please, see the
report.

First we need to introduce or recall some terminology:

For a string u[1..k], its segment is u[m..n] for some 1 ≤ m ≤ n ≤ k.
u

∗ will denote the set of all its segments. A segment u[1..n] is called
an initial segment, while a segment u[m..k] is called an end segment.
We say that segment u[m1..n1] precedes segment u[m2..n2] (or equivalently
that segment u[m2..n2] follows segment u[m1..n1]) if n1 < m2.

A square u[s..s+k−1]u[s+k..s+2k−1] can be left-extended by m positions
if u[s−m+r] = u[s−m+r+k] for any 0 ≤ r < k (and so
u[s−m..s−m+k−1]u[s−m+k..s−m+2k−1] is a square).
A square u[s..s+k−1]u[s+k..s+2k−1] can be right-extended by m posi-
tions if u[s+m+r] = u[s+m+r+k] for any 0 ≤ r < k (and so
u[s+m..s+m+k−1]u[s+m+k..s+m+2k−1] is a square).

A square u[s..s+k−1]u[s+k..s+2k−1] is irreducible if u[s..s+k−1] is not
a repetition. A string is called primitive if it has no non-empty border.

If x and y are two-pattern strings and σ = [p, q, i, j] an expansion and
y = σ(x), then y is a concatenation of blocks p

i
q and p

j
q. These occurrences

of copies of p and q are called restrained.

GCS(u, v) denotes the greatest common suffix of u and v, while GCP (u, v)
denotes the greatest common prefix of u and v.

Lemma 1 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an
expansion, and y = σ(x). Let m < n, k ≥ 1 and let F : y[m..n]∗ →
y[m+k..n+k]∗ be a bijection defined by F(y[s1..s2]) = y[s1+k..s2+k]. Let p1,
a restrained copy of p that is a segment of y[m..n], precede q1, a restrained
copy of q that is a segment of y however not an end segment. Then it is not
possible for F(p1) to be a segment of q1.

Proof By the way of contradiction, let us assume that p1 is a restrained
copy of p that is a segment of y[m..n] and that is mapped by F onto a
segment of q1. p1 is followed by some (or none) restrained copies of p, let
us denote them p2, ... pt, followed by a restrained copy of q, let us denote it
q2.

30

If the F images of p1, ..., pt were not all segments of q1, then one of
the F -images of p1, ... pt would either be an end segment of q1 (giving p

a suffix of q, a contradiction), or it would intersect q1 and the restrained
copy of p immediately following q1 (which contradicts the primitiveness of
p). Thus we must conclude that all the F -images of p1...pt are segments of
q1. It follows that F(q2), intersects with q1 while it is not its segment. The
initial segment of q1 that is not a segment of F(q2) can be expressed as up

t

(see the diagram below), and so q = (up
t)r

v, where v is a prefix of up
t, for

some r ≥ 1.

q1

F (q2)

upt

p

• case v = ε : is impossible, for p would be a suffix of q.

• case v is a proper prefix of u : then u = vv̂, where v̂ is a non-empty
prefix of p, as q1 is followed by p̂, a restrained copy of p. Henceforth
the end segment of y of which p̂ is an initial segment has v̂p as a prefix,
which contradicts the primitiveness of p.

• case v = u : then q is p-regular as q = (up
t)r

u, a contradiction.

• case v = up
s
v̂, where 0 ≤ s ≤ t and v̂ is a prefix of p : v̂ 6= ε, for

otherwise p would be a suffix of q. It follows that s < t. q1 is followed
by p̂, a restrained copy of p. Consider the end segment S1 of y of which
up

s
v̂p̂ (the end segment of q1 followed by p̂) is an initial segment. It

has up
t
up

s
v̂ as a prefix (the end segment of F(q2)). Let us move to

the right past the prefix up
s in the segment S1. It is an end segment of

y, denote it S2. S2 has v̂p as a prefix and also p as a prefix, as s < r.
This contradicts the primitiveness of p.

All cases lead to contradictions, and so our initial assumption cannot
hold. 2

31

Lemma 2 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an
expansion, and y = σ(x). Let m < n, k ≥ 1 and let F : y[m..n]∗ →
y[m−k..n−k]∗ be a bijection defined by F(y[s1..s2]) = y[s1−k..s2−k]. Let
p1, a restrained copy of p that is a segment of y[m..n], follow q1, a restrained
copy of q that is a segment of y. Then it is not possible for F(p1) to be a
segment of q1.

Proof Virtually identical to the proof of the previous lemma. 2

In the following theorem we will discuss In the following we are going to
discuss all possible ways squares can arise. We say that y[s..s+2k−1] is a
square if y[s+m] = y[s+k+m] for any 0 ≤ m < k.

Theorem 2 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an
expansion, and y = σ(x). Let S = y[s..s+k−1]y[s+k..s+2k−1] be a big
irreducible square in y that cannot be left-extended. Then either

1. S is a square in the σ-expansion of a run in x; or

2. j ≤ 2i and S is a left-extension of a square derived from an aubua
near repetition or itself derived from an aubua near repetition in x in
the following way: σ(aubua) = p

i
qup

j
qup

i
q =

[

p
i
qup

j−i
][

p
i
qup

j−i
]

p
2i−j

q; or

3. q = p1p2, p1 6= ε, p2 6= ε, p = p1p̂1 = p̂2p2 and S is derived from
one of the near repetitions aa, ab, ba, and bb in x in the following way:
σ(aa), σ(ab), σ(ba), σ(bb) all have p

r+1
qp

r+1, 0 ≤ r < i (for aa, ab,
ba) and 0 ≤ r < j (for bb), as a substring. p

r+1
qp

r+1 = pp
r
qp

r
p =

p̂2

[

p2p
r
p1

][

p2p
r
p1

]

p̂1; or

4. q = p1p2, p1 6= ε, p2 6= ε, p = p1p̂1 = p̂2p2 and S is derived from a
buaaub near repetition in x in the following way: σ(buaaub) =
p

j
qup

i
qp

i
qup

j
q = p

j−i−1
p̂2

[

p2p
i
qup

i
p1

][

p2p
i
qup

i
p1

]

p2p
j−i−1

q; or

5. S is a left-extension of a square derived from a buau near repetition
or itself derived from a buau near repetition in x in the following way:
σ(buau) = p

j
qup

i
qu = p

j−i
[

p
i
qu

][

p
i
qu

]

; or

6. p = q1q2, q1 6= ε, q2 6= ε, q = q1q̂1 = q̂2q2, i = 2r+1 (for aa, ab, ba)
or j = 2r+1 (for bb) and S is derived from one of the near repetitions

32

aa, ab, ba, and bb in x in the following way: σ(aa), σ(ab), σ(ba), σ(bb)
all contain qp

2r+1
q as a substring. qp

2r+1
q = q̂2

[

q2p
r
q1

][

q2p
r
q1

]

q̂1;
or

7. p = q1q2, q1 6= ε, q2 6= ε, q = q1q̂1 = q̂2q2, j = 2i+1 and S is derived
from a ·aubua near repetition in x in the following way: σ(·aubua) =
· · ·qp

i
qup

j
qup

i
q = · · ·q̂2

[

q2p
i
qup

j−i−1
q1

][

q2p
i
up

i
q1

]

q̂1 =
· · ·q̂2

[

q2p
i
qup

i
q1

][

q2p
i
up

i
q1

]

q̂1.

Proof For the square S = y[s..s+k−1]y[s+k..s+2k−1] in y, the bijection
RS : u[s..s+k−1]∗ → u[s+k..s+2k−1]∗ defined by

RS(u[s+m..s+n]) = u[s+k+m..s+k+n]

will be referred to as reflection, while its inverse as antireflection.
For the purpose of applying Lemma 1, the role of the bijection F will be

played by the reflection, while for applying Lemma 2, the role of F will be
played by the antireflection.

The proof is conducted by a “brute force” discussion of all possible ways
the square S can be placed in y with respect to the restrained copies of p and
q in y. We will use a graphical method to describe the various placements.

represents an implied restrained copy of p

represents a given restrained copy of q

represents a given restrained copy of p

represents the square

represents left-, or right-extended square

represents reflection of a segment
to a segment

represents antireflection of a segment
to a segment

represent identical prefix and suffix of p

represent identical prefix and suffix of p
of length 1

The cases are discussed based on where the points y[s] and y[s+k−1] are
located. Recall that for the square S to be big, k > 3λ.

33

Case (1) – pp-pp (i.e. the point y[s] is located in a restrained copy of p

followed by another restrained copy of p, and the point y[s+k−1] is located
in a restrained copy of p followed by another restrained copy of p):

1a

is possible only if p = a. That reduces it to case 1h below.

1b

is not possible as it allows the square S to be left-extended.

1c

is not possible as it contradicts the primitiveness of p.

1d

is not possible as it contradicts the primitiveness of p.

1e

is not possible as it contradicts the primitiveness of p.

1f

is not possible as it allows the square S to be left-extended.

1g

34

is not possible as it contradicts the primitiveness of p.

1h
p1 p2 p3 p4

is possible. If p1 is preceded by a restrained copy of p, then the square
S can be left-extended, a contradiction. Hence p1 is preceded by a
restrained copy of q, or p1 is an initial segment of y. Since S is irre-
ducible, y[s..s+k−1] 6= p

t for t ≥ 2. Since it is big, it y[s..s+k−1] 6= p.
Therefore there is q2, a restrained copy of q, that is a segment of
y[s..s+k−1]. It follows that p

i
q is a prefix of y[s..s+k−1] and p

j−i is
a suffix of y[s..s+k−1]. Thus y[s..s+2k−1] = p

i
qup

j−i
p

i
qup

j−i for
some u. Thus y[s..s+k−1] = p

i
qup

i
qup

j−i which is a substring of
either p

i
qup

i
qup

j
q (and so the square is derived from the expansion

of the near repetition aubub in x, hence it is a square in the run in
y that is the expansion of a run in x that contains the square ubub)
(so case 1 of the theorem is satisfied), or p

i
qup

i
qup

i
q provided

j−i ≤ i (and so the square is derived from the expansion of the near
repetition aubua in x and case 2 of the theorem is satisfied).

