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Saturated ideals obtained via restricted iterated collapse of huge cardinals

Frantisek Franek

Abstract.

A uniform method to define a (restricted iterated) forcing notion to collapse a huge cardinal to a
small one to obtain models with various types of highly saturated ideals over small cardinals is presented.
The method is discussed in great technical details in the first chapter, while in the second chapter the
application of the method is shown on three different models: Model I with an R;-complete Ny-saturated
ideal over W; that satisfies Chang’s conjecture, Model II with an N;-complete N3-saturated ideal over N3,
and Model IIT with an Ry-complete (Rg, Ro, Rg)-saturated ideal over Nj.

Introduction

*-complete kT -saturated ideal over k (k an uncountable cardinal)” is a straight-

"There is no k
forward generalization of the classical result of Ulam (see [U] or [J]) "there is no non-trivial o-additive
measure on ®;”. Solovay (see [S]) proved that if ”there exists a k-complete x-saturated ideal over k7,
then « is a large cardinal (Mahlo). So if one wants to generalize the notion of saturated ideals to an ideal
over a smaller cardinal k, either completeness of such ideal must be less than k, or saturatedness must
be at least k*. From Solovay’s work (see [S]) follows that the consistency strength of the existence of an
Ni-complete Nyo-saturated ideal over ¥y is at least the existence of a measurable cardinal. Later improved
by Mitchell (see [Mi]), the consistency strength is in fact at least the existence of a certain sequence of
measurable cardinals. Until Kunen’s paper [Ks], there was no model known with an N;-complete No-
saturated ideal over X;. Kunen used a collapse of huge cardinal to obtain such a model. Variations of his
method were used by Magidor (see [M]), Laver (see [L]), and Forman-Laver (see [FL]) to obtain various
saturated ideals over N; or Nj.

In this paper the author tried to unify all these variations. In Chapter 1 an exposition of the
method (a restricted iterated forcing) with most of details worked out is presented. Only the general
knowledge of forcing and iterated forcing is assumed. The aspects of restricted forcing (keeping forcing
terms ”small” so the resulting posets are not getting too ”"big”), extension and covering properties of
elementary embeddings (i.e. when an elementary embedding j:V—M can be extended to one from a
generic extension of V' to a generic extension of M, and when a subset of a generic extension of M is
a set from the generic extension of M) are the main thrust of the first chapter. Also the circumstances
which give rise to a particular ideal (which can be made saturated depending on the forcing used) are
discussed as well.

Starting with an elementary embedding j:V—M with the critical point k, restricted iterated
forcing is used to obtain a poset B = P * () so that B is a regular suborder of j(P), and in any generic
extension of V' via B there is an ideal Z over & so that p(x)/Z can be embedded into Boolean completion of
j(P)/B, and hence it inherits the saturatedness of j(P)/B. The extension of the elementary embedding
j to one from V[G] to M[H] can satisfy (if the circumstances are right) the ”transfer” property, i.e. for
every object X from V[G] of certain size j" X€M[H], and of course j(X)EM[H]. In many situations
7" X becomes a ”subobject” of j(X), lending itself to prove properties like Chang’s conjecture, or the
graph one proven by Forman-Laver.



In Chapter 2 three different models for various saturated ideals are produced via restricted
iterated collapse of a huge cardinal. In the first chapter the author tried to set up the machinery of
restricted iterated forcing so that only certain properties of the forcing to be iterated must be checked for
all pieces to fit together to get the posets P, @, and B so that B can be regularly embedded into j(P).
Some additional properties of the model V2 then follow from properties of P and/or j(P)/B.

Lately the field has been quite active by efforts of Forman, Magidor, and Shelah (see [FMS])
who obtained a model where MM (Martin’s Maximum Axiom) holds by collapsing ”just” a supercompact
cardinal to N;. Some of the consequences of MM are that 2§ = Ry and the non-stationary ideal over Xy is
No-saturated. Forman, Magidor, and Shelah (private communication) using a forcing similar to the one
used to produce a model where MM holds, obtained a model where GCH holds and the non-stationary
ideal over N is "somewhere” Np-saturated (i.e. the restriction of the ideal to a stationary subset of ¥y
is No-saturated). It seems at the moment that huge cardinals can give rise to some ”fancy” saturated
ideals, while supercompact cardinals can give similar results as far as Ny-saturatedness is concerned.

Let us mention an interesting open problem. Although a supercompact cardinal is enough to
get an Nj-complete No-saturated ideal over N;, and a huge cardinal cardinal is enough to get an N;-
complete Ns-saturated ideal over N3, a model with an Nj-complete No-saturated ideal over N, is not
known. Note that if X, < k <X, then there is no an Ry-complete Ry-saturated ideal over & (see [F3]).
For completeness, Woodin (see [W]) obtained a model of ZFC with an X;-complete ideal over 8; which
has a dense set of size X; via the axiom of determinacy. He can now obtain (private communication)
enough of determinacy by collapsing a huge cardinal to X; to use similar construction to get a model of
ZFC with an N;-complete Xi-dense ideal over Xy, but it is a completely different approach from the one
presented in this paper.

The motivation of the author to undertake writing of this paper was twofold: first is the scarcity
of published literature in this area (no wonder due to the enormous technicality of the subject), and
second the non-existence of expository literature in the topic allowing non-experts to understand and use
the methods. The author sincerely hopes that this paper will succeed in at least partially filling both

gaps.

Notation and basic definitions.

For all basic notations about sets see [J] and [K;], about forcing and iterated forcing see [J],[K1],
and [B]. For definitions and properties of large cardinals see [MK] and [SRK].

We are using as standard set-theoretical notation as possible. To distinguish formulas from text,
they are enclosed between ™ 7, e.g. “x€X ”. WLOG abbreviates "without loss of generality”, () denotes
the empty set. Lower case Greek letters are reserved for ordinal numbers. Ord denotes the class of all
ordinal numbers. If X is a set, then | X| denotes its size (cardinality). If f is a function, dom(f) denotes
its domain, while rng(f) denotes its range. If X is a set, then f'" X denotes the range of the function
F1X (f restricted to X). For a set X, p(X) denotes the power set of X, while [X]<7 denotes the set of
all subsets of X of size < 7, and [X]=” denotes the set of all subsets of X of size < v, and [X]” denotes
the set of all subsets of X of size 7. If X and Y are sets, then XY denotes the set of all functions from
X into Y, and for an ordinal v, <7X = J{"X : a < 4}, while 97X = J{“X : a < 7}. If V is the
set universe, the cumulative hierarchy of sets (V,, : a€O0rd) is defined by Vo = 0, Vor1 = VaUp(Va),
and Vo, = U{Vs : B < a} for o limit. Then V = [J{V,, : @€O0rd}. A set X is said to have rank o, if
XeVy1—V,.

Let P be a poset (i.e. a set partially ordered by <). Let p€P, and let DCP. Then p << D iff
p < d for every d€D. D is dense in P iff for any p€P there is d€D so that d < p, while D is said to be
dense below p iff for any p’ < p there is d€D so that d < p’. p,p’€P are compatible, we shall denote




it by p3Cgq, if there is g€P so that ¢ < p,p’. p>Cq will denote that p and g are incompatible. D is an
antichain, iff D consists of pairwise incompatible elements. P satisfies the k-c.c. iff for every X €[P]"*
there are p, g€X so that they are compatible in P. P satisfies the (k, k, u)-c.c. iff for any X €[P]* there
is YE[X]" so that for any ZE[Y]" there is zEP so that z << Z. P satisfies the (s, s, <p)-c.c. iff P
satisfies the (k, k,y)-c.c. for every v < p. D is directed iff every two elements of D are compatible. D
is centered iff for any Do€[D]<“ there is pEP so that p << Dy. P is k-centered iff P is a union of
k centered posets. P is said to be A-closed (<A-closed) if for every £ < A (£ < A) and every descending

sequence (p, : a < &) of elements of P there is p€EP so that p < p, for every a <¢&.

7 is a k-complete ideal over A iff (i) ZCp(A); and (ii) if XCY CA, and Y€Z, then X€Z; and
(iii) if {Xo @ @ < &}, and € < K, then U{X, : a < &} € T; (iv) PE€Z; and (v) A\¢Z; and (vi) for
every a€\, {a}€Z. (Note: usually a x-complete ideal is defined as one satisfying (i)-(iv), a proper ideal

is one satisfying (v), non-principal ideal as one satisfying (vi). Since we shall deal only with proper,
non-principal ideals, we included these properties right in the definition.) I+ = {XCk : X¢Z}. T is
k-saturated iff {X, : a < kK}CZT, then X,NX3¢Z for some a # 3 < k. T is (k, k, p)-saturated iff
for every X €[ZF]" there is YE[X]" so that for every ZE[Y]*, NZEZ. T is s-centered iff T = (J{Z} :
a < k}, and each Z; is centered, i.e. whenever Xy, ... ,X,, € ZF, then ({X; : i <n} & T.

If M CV is a transitive model of ZFC, then I/ is a non-principal M-k-complete M-ultrafilter over
Al (1) UCp(A)NM; and (ii) if XCY CA, and X€Y, and YEM, then YEY; and (iii) if { X, : o < E}EM,
and £ < k, then ({ X, : a < &} € U; and (iv) if XC\, XEM and X¢U, then A\—X €U; and (v) for every
€\, {a}¢U.

If P is a forcing notion (i.e. a poset), p€P, then p H% “¢ ” (read p forces over V that ¢) means
that for any G P-generic over V, so that p€G, V[G]E “¢ ”. Symbol 1p denotes the greatest element of
P (if it exists). H% “¢ 7 means that p H% “¢ 7 for any p€ P, which is equivalent to 1p H% o 7 if P
has the greatest element, and also it is equivalent to V[G]= “¢ ” for any G P-generic over V. If P and

Q are posets, P ~ @ denotes that they are isomorphic. P CC ) denotes that P is a complete suborder
(see Def. 13). PxQ is a poset of ordered pairs (p, q), pEP, ¢€Q ordered by (p,q) < (p',¢') iff p<yp
and ¢ < ¢’. Then P CC PxQ, as well as Q CC PxQ.

As much as possible we shall adhere to denoting forcing terms (i.e. names, see Def. 5) with o

accent. E.g. XEVP denotes a VP-term. When forcing with P, every object X from the ground model V'
has a canonical name by which V' is embedded into V[G]. For simplicity we shall use the same notation
for the canonical name for X as for X itself. The notion of iterated forcing P*C} represents a poset of
pairs (p, q0> so that p€P, and H% “q 6602 & 602 is a poset 7, with the order defined by (p, §> <{p, (fl> iff
p<p andyp |5 N < qO/ . It is standard (see e.g. [J], [Ki1]) that if P CC @, then there is (Q/P)eV T
so that P« (Q/P) ~ Q. A sequence (P, : a < k) is a forcing iteration iff for every a < k, there is
éaEVP“ so that P,y1 = P, * éa For o limit p€P, iff p is an a-sequence so that p|3€Pg and p|s HPL@

“p(ﬁ)E}OBﬁ ~ and supp(p) = {f€a : p|B HPL[, “p(B) # 1é “} satisfies some specified properties. For
5

example, if at every limit stage we require that only the sequences with finite support are taken, it is
called finite support iteration. Different ideals for support may be used (see [Ki]).

Let B be a Boolean algebra, and let ¢ be a formula (using VZ-terms). The symbol ||¢||z denotes
the Boolean value of ¢ (see [J]). Symbols Op, 15 denote the least and greatest elements of B. Comp(P)
for a poset P denotes its Boolean completion. Let p€P. Then p H% Yo7 it p < ||Bllcompep)-

Let formula ¢ define a set. Let P be a poset. Let M be a model of ZFC. Then ¢* denotes the
VP_term for the set ¢ defines in a generic extension of V via P, and ¢™ denotes the set ¢ defines in M.

An uncountable regular cardinal « is inaccessible (we shall abbreviate it by inacc.) iff 2* < «
for every A < a.

If M is a model of ZFC, j:V—M is an elementary embedding iff for any formula ¢(Xj, ...
,Xp) with n+1 free variables and no constants, and any Ao, ... ,A,€V, VE “¢(4o, ... ,Ap)” iff




ME “¢(j(Ap), ... ,j(Ap))”. An ordinal k is the critical point of j iff j(a) = « for all @ < &, and
j(k) > Kk (such k must be at least a measurable cardinal - see [J]). If V, = M,, for all o < &, then
j(x) = x for every x€Vj.

Chapter 1.

Def. 1: Let j:V—M be an elementary embedding with critical point k. Let M CV and let j be definable
in V. j is huge if /") MCM (where (") M is defined in V).

Def. 2: Let p be an ordinal. XCOrd is p-Easton if | XNy| < v for all regular v > p.
Lemma 3: Let A be Mahlo, p > w, and let XCA\ be p-Easton. Then X is bounded below A, i.e. | X| < A.

Proof: A ={v:p <7 <X & A regular} is stationary in A since A is Mahlo. For every y€A define f(7)
as the least v so that XNyCw. Since X is p-Easton, f is regressive and so by Fodor’s theorem there are
a stationary BCA and o < A so that XNyC f(y) = o for all y€B. Hence XCo. [

Lemma 4: Let j:V—M be huge with critical point . For all « < j(k), all p > w, and all X Cj(k)
4.1) “ais a cardinal 7 iff ME “«is a cardinal 7;

) “ais regular 7 iff ME “a is regular 7;

) “a is weakly inaccessible ©  iff ME “« is weakly inaccessible ”;

) “a is inaccessible ©  iff ME “a is inaccessible 7;

) “a is Mahlo ”  iff ME “a is Mahlo ”;

) “X is p-Easton and X€M ~ iff ME “X is p-Easton ”

) "X is a p-Easton subset of j(k) © iff ME “X is a p-Easton subset of j(x) ~

Proof: Left to the reader. [J

Def. 5: Let P be a poset. Then Vi = 0, V.2, = VP U o(VIxP), VI =U{V]) : 8 <a} for a limit,
and VP = J{V.l' : a€Ord}.

Lemma 6: Let P be a poset so that PEV), A a regular cardinal. Then
(6.1)  VPeV, for every a < \;
6.2) VE

wanCVagan for every a > A, o limit, and every ncw.

Proof: Left to the reader. [

Lemma 7: Let P be a poset. If XV and X€V,, then X<V,
Proof: Left to the reader. [

Lemma 8: Let P be a poset. If X€V then X NV, €V ;.
Proof: Left to the reader. [

Lemma 9: The maximum principle.
Let P be a poset, A an antichain in P (i.e. a set of mutually incompatible elements of P). For each a€A,
let X o€V, a, ordinals. Then there is a XGVCer17 a = [J{aq : a€A}, so that a ||+ "X = X ” for

every a€A.