1i

is not possible as it contradicts the primitiveness of p.

1j

is not possible as it contradicts the primitiveness of p.

1k

is not possible as it contradicts the primitiveness of p.

Case (2) – pp-pq

35

2a

is not possible as it contradicts the primitiveness of p.

2b

is not possible as it contradicts Lemma 1.

2c

is not possible as it allows the square S to be left-extended (it would
also imply that either p is a prefix q or q is a prefix of p).

2d

is not possible as it contradicts the primitiveness of p.

2e

is not possible as it contradicts the primitiveness of p.

2f

is not possible as it contradicts Lemma 1.

2g

is not possible as it contradicts the primitiveness of p.

36

2h

is not possible as it contradicts Lemma 1.

2i

is not possible as it allows the square S to be left-extended (it would
also imply that either p is a prefix of q or q a prefix of p).

2j

is not possible as it contradicts the primitiveness of p.

2k

is not possible as q is a prefix of p.

2l

is not possible as p is a prefix of q.

2m

is not possible as it contradicts the primitiveness of p.

Case (3) – pp-qp

37

3a

is not possible as it contradicts the primitiveness of p.

3b

is not possible as it contradicts the primitiveness of p.

3c

is not possible as it contradicts Lemma 1.

3d

is not possible as it contradicts the primitiveness of p.

3e

is not possible as it contradicts the primitiveness of p.

3f

is not possible as it contradicts the primitiveness of p.

3g

is not possible as it contradicts Lemma 1.

38

3h

p2 p1 p2 p1

is possible if q = p1p2, for some p1 6= ε that is a prefix of p, and some
p2 6= ε that is a suffix of p. Since S is big, either

1. there is no restrained copy of q that is a segment of y[s..s+k−1],
and so y[s..s+2k−1] is a substring of p

r+1
qp

r for some r ≥ 1, and
so S is derived from one of the near repetitions aa, ab, ba, and bb in
x (and so case 3 of the theorem is satisfied); or

2. there is a restrained copy of q that is a segment of y[s..s+1−k]
and so y[s..s+2k−1] is a substring of p

j
qup

i
qp

i
qup

j
q that is the

expansion of buaaub near repetition in x, and thus S is derived from
a near repetition buaaub in x (and so case 4 of the theorem is
satisfied).

3i

is possible. S is a left-extension of a square p
i
qup

i
qu that is a sub-

string of p
j
qup

i
qu that is the expansion of buau near repetition in

x. Therefore S is a left-extension of a square derived from a near
repetition buau in x and so case 5 of the theorem is satisfied.

3j
p1 p2 q1 p3

is possible. Since S cannot be left-extended, either p1 is an initial
segment of y, and so S is the expansion of a square in x, or p1 is
preceded by a restrained copy of p, and so y[s..s+2k−1] = p

i
qup

i
qu

that is a substring of p
j
qup

i
qu that is the expansion of buau near

repetition in x. Therefor S is derived from a near repetition buau in
x and so case 5 of the theorem is satisfied.

39

3k

is not possible as it contradicts the primitiveness of p.

3l

is not possible as it contradicts the primitiveness of p.

3m

is not possible as it contradicts Lemma 1.

Case (4) – pq-pp

4a

is possible only if p = a. That reduces it to case 4k below.

4b

is not possible as it contradicts Lemma 2.

4c

is not possible as it contradicts the primitiveness of p.

4d

is not possible as it contradicts Lemma 2.

40

4e

is not possible as it contradicts the primitiveness of p.

4f

is not possible as it contradicts the primitiveness of p.

4g

is not possible as it contradicts the primitiveness of p.

4h

is not possible as it contradicts the primitiveness of p.

4i

is not possible as it implies that p is a prefix of q.

4j

is not possible as it implies that q is a prefix of p.

4k
p1 q1 p2 p3

is possible. Since S cannot be left-extended, either p1 is an initial
segment of y, or p1 is preceded by a restrained copy of q. Hence i = 1
and S = pqup

j−1
pqup

j−1 that is either a substring of pqup
j
pqup

j
q

or pqup
j
pqupq, if j = 2. In the former case, pqup

j
pqup

j
q is the

expansion of aubub, and so S is a square in the run in y that is the

41

expansion of a run in x that contains the square ubub (and so case 1
of the theorem is satisfied). In the latter case, S is derived from a
near repetition aubua (and so case 2 of the theorem is satisfied).

4l

is not possible as it contradicts the primitiveness of p.

4m

is not possible as it contradicts the primitiveness of p.

Case (5) – pq-pq

5a

is not possible as it contradicts the primitiveness of p.

5b

is not possible as it allows the square S to be left-extended.

5c

is not possible as it contradicts the primitiveness of p.

5d

is not possible as it contradicts the primitiveness of p.

5e

42

is not possible as it allows the square S to be left-extended.

5f

is not possible as it contradicts the primitiveness of p.

5g

is not possible as it implies that q is a prefix of p.

5h

is not possible as it implies that p is a prefix of q.

5i

is not possible as it contradicts the primitiveness of p.

5j

is not possible as it contradicts the primitiveness of p.

Case (6) – pq-qp

6a

is possible only if p = a which reduces it to case 6k below.

6b

43

is not possible as it implies that p is a prefix of q.

6c

is not possible as it implies that q is a prefix of p.

6d

is not possible as it contradicts the primitiveness of p.

6e

is not possible as it contradicts the primitiveness of p.

6f

is not possible as it contradicts the primitiveness of p.

6g

is not possible as it contradicts Lemma 2.

6h

is not possible as it implies that p is a prefix of q.

6i

44

is not possible as it implies that q is a prefix of p.

6j

is not possible as it contradicts the primitiveness of p.

6k
p1 q1 q2 p2

is possible. Because S cannot be left-extended, p1 is preceded by a re-
strained copy of p, or p1 is an initial segment of y. In the former case,
y[s..s+2k−1] = p

i
qup

i
qu that is a substring of p

j
qup

i
qu, the expan-

sion of a near repetition buau in x (and so case 5 of the theorem
is satisfied). In the latter case, i = 1 and y[s..s+2k−1] = pqupqu

that is the expansion of auau, and so S is a square in the expansion
of a run that includes the square auau in x (and so case 1 of the
theorem is satisfied).

6l

is not possible as it contradicts the primitiveness of p.

6m

is not possible as it contradicts Lemma 1.

Case (7) – qp-pp

7a

is not possible as it contradicts the primitiveness of p.

45

7b

is not possible as it contradicts the primitiveness of p.

7c

is not possible as it contradicts the primitiveness of p.

7d

is not possible as it contradicts Lemma 2.

7e

length m

is possible. The square S is a left-extension of a square
y[s+m..s+m+k−1]y[s+m+k..s+m+2k−1]. If there is no restrained
copy of q that is a segment of y[s+m..s+m+k−1], then
y[s+m..s+m+k−1] = p

r for some r ≥ 1. Since S is irreducible, r = 1.
But that contradicts the fact that S is big. Therefore there must be a
restrained copy of q that is a segment y[s+m..s+m+k−1].
S is, thus, a left-extension of the square S1 =
y[s+m..s+m+k−1]y[s+m+k..s+m+2k−1].
Since, y[s+m..s+m+2k−1] = p

i
qup

j
qup

j−i, either

1. j ≤ 2i and y[s+m..s+m+2k−1] is a substring of p
i
qup

j
qup

i and so
S1 is derived from an aubua near repetition in x, and so case 2 of
the theorem holds; or

2. y[s+m..s+m+2k−1] is a substring of p
i
qup

j
qup

j that is the expan-
sion of aubub near repetition in x and so case 1 of the theorem is
satisfied.

46

7f

q1q1 q2q2

is possible if p = q1q2, for some q1 6= ε that is a prefix of q and some
q2 6= ε that is a suffix of q. Either

1. there is no restrained copy of q that is a segment of y[s..s+k−1] and
then y[s..s+2k−1] is a substring of qp

r
q, r = i or r = j, r is odd,

which is a substring of the expansion of one of the following near
repetitions in x: aa, ab, ba, and bb (and so case 6 of the theorem
is satisfied); or

2. there is a restrained copy of q that is a segment of y[s..s+k−1] and
then y[s..s+2k−1] is a substring of qp

i
qup

j
quq that is a substring

of the extension of ·aubu·, provided j = 2i+1 (and so case 7 of
the theorem is satisfied).

7g

is not possible as it implies that q is a prefix of p.

7h

is not possible as it implies that p is a prefix of q.

7i

is not possible as it contradicts the primitiveness of p.

7j

47

is not possible as it contradicts Lemma 2.

7k

is not possible as it contradicts the primitiveness of p.

7l

is not possible as it contradicts Lemma 2.

Case (8) – qp-pq

8a

is not possible as it contradicts the primitiveness of p.

8b

is not possible as it contradicts Lemma 1.

8c

is not possible as it implies that q is a prefix of p.

8d

is not possible as it contradicts Lemma 1.

48

8e

is not possible as it contradicts the primitiveness of p.

8f

is not possible as it contradicts the primitiveness of p.

8g

is not possible as it contradicts Lemma 1.

8h

is not possible as it implies that q is a prefix of p.

8i

is not possible as it implies that p is a prefix of q.