Proof Define X by ( ,p)EX iff for some a€A, ﬁedom( o Xa),p<aandp 5 YEX . Then

dom(X ) U{dom(X,) : a€A} C\{V] :a€A} = V}. Now, to prove that a 5 "X = X ” for each
a€A is fairly standard (see e.g. [K;]) and hence left to the reader. []



Lemma 10: Let P be a poset, p€P, X€V' and a+n > 1, where o = O or « is a limit ordinal, and
n€w. Let p H— "X has rank at most a+n “. Then there are ¢ < p and YE +2n so that

I X =Y.

Proof: By contradiction. Let a;, n be the least such that the negation holds.

(1)  Ifn =0 (so «is limit), then p [ (I8 < a)()% has rank at most §) “. There are ¢ < p and
B < a so that q {5 “X has rank at most B 7. By the minimality of o, n there are § < ¢ and
YEVﬁ such that g 5 "X =Y~ , a contradiction.

(2) Son>1.

Let t = (z, q)E)% Define Dy = {r < ¢ : (r incompatible with p) or (r < p and for some
€V, o 7 5 "2 =2 7)}. We claim that D, is dense below g.

Let ¢' < q. We are to show that there is ¢ < ¢’ so that ¢"€D,. If ¢’ is incompatible with p,
then ¢’ is in D; and we are done. If on the other hand ¢’ is compatible with p, then there is
¢ <p,q. Then q |+ “z E)z' and has rank at most a+n—1~. By the minimality of «, n there
are ¢" < gand €V}, ,, _, so that ¢ > " = z ”. Therefore ¢"€D; and we are done. The
claim is proven.

Let A; be a maximal antichain in D;. For every a€A, there is z ,€V./ at2n—2 SO that a {5

“& =z, ” whenever a is compatible with p. By Lemma 9 there is RtEV ton_1 so that a [f5-
]%5 =z, for every a€A¢, hence a H— }%t =7 ” whenever a€A4; si compatible with p. Define
Y = {(R,q) : (,¢)€X}. Then YV, .

Let G be P-generic over V so that peG. If t = (z, )E)z' and qEG then some aEAt isin G (and
hence compatlble with p) and since a H— ]%t ()¢ = (Rt) Thus ( ) = {(z)¢
(#,q)EX & q€G} = {(2)C : (R, q)€Y & ¢€G} = {( )G (R, )€Y & qE€G} = (V)C. Therefore
there is some ¢ < p so that ¢ [f5- "X =Y~ and YEV w12, a contradiction. O

Lemma 11: Let P be a A\-c.c. poset, A a regular cardinal, p€ P and XEVP Let p {5 “X has rank at
most A “. Then there is YEV/\ so that p [+ "X =Y

Proof: By Lemma 10, D = {¢ <p: (EDO/GV)\P)(Q - "X = 1;)} is dense below p. Let A be a maximal
antichain in D. For every a€A there is XQGV/\P be so that a [ "X = X, 7. Since X is regular and
|A] < A (as P satisfies the A-c.c.), there is 3 < A so that X,€V" for each a€A. By Lemma 9, there is
};EVﬁilCVAP so that a [ Y = )Ea - X~ for every a€A. Hence p {5 wv=x-.0

Lemma 12: Let P be a A-c.c. poset, A\ a regular cardinal. Let pEP, XGV,}O/EVP, and
p s "YCX & [Y] <A 7. Then there are ¢ < p and YEVP so that [V]| <\ and ¢ = Y= Y ”

Proof: Let f:p—X be a bijection. There are gEVP ¢ < Xand ¢ < p so that ¢ e g :{—)13' “. Hence
¢t "(3B€p)(g () = f(8)) 7, for any a < & Let Do = {r <g: (3Ep)(r 5 "¢ (a) = f(8) ")}
Then D,, is dense below ¢. Let A, be a maximal antichain in D,. Define hevP by ({a, f(3)), 7’)6}: iff
r€A, and r {5 “g(a) = f(B) ”. Since |Aq| < X for every a < £, and ) is a regular cardinal in V/,

|ho| < A Tt is left to the reader to check that (1) |5 “hOC§><X “,(2) q “I is a function ,

(3) a5 “dom(h) =€, (4) a 5 “hCg " andsoq - h =g "

Now define YEVF by ¥ = {(f(8),r) : (B < &)({ev, £(B)), >€ h)} Thus [Y| < A and it is left to the
reader to check that (5) g |5 “f:"fCY 09 q 5 YCh"f “. Thus q [+ Vo= h"§ —g"¢=

o

y . O

Def. 13: P,Q be posets. A mapping i : P — @ is a complete (regular) embedding of P into Q, iff




(13.1)  for every p,q€P, if p < ¢ in P, then i(p) < i(q) in Q;

(13.2)  for every p,q€P, if p3Cq in P, then i(p)2Ci(q) in Q;

(13.3)  for every q€Q there is pEP so that whenever p’€P and p'3Cp in P, then i(p’)3Cq in Q (we shall
denote this relationship between p and ¢ by p<pq in Q).

PCC(Q denotes that P is a complete suborder of @, i.e. the identity is a complete embedding of P into

Q.

Note: (13.3) can be replaced by: for every A, a maximal antichain (a set of mutually incompatible
elements) in P, " A is a maximal antichain in Q.

Def. 14: Let P be a poset. We shall say that P is separative if for every p, g€ P, whenever p £ ¢, then
there is p’€P so that p’ < p and p’'DCg.

Lemma 15: Let P, (Q be posets such that PCC(Q and P is separative. Let p, p1, p2€P, q¢€Q. Let p<pq
and ¢ < p1,p2 in Q. Then p < py,pp in P.

Proof: Assume that p £ p; in P. Then by separativeness of P, there is Ps€P such that p3 < p and
p3DCp1 in P. Thus p33Cp in P. Since p<pq, p33Cq in Q. Therefore ps3Cp; in @, and since PCCQ,
p3Cp1 in P, a contradiction. Thus p < p;, and by the same argument p < p,. [J

Lemma 16: Let j:V—M be an elementary embedding. Let P be a poset. Then j|P:P—j(P) satisfies
(13.1) and (13.2).

Proof: Left to the reader. [J

Lemma 17: Let P,Q be posets such that PCCQ. Let ¢(z1, ..., x,) be an upward absolute formula. Let
X1,.,X, €EVP. Let p€P, g€Q and ¢ < pin Q. Let p 5 “o(X1,....X,) 7. Then q H?
“¢(X17"'7X71) -

Proof: Let ¢; < ¢ in Q. Let G be Q-generic over V so that q1€G Since p {5 “gb()%l, ,)% )7
VIGNP]E= “gb()%gmp )%Gﬂp) Since each X; evr, XGQP XG and by upward absolutness of ¢,
VIG]E “o(X§ XG) . Thus for some q2€G @ g qS(Xl, 7X ) ”. Then ¢23Cq; in Q, and so there

is Q3€Q7 QS<Q2>C]1 and qs Hi (lea aX )” Hencequ ¢(X17 7X )”' D

Lemma 18: Let P,Q be posets such that PCCQ. Let ¢(x1,...,x,) be a downward absolute formula.
Let X1,....X,, €VF. Let p€P and let p Hﬁ “o(X1,...,.X,) 7. Then p 5 “o(X1,...,.X,) 7.

Proof: Let P1 < p 1n P. Then p; < pin Q. Let G be Q- generlc over V so that p; €G. Since

P g qS(Xl, “Xn) 7, VIGIE (b(X?, XG) . Since each X evr, XGﬂP = XG and by downward
absolutness of @, [GﬂP”: qb(X?mP,...,Xfme) ”. Thus for some p2O€GﬁI;’ P2 5 “¢()§'1,...,)2'n) ”
Then po3Cp; in P, and so there is p3€P, p3 < p2,p1 and p3 5 “¢(X1,...,.X,) 7. Hence p |}
(X1, X,) 7. O

Lemma 19 Let P, @ be posets such that PCCQ. Let gb(:sl, .y Tp) be a downward absolute formula.
Let Xl, X eVF. Let p€P, ¢€Q, p<pq, and let g H— ¢(X17 +Xn) 7. Then p 5 “o(X1,...,X,) 7.

Proof: Let p; < pin P. Then p;3Cp in P, and so p13Cq 1n Q. Let q1 €Q be such that ¢; < p1,q in Q.
Let G be Q-generic over V' so that ¢;€G. Since ¢ 5 ¢(X1, ,X )7, VIGE qb(X?, X%) ~. Since
each X; evr, XGmD XG and by downward absolutness of ¢, V[GHPH: qS(Xme,...,XfLmP) ”. Thus
for some pQEGOP P2 5 qS(Xl, ,X ) “. Then pQIpl in P, and so there is p3€P, p3 < pa,p1 and

b3 Hi ¢(X17 ) ) Hencep \"F ¢(X17 1X )”' |:|



Def. 20: Let P, @ be posets so that PCC(Q). Let REVP so that 5 “Ris a poset ” . Define Q®p]% =
{(p,g) : q€Q, 7 €VF ¢ o “r € R} (q1,r1) < {g2r2) iff ¢ < goin @, and ¢4 o Yy <rgin R”.

Lemma 21: Let P, @ be posets such that PCCQ. Let }OEGVP so that |} ]% s a poset ”. Then Q®p}o%
is dense in Q*fi

Proof: Obviously Q@p]o%is a suborder of Q*]% Let <q,7?)€Q*]o% Then ¢€Q, r €V? and ¢ Hﬁ

"2 € R”. Let G be @Q-generic over V so that ¢€G. Since REVP and GNP is P-generic over V, =R
GNP eV [GNP). Thus & €V[GNP], and so there is 11 €V’ such that 7P = . Thus for some ¢ €G,

o

@ g 1= 7 7. Then ¢;3Cq in @, and so there is ¢3€Q such that ¢ < ¢1,¢ in Q and
% o “r'y =7 7. Then (g2,71) € Q®pRand (g2,r 1) < (g,7) in Q«xR. [J

Lemma 22: Let P, Q, R be posets so that PCCQCCR. Let S €VP and let 5 50' is s poset 7. Let @
be separative. Then Q@pS cC R®pS

Proof: Obviously Q®p§ C R®p§.

First we verify that (13.1) holds. Let (g1,51) < (go,52) in Q®p§. Then ¢; < ¢ in @ and

q1 Hﬁ “$1 < Sqin S By Lemma 17 q; |f5- “$1 < Sqin S, As @ <qin R, <q1,§1> < <q1,s°1) in
R®P§.

Next we verify that (13.2) holds. Let (g1,s 1)3C(ga,52) in R®p§. There is (r,s°> € R®pS so that

<7",SO> < <q1,§1>7 (qQ,§2> in R®p§. Thus 7 < ¢1,¢2 in R and 7 [ ° 'S < 51,89 in S . Since QCCR,
in S 7 is an absolute formula,

there is ¢€@ so that g<gr. By Lemma 5 ¢ < ¢1,¢2 in . Since “s < s;
“s <s1,52in S 7. So (q,5) €

by Lemma 19 ¢ H? “s < §1, 89 in S By Lemma 17 q |5
Q®p§ and thus (g,s) < (q1,51), (g2,52) in Q®pS

Verify that (13.3) holds. Let (r,s) € R®pS Then s €VF, r€R and r [ s

is g€Q such that g<gr. Since "z€X ” is absolute, by Lemma 19 ¢ H? “s €
q it “§ €57, So (q,§>€Q®p§. We shall show that (q,§><(r,§)

let <q1,s°1>€Q®pSo so that (gy,s 1) OC (¢,s) in Q®p§. Thus there is (ga,52) € Q®pS such that

<q2,502> < <q1,301>, (¢,s) in Q®p§. Hence g2 < ¢1,q in Q, and ¢ |-% YS9 < 51,8 in S . Since q23Cq
in @, g23Cr in R. Let 71 €R so that r; <r,gs in R. Since “sy < s1,sin S 7 is absolute, by Lemma 17
1 s “$9 < S1,8 in S . Then <r1,§2> € R®p50’ and (rl,s 9) < (r,s), (ql,s 1) in R®p5’. Hence
(q1,51) 3C (r,s) in R®p50'. 0

”. Since QCCR, there

€S
s ”, and by Lemma 17

o

Lemma 23: Let P, Q be posets so that PCCQ. Let SO', REVP so that 5 “RCC S ”. Then
Q@pR cC Q@pS

Proof: Obviously Q®plo% is a suborder of Q®p§

Let’s verify (13. 2) Let (q1,71), {q2,72) € Q®pS be so that <CI1,7” 1) OC {ga,7 o) in Q®pS. There is
(q3,r3) € Q®pS so that <q3,r 3) < (g1, 1), <q2,7‘ 2) in Q®p5 Hence ¢3 < q1,¢2 in Q and .

q3 Hﬁ S3 < T mS . So ¢3 h Vs o ) mS . And thus ¢3 h 'y X roin R”
follows that g3 H? (3 7’3)(1"3 <7rirein ]%) . There is 75 €EV? so that g3 Hﬁ “r3 < Tri,rein R”
Then <Q3,7‘ 3) € Q*R By Lemma 21 there is (qq,r 4) € Q@PR so that <q4,r ) < (g3,r3) in Q*}%.

q4 H— ‘4 < TTg N R”. Therefore (qar 1) < (q1,71), (g2, 2) in Q®pR, and so (g1, 7 1)3C{ga,7 o) in
Q@PR )

Let’s verify (13.3). Let (g,s) € Q®p§. Then g {5 “s €57.S0¢q o “(3r € I%)(?S <]% 5) 7, since



o

q H? ]—% cC § “. Thus there is 7 € V< such that ¢ % o <]% s 7, and so (g, O) € Q*I?x’, By Lemma

o

21 there is (1,7 1) € Q®p}03 so that {g1,r1) < (q ) in Q*R We shall show that (ql,r 1) is the element
in Q@pR we are looking for: let (go,r ) € Q®pR so that (qg,r o) OC (1,7 1) in Q®pR Then there is
(gs7°3) € QupRso that (g3,73) < (g2,72), {q1,71) in Q@pR Then s < q1,q2 in Q and g3 o

o

r3§r1,r2mR . Also ¢3 H? ry<r <]%s’ Thus g3 Hﬁ ‘rg T S inS” , and so g3 Hﬁ

“(3s1)(s1 < 73,5 in S) ”. Thus there is 5, € V9 so that g3 o “s1< "3,8 in S . Tt follows that

(q3,51) € Q*g. By Lemma 21 there is (q4,52) € Q@pSO’ so that (g4,52) < (g3,s1). Then ¢4 o “so <1

3,5 in S . Thus <Q4,SOQ> < (qg,rog>, <q,so) in Q®p§. Hence It follows that (go,r ) 3C (q,so) in Q®p§. O

Lemma 24: Let P, Q be posets. Let REVF and let -5 “Ris a separative poset . Let @ be separative.
Then Q®pR is separative.