8j
q1

p1 p2 q2

is not possible. For S cannot be left-extended and so either q1 is
an initial segment of y[s..s+k−1], which is a contradiction, or q1 is
preceded by a restrained copy of q, also a contradiction.

8k

49

is not possible as it contradicts the primitiveness of p.

8l

is not possible as it contradicts the primitiveness of p.

Case (9) – qp-qp

9a

is not possible as it contradicts the primitiveness of p.

9b

is not possible as it allows S to be left-extended.

9c

is not possible as it contradicts the primitiveness of p.

9d

is not possible as it contradicts Lemma 1.

9e

is not possible as it contradicts the primitiveness of p.

9f

50

is not possible as it contradicts Lemma 2.

9g

is not possible as it contradicts the primitiveness of p.

9h

is not possible as it contradicts Lemma 2.

9i

is not possible as it allows S to be left-extended.

9j

is not possible as it implies that q is a prefix of p.

9k

is not possible as it implies that p is a prefix of q.

9l

is not possible as it contradicts the primitiveness of p.

9m

is not possible as it contradicts Lemma 2.

51

9n

is not possible as it contradicts the primitiveness of p.
2

Corollary 1 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an
expansion, and y = σ(x). Let S be a run in y. Then either

1. S is an expansion of a run in x; or

2. j ≤ 2i and S is a run of power 2 derived from an aubua near repetition
in x in the following way: σ(aubua) = p

i
qup

j
qup

i
q =

[

p
i
qup

j−i
][

p
i
qup

j−i
]

p
2i−j

q with left-extension of size 0 (if aubua is
an initial segment of x) or of size GCS(p, q) and with right-extension
of size (i|p|+ GCP (p, q)); or

3. q = p1p2, p1 6= ε, p2 6= ε, p = p1p̂1 = p̂2p2 and S is a run of
power 2 derived from one of the near repetitions aa, ab, ba, and bb in
x in the following way: σ(aa), σ(ab), σ(ba), σ(bb) all have p

r+1
qp

r+1,
2 ≤ r < i (for aa, ab, ba) and 2 ≤ r < j (for bb), as a substring.
p

r+1
qp

r+1 = pp
r
qp

r
p = p̂2

[

p2p
r
p1

][

p2p
r
p1

]

p̂1 with left-extension of
size GCS(p1, p̂2) and right-extension of size GCP (p2, p̂1); or

4. q = p1p2, p1 6= ε, p2 6= ε, p = p1p̂1 = p̂2p2 and S is a run of power
2 derived from a buaaub near repetition in x in the following way:
σ(buaaub) = p

j
qup

i
qp

i
qup

j
q =

p
j−i−1

p̂2

[

p2p
i
qup

i
p1

][

p2p
i
qup

i
p1

]

p2p
j−i−1

q with left-extension of size
GCS(p1, p̂2) and right-extension of size GCP (p2, p̂1); or

5. S is a run of power 2 derived from a buau near repetition in x in the
following way: σ(buau) = p

j
qup

i
qu = p

j−i
[

p
i
qu

][

p
i
qu

]

with left-
extension of size GCS(p, q) and right-extension of size 0 (if buau is
an end segment of x) or of size (i|p|+ GCP (p, q)); or

6. p = q1q2, q1 6= ε, q2 6= ε, q = q1q̂1 = q̂2q2, i = 2r+1 (for aa, ba)
or j = 2r+1 (for ab, bb) for some r ≥ 2, and S is a run of power
2 derived from one of the near repetitions aa, ab, ba, and bb in x in
the following way: σ(aa), σ(ab), σ(ba), σ(bb) all contain qp

2r+1
q as a

52

substring. qp
2r+1

q = q̂2

[

q2p
r
q1

][

q2p
r
q1

]

q̂1 with left-extension of size
GCS(q1, q̂2) and right-extension of size GCP (q2, q̂1); or

7. p = q1q2, q1 6= ε, q2 6= ε, q = q1q̂1 = q̂2q2, j = 2i+1 and S is a run of
power 2 derived from a ·aubua near repetition in x in the following way:
σ(·aubua) = ··qp

i
qup

j
qup

i
q = ··q̂2

[

q2p
i
qup

j−i−1
q1

][

q2p
i
up

i
q1

]

q̂1 =
··q̂2

[

q2p
i
qup

i
q1

][

q2p
i
up

i
q1

]

q̂1 with left-extension of size GCS(q1, q̂2)
and right-extension of size GCP (q2, q̂1).

Proof Just apply the previous theorem to the leading square of the run. 2

In the following we are going to discuss all possible ways near repetitions
of type aubu can arise. We say that y[s..s+2k+1] is an aubu near repetition
if y[s] = a, y[s+k+1] = b and y[s+m] = y[s+k+1+m] for any 1 ≤ i ≤ k.

Theorem 3 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an
extension, and y = σ(x). Let S = y[s..s+2k+1] be a big aubu near repeti-
tion in y. Then either

1. q = p1bp2, p = p̂2ap2 = p1p̂1, for some p1, p̂1, p̂2, and S is derived
from aa, ab, ba or bb near repetition in x in the following way: σ(aa),
σ(ab), σ(ba), and σ(bb) all contain p

r+1
qp

r+1 as a substring (2 ≤ r < i
for aa, ab, ba, and 2 ≤ r < j for bb). p

r+1
qp

r+1 = pp
r
qp

r
p =

p̂2

[

a
[

p2p
r
p1

]

b
[

p2p
r
p1

]]

p̂1.

2. q = p1bp2, p = p̂2ap2 = p1p̂1, for some p1, p2, p̂2, and S is derived
from a buaaub near repetition in x the following way: σ(buaaub) =
p

j
qup

i
qp

i
qup

j
q = p

j−i−1
pp

i
qup

i
qp

i
qup

i
pp

j−i−1
q =

p
j−i−1

p̂2

[

a
[

p2p
i
qup

i
p1

]

b
[

p2p
i
qup

i
p1

]]

p̂1p
j−i−1

q.

3. q = q1bp2, p = p̂2ap2, for some q1, p2, p̂2, and S is derived from a
ba near repetition in x in the following way: σ(ba) = p

j
qp

i
q contains

p
i+1

qp
i
q as a substring. p

i+1
qp

i
q = p

i
pqp

i
q =

p̂2

[

a
[

p2p
i
q1

]

b
[

p2p
i
q1

]]

bp2.

4. q = q1bp2, p = p̂2ap2, for some q1, p2, p̂2, and S is derived from
a buau near repetition (u 6= ε) in x in the following way: u = u1q,
σ(buau) = p

j
qup

i
qu = p

j
qu1qp

i
qu1q = p

j−i−1
pp

i
qu1qp

i
qu1q =

p
j−i−1

p̂2

[

a
[

p2pp
i
qu1q1

]

b
[

p2p
i
qu1

]]

bp2.

53

5. p = q1bq2, q = q̂2aq2, for some q1, q2, q̂2, i ≥ 6 (for aa, ba) or j ≥ 6
(for ab, bb) and S is derived from aa, ab, ba, or bb near repetition in x

in the following way: σ(aa), σ(ab), σ(ba), σ(bb) all contain qp
2r+2 as

a substring (2 ≤ r ≤ i
2
−1 for aa, ba, 2 ≤ r ≤ j

2
−1 for ba, bb).

qp
2r+2 = qp

r
pp

r
p = q̂2

[

a
[

q2p
r
q1

]

b
[

q2p
r
q1

]]

bq2.

6. p = q1bq2, q = q̂2aq2, for some q1, q2, q̂2, i < j+1
2

and S is derived
from a ·aubub near repetition in x in the following way: σ(·aubub) =
··qp

i
qup

j
qup

j
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
pp

i
q =

··q̂2

[

a
[

q2p
i
qup

j−i−1
q1

]

b
[

q2p
i
qup

j−i−1
q1

]]

bq2p
i
q.

7. p = q1bq2, q = q̂2aq2, for some q1, q2, q̂2, i ≥ j+1
2

, and S is derived
from a ·aubua near repetition in x in the following way: σ(·aubua) =
··qp

i
qup

j
qup

i
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
pp

2i−j−1
q =

··q̂2

[

a
[

q2p
i
qup

j−i−1
q1

]

b
[

q2p
i
qup

j−i−1
q1

]]

bq2p
2i−j−1

q.

8. p = q1bq2, q = q̂2aq2, for some q1, q2, q̂2, j = 2i, and S is derived
from a ·aubua near repetition in x in the following way: σ(·aubua) =
··qp

i
qup

j
qup

i
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
pq =

··q̂2

[

a
[

q2p
i
qup

j−i−1
q1

]

b
[

q2p
i
qup

j−i−1
q1

]]

bq2q.

9. p = q1bq2, q = q̂2aq2 = q1q̂1, for some q1, q2, q̂1, q̂2, i = 2r+1 (for
aa, ba) or j = 2r+1 (for ab, bb) for some 2 ≤ r, and S is derived
from aa, ab, ba, or bb near repetition in x in the following way: σ(aa),
σ(ab), σ(ba), σ(bb), they all include qp

2r+1
q as a substring. qp

2r+1
q =

qp
r
pp

r
q = q̂2

[

a
[

q2p
r
q1

]

b
[

q2p
r
q1

]]

q̂1.

10. p = q1bq2, q = q̂2aq2 = q1q̂1, for some q1, q2, q̂1, q̂2, j = 2i+1, and
S is derived from a ·aubua near repetition in x in the following way:
σ(·aubua) = ··qp

i
qup

j
qup

i
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
q =

··q̂2

[

a
[

q2p
i
qup

j−i−1
q1

]

b
[

q2p
i
qup

j−i−1
q1

]]

q̂1.

Proof
We shall conduct the proof in the same spirit as the proof of Theorem 2 by

a “brute force” discussion of all possible ways the near repetition aubu can
be placed in y with respect to restrained copies of p and q. We shall employ
a graphical language similar to the one used in the proof of Theorem 2. Also
similarly we define the reflection RS : y[s+1..s+k]∗ → y[s+k+2..s+2k+1]∗

and its inverse, the antireflection.

54

represents pattern aubu

represents letter a

represents letter b

represents string u

represents an implied restrained copy of p

represents a given restrained copy of q

represents a given restrained copy of p

represents reflection of a
segment to a segment

represents antireflection of a
segment to a segment

represents two letters at
matching positions

Recall that for the near repetition S to be big, k > 3λ.

Case (1) – pp-pp (i.e. the point y[s] = a is located in a restrained copy of
p followed by another restrained copy of p, and the point y[s+k+1] = b is
located in a restrained copy of p followed by another restrained copy of p):

1a
p1 p2 p3 p4

is not possible as it implies that the last letter of p1 is a and the last
letter of p3 is b.

1b

55

is not possible as it contradicts the primitiveness of p.

1c

is not possible as it contradicts the primitiveness of p.

1d

is not possible as it contradicts the primitiveness of p.

1e
p1 p2 p3 p4

is not possible as it implies that the n-th letter of p1 is a and the n-th
letter of p3 is b, where n is the position of y[s] in p1 and the position
of y[s+k+1] in p3.

1f

is not possible as it contradicts the primitiveness of p.

1g

is not possible as it contradicts the primitiveness of p.

1h

is not possible as it contradicts the primitiveness of p.

56

1i
p1 p2 p3 p4

is not possible as it implies that the first letter of p1 is a and the first
letter of p3 is b.

Case (2) – pp-pq

2a
p1 p2 p3 q1

is not possible as it implies that the last letter of p1 is a and the last
letter of p3 is b.

2b

is not possible as it contradicts the primitiveness of p.

2c

is not possible as it contradicts the primitiveness of p.

2d

is not possible as it implies that p is a prefix of q.

2e

is not possible as it implies that q is a prefix of p.

2f

57

is not possible as it contradicts the primitiveness of p.

2g

is not possible as it contradicts the primitiveness of p.

2h

is not possible as it implies that q is a prefix of p (it also implies that
the n-the letter of p is both a and b).

2i

is not possible as it implies that p is a prefix of q. (it also implies that
the n-the letter of p is both a and b).

2j

is not possible as it contradicts the primitiveness of p.

2k

is not possible as it contradicts Lemma 1.

2l
p1 p2 p3 q1

58

is not possible as it implies that the first letter of p1 is a while the first
letter of p3 is b.

Case (3) – pp-qp

3a

p1 p1p2 p1

is possible if q = p1b for some p1 that is a prefix of p and a is a suffix
of p. Either

1. there is no restrained copy of q that is a segment of y[s+1..s+k and
so y[s..s+2k+1] is a substring of p

r
qp

r (and so it is derived from aa,
ab, ba or bb near repetitions in x and thus case 1 of the theorem
holds for p2 = ε); or

2. there is a restrained copy of q that is a segment of y[s+1..s+k] and
so y[s..s+2k+1] is a substring of p

i+1
qup

i
qp

i
qup

i+1
q that itself is

a substring of p
j
qup

i
qp

i
qup

j
q (and so it is derived from a buaaub

near repetition and case 2 of the theorem holds for p2 = ε).

3b

q1 q1
p2

is possible if b is a suffix of q and a is a suffix of p. Either

1. there is no restrained copy of q that is a segment of y[s+1..s+k] and
so y[s..s+2k+1] is a substring of p

i+1
qp

i
q that itself is a substring

of p
j
qp

i
q (and so it is derived from a ba near repetition in x and so

case 3 of the theorem holds for p2 = ε); or

2. there is a restrained copy of q that is a segment of y[s+1..s+k] and so
y[s..s+2k+1] is a substring of p

i+1
qup

i
qu that itself is a substring

of p
j
qup

i
qu (and so it is derived from a buau near repetition with

u 6= ε and so case 4 of the theorem holds for p2 = ε).

59

3c

is not possible as it contradicts the primitiveness of p.

3d

is not possible as it contradicts the primitiveness of p.

3e

is not possible as it contradicts Lemma 1.

3f

is not possible as it contradicts the primitiveness of p.

p1

3g

p2p2 p1 p1p2

is possible if q = p1bp2 for some p1 that is a prefix of p and some p2

so that ap2 is a suffix of p. Either

1. there is no restrained copy of q that is a segment of y[s+1..s+k] and
so y[s..s+2k+1] is a substring of p

r
qp

r (and so it is derived from
aa, ab, ba or bb near repetitions in x and so case 1 of the theorem
holds); or

2. there is a restrained copy of q that is a segment of y[s+1..s+k] and
so y[s..s+2k+1] is a substring of p

i+1
qup

i
qp

i
qup

i+1
q that itself is

a substring of p
j
qup

i
qp

i
qup

j
q (and so it is derived from a buaaub

near repetition and so case 2 of the theorem holds).

60

3h

p2p2 q1p2 q1

is possible if for some p2, bp2 is a suffix of q and ap2 a suffix of p.
Either

1. there is no restrained copy of q that is a segment of y[s+1..s+k] and
so y[s..s+2k+1] is a substring of p

i+1
qp

i
q that itself is a substring

of p
j
qp

i
q (and so it is derived from a ba near repetition in x and so

case 3 of the theorem holds); or

2. there is a restrained copy of q that is a segment of y[s+1..s+k] and so
y[s..s+2k+1] is a substring of p

i+1
qup

i
qu that itself is a substring

of p
j
qup

i
qu (and so it is derived from a buau near repetition with

u 6= ε and so case 4 of the theorem holds).

3i

is not possible as it contradicts the primitiveness of p.

3j

is not possible as it contradicts Lemma 1.

3k

is not possible as it contradicts the primitiveness of p.

3l

is not possible as it contradicts the primitiveness of p.

61

3m

is not possible as it contradicts Lemma 1.

3n

p2 p2 p1

is possible if q = bp2 and p = bp2 for some p2. Either

1. there is no restrained copy of q that is a segment of y[s+1..s+k] and
so y[s..s+2k+1] is a substring of p

r
qp

r (and so it is derived from
aa, ab, ba or bb near repetitions in x and so case 1 of theorem
holds for p1 = p̂2 = ε); or

2. there is a restrained copy of q that is a segment of y[s+1..s+k] and
so y[s..s+2k+1] is a substring of p

i+1
qup

i
qp

i
qup

i+1
q that itself is

a substring of p
j
qup

i
qp

i
qup

j
q (and so it is derived from a buaaub

near repetition and so case 2 of the theorem holds for p1 =
p̂2 = ε).

3o

p2 p2 p2

is possible if for some p2, q = ap2 and p = bp2. Either

1. there is no restrained copy of q that is a segment of y[s+1..s+k] and
so y[s..s+2k+1] is a substring of p

i+1
qp

i
q that itself is a substring

of p
j
qp

i
q (and so it is derived from a ba near repetition in x and so

case 3 of the theorem holds for q1 = p̂2 = ε); or

2. there is a restrained copy of q that is a segment of y[s+1..s+k] and so
y[s..s+2k+1] is a substring of p

i+1
qup

i
qu that itself is a substring

of p
j
qup

i
qu (and so it is derived from a buau near repetition with

u 6= ε and so case 4 of the theorem holds for q1 = p̂2 = ε).

62

Case (4) – pq-pp

4a
p1 q1 p2 p3

is not possible as it implies that a is the last letter of p1 and b is the
last letter of p2.

4b

is not possible as it contradicts the primitiveness of p.

4c

is not possible as it contradicts Lemma 2.

4d

is not possible as it contradicts the primitiveness of p.

4e

is not possible as it contradicts the primitiveness of p.

4f

is not possible as it contradicts Lemma 2.

4g

63

is not possible as it contradicts the primitiveness of p.

4h

is not possible as it contradicts the primitiveness of p.

4i

is not possible as it contradicts the primitiveness of p.

4j
p1 q1 p2 p3

is not possible as it implies that the first letter of p1 is a and the first
letter of p2 is b.

Case (5) – pq-pq

5a
p1 q1 p2 q2

is not possible as it implies that a is the last letter of p1 and b is the
last letter of p3.

5b

is not possible as it contradicts the primitiveness of p.

5c

is not possible as it contradicts Lemma 1.

64

5d

is not possible as it contradicts the primitiveness of p.

5e

is not possible as it contradicts the primitiveness of p.

5f
p1 q1 p2 q2

is not possible as it implies that the n-th letter of p1 is a, while the
n-th letter of p2 is b.

5g

is not possible as it contradicts the primitiveness of p.

5h

is not possible as it contradicts the primitiveness of p.

5i

is not possible as it contradicts Lemma 2.

5j

is not possible as it contradicts the primitiveness of p.

65

5k

is not possible as it contradicts the primitiveness of p.

5l
p1 q1 p2 q2

is not possible as it implies that the first letter of p1 is a and the first
letter of p2 is b.

Case (6) – pq-qp

6a

is not possible as it implies that q is a prefix of p.

6b

is not possible as it implies that p is a prefix of q.

6c

is not possible as it contradicts the primitiveness of p.

6d

is not possible as it contradicts Lemma 2.

6e

66

is not possible as it contradicts the primitiveness of p.

6f

is not possible as it indicates that p is a prefix of q.

6g

is not possible as it indicates that q is a prefix of p.

6h

is not possible as it contradicts the primitiveness of p.

6i

is not possible as it contradicts the primitiveness of p.

6j

is not possible as it contradicts Lemma 2.

6k

is not possible as it contradicts the primitiveness of p.