Proof: We shall prove that Q*]% is separative; since Q® p]f? is dense in Q*é it follows that Q® pé must
also be separative, too.

Let (ql,;1> £ <q2,73 9) in Q*}% There are two possible cases:

(i) 1 £ g2 in Q Then by separativness of @, there is ¢g3€Q such that g3 < q1 and g3DCgqz in Q. Then
(g3.71) € Q+R, (a371) < {q1.r1), and <Q3,7‘ 1) OC (g2.7 2) in Q+R.

(ii) g1 < g2 in Q. Then ¢ HWZ 1 <roin R”. So there is €Q, g3 < ¢1 in Q, so that

% o “Fy £ Fyin R, and so g3 o “(3 F3)(f3 <71 and T3 DC 19 in R) 7. So for some 73 € VO,
qs3 Hﬁ “723 < 7?1 and 7?3 OC 732 in R”. Thus, <Q3,733> S Q*R. Hence <Q3,733> < <q1,731>, and
(g3,73) DC (g, 2) in Q*R. Hence QxR is separative. [

Lemma 25: Let M CV be a transitive model of ZFC.

(25.1) Let PEM be a poset and ¢ a restricted formula with n free variable and no constants. Let pEP
and let X1, . X €MP. Then p - (;S(Xl, ,)2”) 7 iff p |-% ¢(X1, ,)2”) .

(25.2) If PEM), and </\M)\CM and P satisfies the A-c.c. in V, then "G is P-generic over V 7 iff

“@ is P-generic over M “.

Proof:
(25.1) Letp H% “qi)()%l, ,in) ” and assume that p H X1, ey ) ”. Then for some ¢q < p,

qfs " (Xl, ,)?n) ”. Choose G, a P-generic filter over V' (and so over M as well) so that
g€G. Then V[G]= “—¢(Xq,...,X,,) ” and so (as ¢ is restricted and X, ..., X, €M[G]) M[G]E=
(X1, .y Xpn) 7, where X; = ()%Z)G for i = 1,...,n. Since p€G, M[G]E “¢(X1,...,Xn) 7, a
contradiction. Hence p |- “gb()z'l, ,)E',L)

The opposite direction: let p |5 “(;5()21, ,)E'n) 7. Assume that p H%L “qﬁ()z'l, ,)%n) ”

Then for some g < p, ¢ H— —( Xl, .. ,Xyn) 7. By the same argument as above, ¢ {5
ﬂqﬁ(Xl, ,Xn) , a contradiction as ¢ < p.
(25.2)  Ome direction is easy and so is left to the reader. For the other direction assume that G is

P-generic over M. Let D be dense in P. Let A be a maximal antichain in D. Since |A| < A,
A€M and so GNA # (). Hence GND # (). [J

Lemma 26: Let j:V—M be an elementary embedding, M CV, and let j be definable in V. Let PEV

be a poset. Let G be P-generic over V and let H be j(P)-generic over M so that if p€G, then j(p)€EH.

Then

(26.1) there is an elementary embedding j:V[G]— M [H] definable in V[H] and extending j;

(26.2) if AMCM and j(P) satisfies the A-c.c. in V, A regular, then if X€V, YEV[H], YCX, |Y| < A,
and YCM|[H], then YEM[H];



(26.3) if M, =V, for all @ < A, A a limit ordinal, and if PEV), then V[H]|, = M[H], for all a < A.

Proof:
(26.1) Define (X)) = (j(¥))".
j is well-defined, because if (X) = (Y)“, then for some p€G, p 5 "X =Y ”, and so

o

3(9) 5ty (%) = §(¥) * by elementarity of j. Since j(p)€H, j(X)%) = (X)) =
(V) ) = ((Y)G) . j is elementary, for if V[G]E “¢((X)¢ K (X)) 7, then p f+
gi)(Xl, X ,) ” for some pEG, and so j(p) HT “o(j(X ) o ,J(X3)) 7. Since j(p)€EH,
(X

MIH]E “6((GX)), . G 7, s0 MIH]= “6(((X1)E), . J(Xa)9)) ~
j extends j, for if X€V, then (X)¢ = X and so 3(X) = j(X).
(26.2) Let YeVi(P) so that Y = (}0/)H By Lemma 12 we can assume WLOG that D}| < A. Let (gj,q)e}?’.
Then (y )HE(Y)H Y CM[H], so there is € M?(®) such that (§)7 = (y)". Define Y = {(g,q) :
{3, q}EY} Then Y CMIP)CM and |Y| Y] <\, s0 YEAMCM, hence YEM. Since YEVI(P),
YEMI®) and thus (V)TEM[H]. (V)7 = {(@)" : (5.9)V} = {()" : (7,0} = (V)" =Y.
Hence YEM[H].
(26.3) will be proven by induction:
() (VIH]o = (M[H])o = 0.
(ii) Assume that (V[H])o = (M[H])o and a < A
Let ()%)He( [H])a+1 Then ()%)HC(V[H])Q = (M[H]),. By Lemma 10, we can assume
WLOG that XeV?F P 5, and by Lemma 6, V., ,CVy = M,. Hence ()2)H€M[H] and so
(X)"E(M[H])at1. Thus (V[H])as1C(M[H))as1, and so (V[H])as1 = (M[H])as1.
(iii) if (V[H])s = (M[H])s for all B < a < A,  limit, then (V[H])o = (M[H])s. U

Lemma 27: Let j:V—M be huge with critical point x. Let P€V, be a poset. Then
(27.1)  j(p) = p for all pEP;

(27.2) j(P) = P;

(27.3) G is P-generic over V iff G is P-generic over M;

(27.4) for any G P-generic over V, there is a nearly huge 7:V[G]—M|G] extending j.

Proof: (27.1) and (27.2) are easy and so they are left to the reader to prove.
(27.3) follows directly from Lemma 25.
(27.4)  follows from Lemma 26. [

Properties 28: Let C(v,0), v < ¢ cardinals, define in V a poset.

(28.1)  C(v,0)CVjs for all cardinals v < §, § inacc.;

(28.2)  C(y,7) = {sNV; : s€C(v,0d)}, for all cardinals v < 7 < §, 7, inacc.;

(28.3)  for every s€C(7,6), s < sNV; in C(,0), for all cardinals v < 7 < §, 7, inacc.;
(28.4)  for every s€C(7,9), sNV:=¢(y,r)s in C(v,0), for all cardinals v < 7 <6, 7,6 inacc.;
(28.5)  C(v,7)CCC(v,9), for all cardinals v < 7 < 4, 7, inacc,;

(28.6)  C(v,9) is separative for all cardinals v < §, J inacc.

Properties 29: Let I = (I, : a < k,« limit ) be a sequence such that:

(29.1) I, is an ideal on « containing all finite subsets of «, for all limit o < k;
(29.2) 1,ClIg for all limit o < 8 < k;

(29.3)  if « is inaccessible, than z€1, implies that |z| < a.