Case (7) – qp-pp

7a

p
_

q2 q1

q1

67

is possible if b is a suffix of p and a a suffix of q. Either

1. there is no restrained copy of q as a segment of y[s+1..s+k], and
then y[s..s+2k+1] is a substring of qp

2r+2 for some r ≥ 2, and hence
it is derived from a near repetition aa, ab, ba, or bb in x (and so case
5 of the theorem holds for q2 = ε); or

2. there is a restrained copy of q that is a segment of y[s+1..s+k]
and p is followed by a restrained copy of q and i < j+1

2
. Then

y[s..s+2k+1] is a substring of qp
i
qup

j−i−1
pp

isqup
j−i that is a

substring of qp
i
qup

j
qup

j
q that is the expansion of ·aubub near

repetition in x (and so case 6 of theorem holds for q2 = ε); or

3. there is a restrained copy of q that is a segment of y[s+1..s+k]
and p is followed by a restrained copy of p and i ≥ j+1

2
. Then

y[s..s+2k+1] is a substring of qp
i
qup

j−i−1
pp

i
qup

j−i that is a sub-
string of qp

i
qup

j
qup

i
q the expansion of ·aubua near repetition in

x (and hence case 7 of the theorem holds for q2 = ε); or

4. there is a restrained copy of q that is a segment of y[s+1..s+k]
and p is followed by a restrained copy of q and j = 2i. Then
y[s..s+2k+1] is a substring of qp

i
qup

j−i−1
pp

i
qup

j−i−1 that is a
substring of qp

i
qup

j
qup

i
q the expansion of ·aubua near repetition

in x (and hence case 8 of the theorem holds for q2 = ε).

7b

q2 q1 q1 q1

is possible if b is a suffix of p and a a suffix of q. Either

1. there is no restrained copy of q as a segment of y[s+1..s+k], and
then y[s..s+2k+1] either it is a substring of qp

i
q and i = 2r+1,

and thus derived from aa or ba near repetitions in x, or qp
j
q and

j = 2r+1, and thus derived from ab or bb near repetitions in x (and
so case 9 of the theorem holds for q2 = ε); or

2. there is a restrained copy of q that is a segment of y[s+1..s+k], j =
2i+1. Then y[s..s+2k+1] is a substring of qp

i
qup

j
qup

j−i−1
q =

qp
i
qup

j
qup

i
q that is the expansion of ·aubua near repetition in x

(and so case 10 of the theorem holds for q2 = ε).

68

7c

is not possible as it contradicts the primitiveness of p.

7d

is not possible as it contradicts the primitiveness of p.

7e

is not possible as it contradicts the primitiveness of p.

7f

is not possible as it contradicts Lemma 2.

7g

is not possible as it contradicts the primitiveness of p.

7h

q2 q2
p
_

q1

q1

q2

is possible if for some q2, aq2 is a suffix of q and bq2 is a suffix of p.
Either

1. there is no restrained copy of q as a segment of y[s+1..s+k], and
then y[s..s+2k+1] is a substring of qp

2r+2 for some r ≥ 2, and hence
it is derived from a near repetition aa, ab, ba, or bb in x (and so case
5 of the theorem holds); or

69

2. there is a restrained copy of q that is a segment of y[s+1..s+k]
and p is followed by a restrained copy of q and i < j+1

2
. Then

y[s..s+2k+1] is a substring of qp
i
qup

j−i−1
pp

isqup
j−i that is a

substring of qp
i
qup

j
qup

j
q that is the expansion of ·aubub near

repetition in x (and so case 6 of theorem holds); or

3. there is a restrained copy of q that is a segment of y[s+1..s+k]
and p is followed by a restrained copy of p and i ≥ j+1

2
. Then

y[s..s+2k+1] is a substring of qp
i
qup

j−i−1
pp

i
qup

j−i that is a sub-
string of qp

i
qup

j
qup

i
q the expansion of ·aubua near repetition in

x (and hence case 7 of the theorem holds); or

4. there is a restrained copy of q that is a segment of y[s+1..s+k]
and p is followed by a restrained copy of q and j = 2i. Then
y[s..s+2k+1] is a substring of qp

i
qup

j−i−1
pp

i
qup

j−i−1 that is a
substring of qp

i
qup

j
qup

i
q the expansion of ·aubua near repetition

in x (and hence case 8 of the theorem holds).

7i

q2 q2q1 q1 q1q2

is possible if p = q1bq2 for some q1 a prefix of q and some q2 so that
aq2 is a suffix of q. Either

1. there is no restrained copy of q as a segment of y[s+1..s+k], and
then y[s..s+2k+1] either it is a substring of qp

i
q and i = 2r+1,

and thus derived from aa or ba near repetitions in x, or qp
j
q and

j = 2r+1, and thus derived from ab or bb near repetitions in x (and
so case 9 of the theorem holds); or

2. there is a restrained copy of q that is a segment of y[s+1..s+k], j =
2i+1. Then y[s..s+2k+1] is a substring of qp

i
qup

j
qup

j−i−1
q =

qp
i
qup

j
qup

i
q that is the expansion of ·aubua near repetition in x

(and so case 10 of the theorem holds).

7j

70

is not possible as it contradicts Lemma 2.

7k

is not possible as it contradicts the primitiveness of p.

7l

is not possible as it contradicts Lemma 2.

7m

is not possible as it contradicts the primitiveness of p.

7n

is not possible as it contradicts Lemma 2.

7o

is not possible as it contradicts the primitiveness of p.

7p

is not possible as it contradicts Lemma 2.

7q

is not possible as it contradicts the primitiveness of p.

71

7r

is not possible as it contradicts Lemma 2.

7s

q2 q2 q2

is possible if q = aq2 and p = bq2 for some q2. Either

1. there is no restrained copy of q as a segment of y[s+1..s+k], and
then y[s..s+2k+1] is a substring of qp

2r+2 for some r ≥ 2, and hence
it is derived from a near repetition aa, ab, ba, or bb in x (and so case
5 of the theorem holds for q̂2 = q1 = ε); or

2. there is a restrained copy of q that is a segment of y[s+1..s+k]
and p is followed by a restrained copy of q and i < j+1

2
. Then

y[s..s+2k+1] is a substring of qp
i
qup

j−i−1
pp

isqup
j−i that is a sub-

string of qp
i
qup

j
qup

j
q that is the expansion of ·aubub near rep-

etition in x (and so case 6 of theorem holds for q̂2 = q1 = ε);
or

3. there is a restrained copy of q that is a segment of y[s+1..s+k]
and p is followed by a restrained copy of p and i ≥ j+1

2
. Then

y[s..s+2k+1] is a substring of qp
i
qup

j−i−1
pp

i
qup

j−i that is a sub-
string of qp

i
qup

j
qup

i
q the expansion of ·aubua near repetition in

x (and hence case 7 of the theorem holds for q̂2 = q1 = ε); or

4. there is a restrained copy of q that is a segment of y[s+1..s+k]
and p is followed by a restrained copy of q and j = 2i. Then
y[s..s+2k+1] is a substring of qp

i
qup

j−i−1
pp

i
qup

j−i−1 that is a
substring of qp

i
qup

j
qup

i
q the expansion of ·aubua near repetition

in x (and hence case 8 of the theorem holds for q̂2 = q1 = ε).

72

7t

q2 q2 q1

is possible if q = aq2 and p = bq2 for some q2. Either

1. there is no restrained copy of q as a segment of y[s+1..s+k], and
then y[s..s+2k+1] either it is a substring of qp

i
q and i = 2r+1,

and thus derived from aa or ba near repetitions in x, or qp
j
q and

j = 2r+1, and thus derived from ab or bb near repetitions in x (and
so case 9 of the theorem holds for q̂2 = q1 = ε); or

2. there is a restrained copy of q that is a segment of y[s+1..s+k], j =
2i+1. Then y[s..s+2k+1] is a substring of qp

i
qup

j
qup

j−i−1
q =

qp
i
qup

j
qup

i
q that is the expansion of ·aubua near repetition in x

(and so case 10 of the theorem holds for q̂2 = q1 = ε).

Case (8) – qp-pq

8a

is not possible as it implies that q is a prefix of p.

8b

is not possible as it implies that p is a prefix of q.

8c

is not possible as it contradicts the primitiveness of p.

8d

73

is not possible as it contradicts the primitiveness of p.

8e

is not possible as it contradicts the primitiveness of p.

8f

is not possible as it contradicts the primitiveness of p.

8g

is not possible as it contradicts Lemma 2.

8h

is not possible as it indicates that q is a prefix of p.

8i

is not possible as it indicates that p is a prefix of q.

8j

is not possible as it contradicts the primitiveness of p.

8k

is not possible as it contradicts the primitiveness of p.

74

8l

is not possible as it contradicts Lemma 1.

8m

is not possible as it contradicts the primitiveness of p.

8n

is not possible as it contradicts Lemma 1.

8o

is not possible as it contradicts the primitiveness of p.

8p

is not possible as it contradicts Lemma 1.

8q

is not possible as it contradicts the primitiveness of p.

Case (9) – qp-qp

9a
q1 p1 q2 p2

75

is not possible as it implies that the last letter of q1 is a and the last
letter of q2 is b.

9b

is not possible as it contradicts the primitiveness of p.

9c

is not possible as it contradicts Lemma 1.

9d

is not possible as it contradicts the primitiveness of p.

9e

is not possible as it contradicts Lemma 2.

9f

is not possible as it contradicts the primitiveness of p.

9g

is not possible as it contradicts Lemma 2.

9h
q1 p1 q2 p2

76

is not possible as it implies that the n-th letter of q1 is a while the n-th
letter of q2 is b, where n is the position of y[s] in q1 and the position
of y[s+k+1] is q2.

9i

is not possible as it contradicts the primitiveness of p.

9j

is not possible as it contradicts Lemma 2.

9k

is not possible as it contradicts the primitiveness of p.

9l

is not possible as it contradicts Lemma 2.

9m
q1 p1 q2 p2

is not possible as it implies that the first letter of q1 is a and the first
letter of q2 is b.

2

In the following we are going to discuss all possible ways near repetitions
of type buau can arise. We say that y[s..s+2k+1] is an buau near repetition
if y[s] = b, y[s+k+1] = a and y[s+m] = y[s+k+1+m] for any 1 ≤ i ≤ k.

77

Theorem 4 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an
extension, and y = σ(x). Let S = y[s..s+2k+1] be a big buau near repeti-
tion in y. Then either

1. q = p1ap2, p = p̂2bp2 = p1p̂1, for some p1, p̂1, p̂2, and S is derived
from aa, ab, ba or bb near repetition in x in the following way: σ(aa),
σ(ab), σ(ba), and σ(bb) all contain p

r+1
qp

r+1 as a substring (0 ≤ r < i
for aa, ab, ba, and 0 ≤ r < j for bb). p

r+1
qp

r+1 = pp
r
qp

r
p =

p̂2

[

b
[

p2p
r
p1

]

a
[

p2p
r
p1

]]

p̂1.

2. q = p1ap2, p = p̂2bp2 = p1p̂1, for some p1, p2, p̂2, and S is derived
from a buaaub near repetition in x the following way: σ(buaaub) =
p

j
qup

i
qp

i
qup

j
q = p

j−i−1
pp

i
qup

i
qp

i
qup

i
pp

j−i−1
q =

p
j−i−1

p̂2

[

b
[

p2p
i
qup

i
p1

]

a
[

p2p
i
qup

i
p1

]]

p̂1p
j−i−1

q.

3. q = q1ap2, p = p̂2bp2, for some q1, p2, p̂2, and S is derived from a
ba near repetition in x in the following way: σ(ba) = p

j
qp

i
q contains

p
i+1

qp
i
q as a substring. p

i+1
qp

i
q = p

i
pqp

i
q =

p̂2

[

b
[

p2p
i
q1

]

a
[

p2p
i
q1

]]

ap2.

4. q = q1ap2, p = p̂2bp2, for some q1, p2, p̂2, and S is derived from
a buau near repetition (u 6= ε) in x in the following way: u = u1q,
σ(buau) = p

j
qup

i
qu = p

j
qu1qp

i
qu1q = p

j−i−1
pp

i
qu1qp

i
qu1q =

p
j−i−1

p̂2

[

b
[

p2pp
i
qu1q1

]

a
[

p2p
i
qu1

]]

ap2.

5. p = q1aq2, q = q̂2bq2, for some q1, q2, q̂2, i ≥ 6 (for aa, ba) or j ≥ 6
(for ab, bb) and S is derived from aa, ab, ba, or bb near repetition in x

in the following way: σ(aa), σ(ab), σ(ba), σ(bb) all contain qp
2r+2 as

a substring (2 ≤ r < i
2
−1 for aa, ba, 2 ≤ r < j

2
−1 for ba, bb).

qp
2r+2 = qp

r
pp

r
p = q̂2

[

b
[

q2p
r
q1

]

a
[

q2p
r
q1

]]

aq2.

6. p = q1aq2, q = q̂2bq2, for some q1, q2, q̂2, i < j+1
2

and S is derived
from a ·aubub near repetition in x in the following way: σ(·aubub) =
··qp

i
qup

j
qup

j
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
pp

i
q =

··q̂2

[

b
[

q2p
i
qup

j−i−1
q1

]

a
[

q2p
i
qup

j−i−1
q1

]]

aq2p
i
q.

7. p = q1aq2, q = q̂2bq2, for some q1, q2, q̂2, i ≥ j+1
2

, and S is derived
from a ·aubua near repetition in x in the following way: σ(·aubua) =
··qp

i
qup

j
qup

i
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
pp

2i−j−1
q =

··q̂2

[

b
[

q2p
i
qup

j−i−1
q1

]

a
[

q2p
i
qup

j−i−1
q1

]]

aq2p
2i−j−1

q.

78

8. p = q1aq2, q = q̂2bq2, for some q1, q2, q̂2, j = 2i, and S is derived
from a ·aubua near repetition in x in the following way: σ(·aubua) =
··qp

i
qup

j
qup

i
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
pq =

··q̂2

[

b
[

q2p
i
qup

j−i−1
q1

]

a
[

q2p
i
qup

j−i−1
q1

]]

aq2q.

9. p = q1aq2, q = q̂2bq2 = q1q̂1, for some q1, q2, q̂1, q̂2, i = 2r+1 (for
aa, ba) or j = 2r+1 (for ab, bb) for some 1 ≤ r, and S is derived
from aa, ab, ba, or bb near repetition in x in the following way: σ(aa),
σ(ab), σ(ba), σ(bb), they all include qp

2r+1
q as a substring. qp

2r+1
q =

qp
r
pp

r
q = q̂2

[

b
[

q2p
r
q1

]

a
[

q2p
r
q1

]]

q̂1.

10. p = q1aq2, q = q̂2bq2 = q1q̂1, for some q1, q2, q̂1, q̂2, j = 2i+1, and
S is derived from a ·aubua near repetition in x in the following way:
σ(·aubua) = ··qp

i
qup

j
qup

i
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
q =

··q̂2

[

b
[

q2p
i
qup

j−i−1
q1

]

a
[

q2p
i
qup

j−i−1
q1

]]

q̂1.

Proof Virtually identical to the proof of the previous theorem. 2

In the following we are going to discuss all possible ways near repeti-
tions of type buaaub can arise. We say that y[s..s+2k+3] is an buaaub
near repetition if y[s] = y[s+2k+3] = b, y[s+k+1] = y[s+k+2] = a and
y[s+m] = y[s+k+2+m] for any 1 ≤ i ≤ k.

Theorem 5 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an
extension, and y = σ(x). Let S = y[s..s+2k+3] be a big buaaub near
repetition in y. Then either

1. p̂2bp2 = p1bp̂1, q = p1aap2, for some p1, p̂1, p2, and p̂2. i ≥ 3
(for aa, ba, and ab) or j ≥ 3 (for bb). S is derived from one of the
near repetitions aa, ab, ba, and bb in x in the following way: σ(aa),
σ(ab), σ(ba), σ(bb) all contain p

r
qp

r as a substring (r ≥ 3). p
r
qp

r =
pp

r−1
qp

r−1
p = p̂2

[

b
[

p2p
r−1

p1

]

aa
[

p2p
r−1

p1

]

b
]

p̂1.

2. p̂2bp2 = p1bp̂1, q = p1aap2, for some p1, p̂1, p2, and p̂2. S is derived
from near repetition buaaub in x in the following way: σ(buaaub) =
p

j
qup

i
qp

i
qup

j
q = p

j−i−1
pp

i
qup

i
qp

i
qup

i
pp

j−i−1
q =

p
j−i−1

p̂2

[

b
[

p2p
i
qup

i
p1

]

aa
[

p2p
i
qup

i
p1

]

b
]

p̂1p
j−i−1

q.

3. p = a, q = bq̂1 = q̂2b, j = 2r (for ab, bb) or i = 2r (for ba, aa),
r ≥ 3, and S is derived from aa, ab, ba, or bb configuration in x in the

79

following way: σ(aa), σ(ab), σ(ba), σ(bb), the all contain qp
2r

q as a
substring. qp

2r
q = q̂2

[

b
[

p
r−1

]

aa
[

p
r−1

]

b
]

q̂1.

4. p = a, q = bq̂1 = q̂2b, j = 2i+2 and S is derived from a ·aubua near
repetition in x in the following way: σ(·aubua) = ··qp

i
qup

j
qup

i
q =

··q̂2

[

b
[

p
i
qup

j−i−2
]

pp
[

p
i
qup

j−i−2
]

b
]

q̂1 =
··q̂2

[

b
[

p
i
qup

j−i−2
]

aa
[

p
i
qup

j−i−2
]

b
]

q̂1.

5. q = q̂2bq2 = q1bq̂1, p = q1aaq2, i = 2r+1 (for aa, ba) or j = 2r+1
(for ab, bb), r ≥ 3, and S is derived from one of near repetitions aa,
ab, ba, or bb in x in the following way: σ(aa), σ(ab), σ(ba), σ(bb), they
all contain qp

2r+1
q as a substring. qp

2r+1
q = qp

r
pp

r
q =

q̂2

[

b
[

q2p
r
]

q1

]

aa
[

q2p
r
q1

]

b
]

q̂1.

6. q = q̂2bq2 = q1bq1, p = q1aaq2, j = 2i+1 and S is derived from a
near repetition ·aubua in x in the following way: σ(·aubua) =
··qp

i
qup

j
qup

i
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
q =

··q̂2

[

b
[

q2p
i
qup

j−i−1
q1

]

aa
[

q2p
i
qup

j−i−1
q1

]

b
]

q̂1.

Proof We shall conduct the proof in the same spirit as the proof of Theo-
rem 2 by a “brute force” discussion of all possible ways the near repetition
aubu can be placed in y with respect to restrained copies of p and q. We
shall employ a graphical language similar to the one used in the proof of
Theorem 2. Also similarly we define the reflection RS : y[s+1..s+k]∗ →
y[s+k+3..s+2k+2]∗ and its inverse, the antireflection.

represents pattern buaaub

represents letter a

represents letter b

represents string u

represents an implied restrained copy of p

represents a given restrained copy of q

represents a given restrained copy of p

represents a given restrained copy of q

80

represents reflection of a
segment to a segment

represents antireflection of a
segment to a segment

represents two letters at
matching positions

Recall that for the near repetition S to be big, k > 3λ.