Lemma 30: Let [{a€k : « inaccessible }| = k. Let I = (I, : « limit, o < k) be a sequence of ideals
satisfying (29.1) - (29.3). Let C define a poset and satisfy (28.1) - (28.6). Then there exists an (iterated
forcing) sequence (P, : a < k) such that



(30.1)
(30.2)
(30.3)

(30.4)

Py = C(wo, k);
P11 = P,#{0} whenever a < & is not inaccessible;

)P wTVa denotes

Py = Pa®PaTva0(a,m)PaTVa whenever o < & is inaccessible, where C(a, &
C(a, k) as defined in the extension by P, TV,;

(this is a sound definition since it follows from (30.7) - (30.10) that P,TV,CCP, , see (3*) below)
where for any 3 inacc. such that o < 8 < k we define P,TVs = {p1V; : p€P,}, and plVj is

defined as follows: (ptV3)(0) = p(0)NV3, if p(&) = 0, then (pTV3)(€) = 0, and when p(£) # 0

(hence € is inacc.), then (pTVg)(f)EVBPJVg so that HW “(pTV)(€) = p(é)ﬂVﬁpgTvg ” (such
e Ve

PeTVe-name in Vj exists by Lemma 11 as ¢ is inacc.). The ordering is defined by pTVj < ¢TVp
in P,TVs if ptVs < ¢Vs in P, (this is a sound definition since by (30.7) P,TV5CP,)
For a < k limit, P, consists of all limits of conditions of (Ps : 3 < «) with support from I,;

And furthermore the sequence (P, : o < k) satisfies:

(30.5)
(30.6)

P, is separative for every a < k;
P,CV, for every a < k;

for every inacc. a < k, any inacc. 3 such that o < § < &:

(30.7)
(30.8)
(30.9)

(2%)

(3%)

PQTVQ C Pa;
PaTVg is separative;
paCqin P,TVs iff p3Cqin P, for any p,q€P,TVs;

ptVs < p in P,, for any pEP,;

P v
pTVs > pin P,, for any p€P,;

{p|supp(p) : pEPTVo} C V.

For any a < k, any v < «, and any 3 such that v < 3 < k, (p|y)TVs = (pTV3)|y, for any pEP,.
((pNTVE)(0) = (M (O)NVs = p(0)NVs = (pTV5)(0) = ((pTVp)[7)(0). If p(§) = 0, then
(P7)(§) = 0 and so ((pIV)TV)(€) = 0 = (pTV3)(&) = ((pTV5)I1)()- I p(§) # O, then & is

inacc. and ¢ < 7. Then ((ph)TVg)(f)GVﬁPETVE so that HTVE (I TVa)(€) =

POV ence o () VAE) = POV, thus ((ph)TVa)(E) and
(pTV3)(€) are names for the same object.

For any a < k, any a < v < 3 < K, v, B inacc., pTV,, = (pTV3)TV, = (p1V,)TV}, for any pEP,.
(PTV3)(0) = p(0)NV5. ((PTV)TV5)(0) = (pTV5)(0)"Vs = (p(0)NV5)NV = p(0)NV5.
((pTV)TV4)(0) = (pTV3)(0)NV; = (p(0)NV)NV, = p(0)NV;. Thus (pTV,)(0) =
(PTV)TV5)(0) = ((pTVs)TV5)(0). If p(§) = 0, then (pTV4)(§) = 0, ((PTV)TVs)(E) =
and ((pTVp)1V;)(€) = 0. Thus (pTV;)(&) = ((pTV)TVE)(E) = ((pTVa)TV;)(€). If p(€) #

then ¢ is inacc. and & < ~, and so ((pTVy)(S)EVfﬁT% so that Hm“(pﬂ/w)(f) =

]D(f)ﬁVWPgTV5 ~, and ((pTVg)(f)EVﬁpgTvé so that HW “(pTV) (&) = p(f)l’ﬁvﬁpﬁvE ”, therefore
e Ve

(VeI EVE Y% 50 that b (@) V(€)= (V) NV ¥ . and hence

oo (@M TV2)(©) = OV = Y So (11)(E) and
((pTV3)TV,)(€) are names for the same object. Similarly for ((pTV,)TVp).

For any « < k, any inacc. 8 such that a < 8 < k, P,TV3CCP,.

To verify (13.1) notice that by (30.7) and by the definiton of the order on P,TVjs, P,TVj is a
suborder of P,.

(13.2) is in fact (30.9).

(13.3) follows from (30.10).

0,
0
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(4*)  For any a < k, any inacc. (3 and inacc. 7 such that a <y < 8 < k, P,TV,CCP, V.
Let p€P,TV,. Then p = ¢1V, for some ¢€P,. By (30.7) pEP,, so pTVzEP,TV;s. By (2%)
ptVs = p, so pEP,TV;5. Hence P, TV, CP,1Vj3, and by the definition (see 30.3) it is a suborder.
Let p, g€ P, V3 so that p3q in P, TV, then p3Cq in P, by (3*) as P,TV3CCP,, and so p3Cq
in PV, by (3*) as P, TV, CCP,.
Let p€P,TV5. Consider pTV,. Let p’€P,TV,. Let p'xplV, in P,TV,. Then p'2Cp in P, by
(30.10), hence p'3Cp in P,TVj3 as by (3%) P, TV3CCP,.

(5%)  For any a < k, any inacc. § and inacc. « such that o < v < 8 < k, if p,qEP, so that p < ¢,
then pTVs < ¢TV;.
If not, then pTVjs £ ¢TVs. By (30.8) there is p; €P,TVj so that p; < pTVjs and p; DCqlV;. Since
p13CpTVs, pr3Cp in P,, by (30.10). Thus p;3Cq in P,. By (30.11) ¢ < ¢TVj and so p; 32qTV3,
a contradiction.

The proper proof will be conducted by induction over the level of iteration.

Define Py = C(wo, k). Then PyCV,, and is separative by (28.1), (28.6). Hence (30.1),(30.5), and (30.6)
are satisfied.

For o < k not inacc. define P, = P,*{0}. Since by the induction hypothesis P, CV,; and is separative,
50 is Pp41. Thus (30.2),(30.5), and (30.6) are satisfied.

For a < k, « inacc. define P, = PO‘@P Ty C(a, IQ)P“TVO‘.

Let’s explain this part a bit more. Let CevPTVe be a name for C(a, k) as defined in VP Va The
forcing conditions of P, are (p, s ) such that pEP,, s €VF ”TV“, and p fp5— “s € C”. By the induction
hypothesis (30.10), pTVa<P v P and so by Lemma 19 (as “z€X ~ is absolute), pTV,, HW Vs €

c. Thus, pTV, Hm “s has rank at most £ ~, and because |P,TV,| < « (follows from (30.12)
as « is inacc.), and « < k, by Lemma 11 there is 51 GVKP“TVQ so that pTV, HW “s1 =135 ". By
Lemma 17 (as "z = y ” is absolute), pTV, = “s1=s . By (30.10) p 5 s

(p,s1)€ Pa®PaTVaC’(a,/<a)PaTVa and (p,s1) = (p, s

o 77
s 7. Hence

). Thus we can restrict our conditions to those with

the second coordinate from V.7 QTV"*, and so P,y1CV,. By Lemma 24 it also is separative as P, is by

PV,

the induction hypothesis, and C(a, k) is separative in the generic extension via P,TV, by (28.6).