Case (1) – pp-pp (i.e. the point y[s] = b is located in a restrained copy of
p followed by another restrained copy of p, and the point y[s+k+1] = a is
located in a restrained copy of p followed by another restrained copy of p):

1a
p1 p2 p3 p4

is not possible as it implies that the last letter of p1 is b and the last
letter of p3 is a.

1b
p1 p2 p3 p4

is not possible as it implies that the last letter of p1 is b and the last
letter of p3 is a.

1c

is not possible as it contradicts the primitiveness of p.

1d

81

is not possible as it contradicts the primitiveness of p.

1e
p1 p2 p3 p4

is not possible as it contradicts the primitiveness of p implying a border
a for p (as the last letter of p3 is a and the first letter of p4 is a).

1f

is not possible as it contradicts the primitiveness of p.

1g
p1 p2 p3 p4

is not possible as it implies that the n-the letter of p1 is b while the
n-the letter of p3 is a, where n is the position of y[s] is p1 and the
position of y[s+k+2] in p3.

1h

is not possible as it contradicts the primitiveness of p.

1i
p1 p2 p3 p4

is not possible as it implies that the first letter of p3 is b and the first
letter of p4 is a.

1j

82

is not possible as it contradicts the primitiveness of p.

1k

is not possible as it contradicts the primitiveness of p.

1l

is not possible as it contradicts the primitiveness of p.

1m
p1 p2 p3 p4

is not possible as it implies that the first letter of p1 is b and the first
letter of p3 is a.

Case (2) – pp-pq

2a
p1 p2 p3 q1

is not possible as it implies that the last letter of p1 is b and the last
letter of p3 is a.

2b
p1 p2 p3 q1

is not possible as it implies that the last letter of p1 is b and the last
letter of p3 is a.

2c

83

is not possible as it contradicts the primitiveness of p.

2d

is not possible as it contradicts the primitiveness of p.

2e

is not possible as it contradicts Lemma 1.

2f

is not possible as it contradicts the primitiveness of p.

2g

is not possible as it contradicts Lemma 1.

2h

is not possible as it contradicts the primitiveness of p.

2i

is not possible as it contradicts the primitiveness of p.

2j

is not possible as it contradicts Lemma 1.

84

2k

is not possible as it contradicts the primitiveness of p.

2l
p1 p2 p3 q1

is not possible as it the n-the letter of p1 is b and th n-th letter of p3

is a, where n is the position of y[s] in p1 and the position of y[s+k+2]
in p3.

2m

is not possible as it contradicts the primitiveness of p.

2n

is not possible as it contradicts the primitiveness of p.

2o

is not possible as it contradicts Lemma 1.

2p

is not possible as it contradicts the primitiveness of p.

2q

85

is not possible as it contradicts Lemma 1.

2r

is not possible as it contradicts the primitiveness of p.

2s

is not possible as it contradicts Lemma 1.

2t
p1 p2 p3 q1

is not possible as it implies that the first letter of p1 is b and the first
letter of p3 is a.

Case (3) – pp-qp

3a

is not possible as it contradicts the primitiveness of p.

3b

p1p2 p1 p1

is possible. Then p̂2b = p1bp̂1, q = p1aa, for some p1, p̂1, and p̂2. This
reduces it to the case 3j below for p2 = ε.

3c
p1 p2 q1 p3 q2

86

is not possible as it implies that the one-before-last letter of q1 is a and
the one-before-last letter of q2 is b.

3d

is not possible as it contradicts the primitiveness of p.

3e

is not possible as it contradicts Lemma 1.

3f

is not possible as it contradicts the primitiveness of p.

3g

is not possible as it contradicts Lemma 1.

3h

is not possible as it contradicts the primitiveness of p.

3i

is not possible as it contradicts the primitiveness of p.

87

3j

p2p2 p2p1 p1 p1

is possible. Then p̂2bp2 = p1bp̂1, q = p1aap2, for some p1, p̂1, p2, and
p̂2. Either

1. there is no restrained copy of q that is a segment of y[s+1..s+k].
Then y[s..s+2k+3] is a substring of p

r
qp

r, r ≥ 3, and thus S is
derived from aa, ab, ba, and bb near repetitions in x and case 1 of
the theorem holds; or

2. there is a restrained copy of q that is a segment of y[s+1..s+k].
Then y[s..s+2k+3] is a substring of p

i+1
qup

i
qp

i
qup

i+1 and thus
S is derived from a buaaub configuration in x and case 2 of the
theorem holds.

3k
p1 p2 q1 p3 q2

is not possible as it implies that n-the letter of q1 is a and n-th letter
of q2 is b, where n is the position of y[s+k+2] in q1 and the position
of y[s+2k+3] in q2.

3l

is not possible as it contradicts the primitiveness of p.

3m

is not possible as it contradicts Lemma 1.

88

3n

is not possible as it contradicts the primitiveness of p.

3o

is not possible as it contradicts Lemma 1.

3p
p1 p2 q1 p3

is not possible as it implies that the first letter of p1 is b and first letter
of p3 is a.

3q

is not possible as it contradicts the primitiveness of p.

3r

is not possible as it contradicts the primitiveness of p.

3s

is not possible as it contradicts Lemma 1.

3t

is not possible as it contradicts the primitiveness of p.

89

3u

is not possible as it contradicts Lemma 1.

Case (4) – pq-pp

4a
p1 q1 p2 p3

is not possible as it indicates that the last letter of p1 is b while the
last letter of p2 is a.

4b
p1 q1 p2 p3

is not possible as it indicates that the last letter of p1 is b while the
last letter of p2 is a.

4c

is not possible as it contradicts the primitiveness of p.

4d

is not possible as it contradicts Lemma 2.

4e

is not possible as it contradicts the primitiveness of p.

90

4f

is not possible as it contradicts Lemma 2.

4g
p1 q1 p2 p3

is not possible since the last letter of p2 is a and the first letter of p3

is a, and so p = a, which contradicts the fact b occurs in p1.

4h

is not possible as it contradicts the primitiveness of p.

4i
p1 q1 p2 p3

is not possible as it implies that n-the letter of p1 is b and n-th letter
of p2 is a, where n is the position of y[s] in p1 and the position of
y[s+k+2] in p2.

4j

is not possible as it contradicts the primitiveness of p.

4k

is not possible as it contradicts Lemma 2.

91

4l
p1 q1 p2 p3

is not possible as the first letter of p1 is b and the first letter of p3 is a.

4m

is not possible as it contradicts the primitiveness of p.

4n
p1 q1 p2 p3

is not possible as it implies that the first letter of p1 is b and the first
letter of p2 is a.

Case (5) – pq-pq

5a
p1 q1 p2 q2

is not possible as it indicates that the last letter of p1 is b while the
last letter of p2 is a.

5b
p1 q1 p2 q2

is not possible as it indicates that the last letter of p1 is b while the
last letter of p2 is a.

5c

is not possible as it contradicts the primitiveness of p.

92

5d

is not possible as it contradicts the primitiveness of p.

5e

is not possible as it contradicts the primitiveness of p.

5f
p1 q1 p2 q2

is not possible as it implies that n-the letter of p1 is b and n-th letter
of p2 is a, where n is the position of y[s] in p1 and the position of
y[s+k+2] in p2.

5g

is not possible as it contradicts the primitiveness of p.

5h

is not possible as it contradicts the primitiveness of p.

5i

is not possible as it contradicts the primitiveness of p.

93

5j

is not possible as it contradicts Lemma 2.

5k

is not possible as it contradicts the primitiveness of p.

5l

is not possible as it contradicts the primitiveness of p.

5m

is not possible as it contradicts Lemma 2.

5n

is not possible as it contradicts the primitiveness of p.

5o

is not possible as it contradicts the primitiveness of p.

5p

is not possible as it contradicts Lemma 2.

94

5q
p1 q1 p2 q2

is not possible as it implies that the first letter of p1 is b and the first
letter of p2 is a.

Case (6) – pq-qp

6a

is not possible as it contradicts Lemma 2.

6b

is not possible as it contradicts the primitiveness of p.

6c

is not possible as it contradicts the primitiveness of p.

6d

is not possible as it implies that p is a prefix of q.

6e

is not possible as it implies that q is a prefix of p.

6f

95

is not possible as it contradicts the primitiveness of p.

6g

is not possible as it contradicts the primitiveness of p.

6h

is not possible as it contradicts the primitiveness of p.

6i

is not possible as it contradicts the primitiveness of p.

6j

is not possible as it contradicts the primitiveness of p.

6k

is not possible as it contradicts the primitiveness of p.

6l

is not possible as it implies that q is a prefix of p.

6m

is not possible as it implies that p is a prefix of q.

96

6n

is not possible as it contradicts the primitiveness of p.

6o

is not possible as it contradicts Lemma 2.

6p

is not possible as it contradicts the primitiveness of p.

6q
p1 q1 q2 p2

is not possible as it implies that the first letter of p1 is b and the first
letter of p2 is a.

6r

is not possible as it contradicts the primitiveness of p.

6s

is not possible as it contradicts the primitiveness of p.

6t

is not possible as it contradicts the primitiveness of p.

97

6u

is not possible as it contradicts the primitiveness of p.

Case (7) – qp-pp

7a
q1

p1 p2 p3 p4

is not possible as it implies that the last letter of p2 is a and the last
letter of p4 is b.

7b

q1q2 q2 q1 q1

is possible only if p = a. q = q1bq̂1 = q̂2b, q1 = q2 = ε. This reduces
it to case 7h below for q2 = q1 = ε.

7c
q1 p1 p2 p3

p4

is not possible as it implies that the n-th letter of p2 is a and the n-th
letter of p4 is b, where n is the position of y[s+k+1] is p2 and the
position of y[s+2k+3] in p4.

q2 q1 q1

7d

q1

is possible if q = q̂2b = q1bq̂1, p = q1aa. This reduces it to case 7j
below for q2 = ε.

7e

98

is not possible as it contradicts the primitiveness of p.

7f

is not possible as it contradicts the primitiveness of p.

7g
q1

p1 p2 p3 p4

is not possible as it implies that the last letter of p2 is a and the last
letter of p4 is b.

7h

q2 q1 q1q2
q1 q2

is possible only if p = a. q = q1bq̂1 = q̂2b, q1 = q2 = ε. Either

1. there is no restrained copy of q that is a segment of y[s+1..s+k].
Then y[s..s+2k+3] is a substring of qp

2r
q, r ≥ 2. Thus S is de-

rived from aa, ab, ba, and bb near repetitions and so case 3 of the
theorem holds.

2. there is a restrained copy of q that is a segment of y[s+1..s+k].
Then j = 2i+2 and y[s..s+2k+3] is a substring of
qp

i
qup

j−i−2
ppp

i
qup

j−i−2
q = qp

i
qup

j
qup

i
q and thus S is derived

from a ·aubua near repetition in x and so case 4 of the theorem
holds.

7i
q1

p1 p2 p3 p4

is not possible as it implies that the n-th letter of p2 is a and the n-th
letter of p4 is b, where n is the position of y[s+k+1] is p2 and the
position of y[s+2k+3] in p4.

99

7j

q2 q1 q1q2
q1 q2

is possible if q = q̂2bq2 = q1bq̂1, p = q1aaq2. Either

1. there is no restrained copy of q that is a segment of y[s+1..s+k]
and so y[s..s+1..s+2k+3] is a substring of qp

2r+1
q, r ≥ 2, and so S

is derived from one of near repetitions aa, ab, ba, or bb and so case
5 of the theorem holds; or

2. there is a restrained copy of q that is a segment of y[s+1..s+k] and
so y[s..s+1..s+2k+3] is a substring of qp

iqup
j
qup

j−i−1
q. Thus

j = 2i+1 and so qp
iqup

j
qup

j−i−1
q = qp

iqup
j
qup

i
q. So S is

derived from a ·aubua near repetition in x and case 6 of the
theorem holds.

7k
q1

p1 p2 p3 p4

is not possible as it implies that the n-th letter of p2 is a and the n-th
letter of p4 is b, where n is the position of y[s+k+1] is p2 and the
position of y[s+2k+3] in p4.

7l

is not possible as it contradicts the primitiveness of p.

7m

is not possible as it contradicts Lemma 1.

7n

100

is not possible as it contradicts the primitiveness of p.

7o

is not possible as it contradicts Lemma 1.

7p
q1

p1 p2 p3 p4

is not possible as it implies that the last letter of p2 is a and the last
letter of p4 is b.

7q

q1 q1q2 q2 q1

is possible only if p = a. q = q1bq̂1 = bq2, q1 = q2 = ε. This reduces
it to case 7h above.

7r
q1

p1 p2 p3 p4

is not possible as it implies that the one-before-last letter of p2 is a and
the one-before-last letter of p4 is b.

7s

is not possible as it contradicts the primitiveness of p.

7t

is not possible as it contradicts Lemma 2.

7u

101

is not possible as it contradicts the primitiveness of p.

7v

is not possible as it contradicts Lemma 2.

Case (8) – qp-pq

8a

is not possible as it contradicts the primitiveness of p.

8b

is not possible as it contradicts Lemma 1.

8c

is not possible as it contradicts the primitiveness of p.

8d

is not possible as it contradicts Lemma 1.

8e

is not possible as it contradicts the primitiveness of p.

8f

102

is not possible as it contradicts the primitiveness of p.

8g

is not possible as it contradicts Lemma 1.

8h

is not possible as it contradicts the primitiveness of p.

8i

is not possible as it contradicts Lemma 1.

8j

is not possible as it contradicts the primitiveness of p.

8k

is not possible as it contradicts Lemma 1.

8l

is not possible as it implies that q is a prefix of p.

8m

is not possible as it implies that p is a prefix of q.

103

8n

is not possible as it contradicts the primitiveness of p.

8o

is not possible as it contradicts the primitiveness of p.

8p

is not possible as it contradicts Lemma 1.

8q
q1 p1

p2 q2

is not possible as it implies that the first letter of q1 is b and the first
letter of q2 is a.

8r

is not possible as it contradicts the primitiveness of p.

8s

is not possible as it contradicts the primitiveness of p.

8t

is not possible as it contradicts the primitiveness of p.

104

Case (9) – qp-qp

9a
q1

p1 q2 p2

is not possible as it implies that the last letter of q1 is b and the last
letter of q2 is a.

9b
q1

p1 q2 p2

is not possible as it implies that the last letter of q1 is b and the last
letter of q2 is a.

9c

is not possible as it contradicts the primitiveness of p.

9d

is not possible as it contradicts Lemma 1.

9e

is not possible as it contradicts the primitiveness of p.

9f

is not possible as it contradicts Lemma 1.

9g

105

is not possible as it contradicts the primitiveness of p.

9h

is not possible as it contradicts Lemma 2.

9i

is not possible as it contradicts the primitiveness of p.

9j

is not possible as it contradicts Lemma 2.

9k
q1 p1 q2 p2

is not possible as it implies that the n-th letter of q1 is b and the n-th
letter of q2 is a, where n is the position of y[s] is q1 and the position
of y[s+k+2] in q2.

9l

is not possible as it contradicts Lemma 1.

9m

is not possible as it contradicts the primitiveness of p.

9n

106

is not possible as it contradicts the primitiveness of p.

9o

is not possible as it contradicts Lemma 2.

9p

is not possible as it contradicts the primitiveness of p.

9q

is not possible as it contradicts Lemma 2.

9r

is not possible as it contradicts the primitiveness of p.

9s

is not possible as it contradicts Lemma 2.

9t
q1

p1 q2 p2

is not possible as it implies that the first letter of q1 is b and the first
letter of q2 is a.

2

In the following we are going to discuss all possible ways near repeti-
tions of type aubbua can arise. We say that y[s..s+2k+3] is an aubbua
near repetition if y[s] = y[s+2k+3] = a, y[s+k+1] = y[s+k+2] = b and
y[s+m] = y[s+k+2+m] for any 1 ≤ i ≤ k.

107

Theorem 6 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an
extension, and y = σ(x). Let S = y[s..s+2k+3] be a big aubbua near
repetition in y. Then either

1. p̂2ap2 = p1ap̂1, q = p1bbp2, for some p1, p̂1, p2, and p̂2. i ≥ 3
(for aa, ba, and ab) or j ≥ 3 (for bb). S is derived from one of the
near repetitions aa, ab, ba, and bb in x in the following way: σ(aa),
σ(ab), σ(ba), σ(bb) all contain p

r
qp

r as a substring (r ≥ 3). p
r
qp

r =
pp

r−1
qp

r−1
p = p̂2

[

a
[

p2p
r−1

p1

]

bb
[

p2p
r−1

p1

]

a
]

p̂1.

2. p̂2ap2 = p1ap̂1, q = p1bbp2, for some p1, p̂1, p2, and p̂2. S is derived
from near repetition aubbua in x in the following way: σ(aubbua) =
p

j
qup

i
qp

i
qup

j
q = p

j−i−1
pp

i
qup

i
qp

i
qup

i
pp

j−i−1
q =

p
j−i−1

p̂2

[

a
[

p2p
i
qup

i
p1

]

bb
[

p2p
i
qup

i
p1

]

a
]

p̂1p
j−i−1

q.

3. p = b, q = aq̂1 = q̂2a, j = 2r (for ab, bb) or i = 2r (for ba, aa),
r ≥ 3, and S is derived from aa, ab, ba, or bb configuration in x in the
following way: σ(aa), σ(ab), σ(ba), σ(bb), the all contain qp

2r
q as a

substring. qp
2r

q = q̂2

[

a
[

p
r−1

]

bb
[

p
r−1

]

a
]

q̂1.

4. p = b, q = aq̂1 = q̂2a, j = 2i+2 and S is derived from a ·aubua near
repetition in x in the following way: σ(·aubua) = ··qp

i
qup

j
qup

i
q =

··q̂2

[

a
[

p
i
qup

j−i−2
]

pp
[

p
i
qup

j−i−2
]

a
]

q̂1 =
··q̂2

[

a
[

p
i
qup

j−i−2
]

bb
[

p
i
qup

j−i−2
]

a
]

q̂1.

5. q = q̂2aq2 = q1aq̂1, p = q1bbq2, i = 2r+1 (for aa, ba) or j = 2r+1
(for ab, bb), r ≥ 3, and S is derived from one of near repetitions aa,
ab, ba, or bb in x in the following way: σ(aa), σ(ab), σ(ba), σ(bb), they
all contain qp

2r+1
q as a substring. qp

2r+1
q = qp

r
pp

r
q =

q̂2

[

a
[

q2p
r
]

q1

]

bb
[

q2p
r
q1

]

a
]

q̂1.

6. q = q̂2aq2 = q1aq1, p = q1bbq2, j = 2i+1 and S is derived from a
near repetition ·aubua in x in the following way: σ(·aubua) =
··qp

i
qup

j
qup

i
q = ··qp

i
qup

j−i−1
pp

i
qup

j−i−1
q =

··q̂2

[

a
[

q2p
i
qup

j−i−1
q1

]

bb
[

q2p
i
qup

j−i−1
q1

]

a
]

q̂1.

Proof Virtually identical to the proof of the previous theorem. 2

108