Hence (30.3), (30.5), and (30.6) are satisfied.

Let’s look at the limit case.

Let o < K, o limit. Consider the set A of all limits of (P : £ < «) (full limits in Kunen’s terminology
[K1], or inverse limits in Baumgartner’s terminology [B]). If a€A, then a|é€P; for every { < a and so
a(§)€V,. Hence a€Vj, and so ACV,. Since P, contains all limits with support from I,,, P,CA, thus
P,CV, and so (30.6) holds.

To show that P, for o < &, o limit, is separative, consider p, g€ P, so that p € q. Since (V€ < a)(p|¢ < q|¢)
implies that p < ¢, there is £ < a so that p|¢ £ ¢|¢. Take such &. Since P is separative by the induction
hypothesis (30.5), there is t€ P so that t < p|¢ and tDCq|¢ in P;. Define r by r(n) = t(n) for all n < &,
and r(n) = p(n) for all £ < n < a. Then supp(r) C supp(t) U supp(p), hence supp(r)€Il,, and so rEP,.
Clearly r < p, and since r|§ = ¢, rDCq in P,. Thus (30.5) holds.

To prove (30.12) : let p€P,. Then (pTV,)(0) = p(0)NV,EV, by (28.1). If p(§) = 0, then (ptV,)(&) =

P€V,. On the other hand if p(§) # 0, then & is inacc. and £ < «. Then (pTVa)(f)EVapgTvé. Thus

(pTV,4)CV,,. Since « is inacc., [supp(pTVa)| < a and so (pTVa)|supp(pTV,)EV,,.
We have proven everything but (30.7) - (30.11). So let’s assume that « < & is inacc. We shall discuss it
in three steps, (A), (B), and (C). Let § be inacc. so that o < 8 < &.



Case that « is the least inacc. (and so « < k).

pEP, iff p(0)EC(wp, k) and p(€) =0 for all 0 < & < .

pEP Vs iff p(0)€EC(wo, B) and p(§) = 0 for all 0 < & < « (it follows from (28.2)).

Verify (30.7): follows from C(wp, 3)CC(wo, k), which follows from (28.3).

Verify (30.8): follows from (28.6).

Verify (30.9): follows from (28.5).

Verify (30.10): follows from (28.4).

Verify (30.11): follows from (28.3).

Case that « is a successor inacc., i.e. « has an immediate inacc. predecessor 7y (and so a < k).
Let ¢ €VP TV be a name for C(v, k) as defined in vV Let éﬁ eV PV be a name for
C(v, B) as defined in yP v

pEP, iff supp(pQC'y & p|v€EP,, or yEsupp(p)Cy+1 & p|yEP, & p('y)GVKP”TV” &
Py - “p(v)EC”.

(*)  pEP Vs it supp(p)CTy & plyeEP, Vs, or vEsupp(p)Cy+1 & plyeP, Vs &

p(7)€V, gJ T &ply - Tp(1)€CE T

The direction from right to left is easy, as any p satisfying the right hand side must be in P,,
and since pTVg = p, p must be in PaTVB. Now, the opposite direction. Let p = qTV,g for some
qEP,. There are two possibilities:
(i) supp(q)Cy. Then supp(p)Cy as well. p|y = (¢TVs)|y = (q|7)TVs. Thus the first part of the
right hand side condition is satisfied.

o

.. v, “« .
(ii) vEsupp(q)Cy+1. Then ¢|y €P;, q(y)GVHP Y and qly h g(v)EC” . p(y) =

g(v)NVs EVB_JVW By Lemma 19, using (30.10), (¢|v)TV, HW “q(’y)ECO’”.
)V o “p() = a)VE Y & g(1)€C ™. By (28.2), () Vs g ()€
C@ , as 3 is inacc. in VP V5 since |P,TV, | <7, and v < 3, and /3 is inacc. in V. By Lemma 17,
(q|7)TV H—7 “p(y )GC’ﬂ . Using (30.11), g|vy HT “p(y )ECg . By Lemma 19, using (30.10),

(aMVs t - P (1)€Cs . By Lemma 17, (gl)TVs 5= “p(1)€Cs " ply = (aTV)ly =

(al7)TVs by (1*), hence ply 5~ “p(7)€Cs ~.
Verify (30.7): follows immediately from (*).

Verify (30.8): Let p, g€ P, TV} so that p £ g. There are two possible cases:
(i) plv £ qly. Then there is t€P, TV so that ¢ < p|y and tDCqly, by (30.8). Define s so that
sly =t, s(€) = p(§) for all y < £ < a. Then (by (*)) s€P,TV3, and s < p, and sDCq.

. v,
(i1) ply < qly. Then yEsupp(p)Cy+1, and ply, glyEP, TV, p(7), a(1)€V,, . Clearly,
ply Hﬁé “p(v) < q(v) in Cg 7. So thereis t€P,, t < p|y so that ¢ HP—W “p(y) £ q(v) in Gz~

By Lemma 19, 1V, HW “p(v) £ q(v) in Co}g ”. By (28.6) tTV HW “(HSGCO’g)(s <p(¥)

& sDCq(y)) 7. Thus there is §€V5PJ:1T 7 so that 1V Hi 's ECg s <p(y) &

s2Cq(y) ”. By Lemma 17, tTV, H— sECﬁ & s <p(v) & $§D>Cq(vy) ”. By (5%), Lemma 15,
using (30 8), tTV, < t1Vs < ply. By (3%) 1TV, €P,TV,CCP, V5. Define r so that r|ly = TV,
r(y) = s, and s(¢) = () for all v < £ < a. Then r€P,1Vj, r < p and rDCq.

Verify (30.9): it suffices to show it from right to left. Let p, g€ P, TV}, so that p3Cq in P,. Then
for some r€P, r < p,q in P,. There are two possibilities:

(i) supp(r)Cy. Then supp(p), supp(q)Cy as well. rly < p|vy,qly in Py. By (5%) (r|y)TVs <
(pNTVs = plv, (@)TVs = qly, hence (rTVs)|y < ply,qly in P,TVs.  Since supp(r)Cy,
supp(rtVz)Cr, and so r1Vs < p,q in P,TV;.



(ii) y€supp(r)Cy+1. Then r|y €P;, 7"(’y)6V,§P”TV7 so that 7|y HT “r('y)Eé'”. Thus

1y e “r(v) < p(),q(7) in C”. By (*), rly - "p(v),q(v) € Cs 7. By Lemma 19, using
(30.10), (r)TVy 5~ “r(v) <p(7),a(7) in C & p(7),q(7)€Cs 7. By (28.2) and (28.3),

o

(rI) 1V, W “(3teCs)(t < p(y),qly) in C) ~. Thus there is t°eV;;ITV" so that
(r|y) 1TV, }W “tOGCO'g &t < p(7),q(7y) in CO'”. By Lemma 17, (T|’y)TV7 Hﬁ
Y Y

“tOECO’ﬂ &t <p(y),q(y) in . By (30.11), r|y W “tOGCO'g &t <p(y),q0y) in C”. Since
rlv < plv, q|v, by Lemma 15, using (30.8) (r|v)TVs < p|v,q|y. By Lemma 19, (r|y)TV3 Hm

“tOECO‘g &t <p(y),q() in Co'”, and so by Lemma 17, using (30.11), (r|y)TVj3 Hﬁ Nt ECO'g &

r
t <p(),q() in C”. Define s so that sly = (r|y)TVs, s(y) =, and s(€) = P for all y < € < a.
Then s€P, Vs by (*), s < p,q. Thus pocq in P, TVj.

Verify (30.10): Let ¢ = pTVjs. Let p’€P,TV3 so that p'3Cq in P,TVs. There is r€P,TV5 such
that r < p’,q. There are two possibilities:

(i) supp(r)Cy. Then supp(p'), supp(q) . |y < p'lv,qly in PV gy = 0TVs)ly = (p17) TV,
so p'lv2C(p|y)TVs in Py TVs. By (30.10) p/|[y2Cp|y in Py, and so p'3Cp in P,.

(i) y€supp(r)Cy+1. Then r|y, p'ly,qlyE€PyTVs, 7(v), ' T

(7),a(v)€V5 ™, and rly < Py, by,
and 7y 5= “r(7) <p'(7).q(7) in C & r(7),0'(7),¢(7)€C “. By Lemma 19, using (30.10),

MV b () < P().0(7) in € & r(3), 9/ (1), a(1)EC ~ Since q(7) = p(1)NV,
v,

(r|y) TV, HW “r(y) < p’(v),p(w)ﬂVﬂP” in C & r(v),p (v)€Cs “. By (28.5), (r|y)TV,
HW “p'(v)xCp(vy) in C . Hence (r|y)TV, W “(FEC)(t < p'(7),p(y)) ~. Thus there
is ¢ EV,.;P”TV” so that (r|y)TV, HW feCki < P'(7),p(v) 7. By Lemma 17, (r|y)TV, W

SfeC& £ <p/(v),p(7) " By (30.11), rly o SfeC &t <p().p() " rhy < Plv.aly in
P Vs, aly = 01Va)ly = (0|7)TVs. Thus 733 (ply) Vs in P, Vs, and so by (30.10), r[y3ply
in P,. Let t€P, so that t < r|y,p|y. Define s so that s|y = t, s(y) = ¢ , s(€) = 0 for all
v < &< a. Then s <p,p and so p'3Cp in P,.

Verify (30.11): Let p€P,. There are two possibilities:

(i) supp(p)Cy. plyEP,, by (30.11) ply < (py)TVs = (pTV3)|y, thus p < pTVj.

vEsupp(p)Cy+1. Then p|yEP,, p(v)ev,fnvw so that p|y H?W “p(q/)ECO’ ”. By Lemma 19, using
(30.10), (PN)TV; g “P(V)EC”. By (28.2), (b)1V5 Hg— “p(7) S p()NV ™ im
¥ Y v

P’Y
C”. So, (pln)1V, o (1) < a(y) in €7, since g(y) = p(7)NVs. By Lemma 17,
Y Y

(P)1V; g “p(3) < q(3) in C . Using (30.11). ply frp “p(7) < (1) in C . Again by
(30.11), ply < (pIN1Vs = (TVs)|y = gly. Thus p < ¢ = pTVj.

Case a < k, is a limit inacc., i.e. there is a cofinal sequence of inacc. cardinals bellow «.

By (29.3), P, contains only direct limits.

Verify (30.7): Let p€P,. Then there is an inacc. v < « so that supp(p)Cvy. Then p|yEP, and
(pTVs)ly = (p|7)TVs €P,TV3 CCP, by (3*). Thus (pTVs)|yE€P,, and since
supp(pTV;s)Csupp(p)Cry, pTV3EP,. Thus P,TV5CPR,,.

Verify (30.8): Let p, g€ P, TVj so that p £ q. There is an inacc. v < « so that supp(p), supp(q) .
Then p|ly £ q|y in P,TV3. By the induction hypothesis (30.8), there is t€P, TV so that ¢ < ply
and tDCgqly. Define s so that s|y = t, s(§) = 0 for all ¥ < a. Then s€ P,TVj, s < p, and sDCq
in PQTVQ.



Verify (30.9): It suffices to prove right-to-left direction. Let p,q€P,TVs so that pa3Cq in
P,. There is t€P, so that ¢ < p,q in P,. Then there is an inacc. v < « so that
supp(t), supp(p), supp(q)Cy. Hence t|y < p|v,q|y in P,. Since plvy, g|yEP,TV3, by the induction
hypothesis (30.9)p|y3Cq|y in P,. So there is 7€P, so that r < p|v, g|y. Define s so that s|y =
r, s(§) = 0 for all y < £ < a. Then s€P, and s < p,q.

Verify (30.10): Let p€P,. There is an inacc. v < « so that supp(p)Cvy. Then p|yEP,. By the
induction hypothesis (30.10) (p|y)TVs —<PQTV[3 ply. Let p’€P,TVj so that p'2cpTVjs in P, TVj.
Since (ptV3)|y = (p|y)TV3s, »' |72 (pTV;s) |y in P,TV3, and so p'|y3Cp|y in P,. Since supp(p)C,
p'Cpin P,.

Verify (30.11): Let p€P,, there is an inacc. v < « so that supp(p)Cvy. Then p|y€P, and by
the induction hypothesis (30.11) p|y < (p[y)TVs in P,. Then p|y < (pTVp)|y in P,. Since
supp(p), supp(pTV3)Cv, p < plVs in P, U

Def. 31: If C, I, k, and (P, : « < k) are as in Lemma 30, we shall call (P, : a < k) the
(I, k)-iteration of C' in V.

Properties 32: Let C(v,d) define a poset in V' (y < § cardinals). Let A be cardinal.
(32.1)  For every transitive MCV such that M, =V, for all o < X\, C(v,8)" = C(v,0)M whenever
6 < A, d inacc. in V as well as in M.

Properties 33: Let I = (I, : a < k, « limit). Let 7:V—M be an elementary embedding with critical
point x. Let j(I) = (I : a < j(k), o limit).
(33.1) I, = I, for all a < K, o limit.

Lemma 34: Let (P, : a < k) be the (I, k)-iteration of C' in V. Let j:V—M be a huge elementary
embedding with critical point k. Let I = (I, : a < k, « limit) satisfy (33.1) with respect to j. Let C
satisfy (32.1) with respect to j(k). Let (P, : o < j(k)) = j((Ps : a < k). Then

(P, : a < j(k)) is the (j(I),j(r))-iteration of C' in V, and PyxC(k, j(r))’* CC j(P.) in V.

Proof: Let (R, : a < j(k)) be the (j(I),j(k))-iteration of C'in V. By induction we shall prove that
(1) Ry = P, for every a < j(k);
(2) P,V = R,V = PQTMg, for every inacc. a < k, and every inacc. 3 so that a < § < k.

Let @ = 0. Ry = C(wo, j(k))V. By (32.1) C(wo, (k)Y = C(wo,j(k))M = Py. Thus Ry = Pp.

Assume that o < j(k) is not inacc. in V' (and hence in M, by Lemma 4). Then Ro11 = Ro*{0}, while
PQH = Pa*{(l)}. By the induction hypothesis (1) R, = P, hence Roy1 = Paﬂ.

Let o < j(k) be inacc. in V (and hence in M, by Lemma 4). Let ¢ eVRaTVa be a name for C(a, j(k))
as defined in VR TV, Let Let DeMPTMa be a name for C’(a j(k)) as defined in MPTMa Then Ro1

=R ®R v, C’ab defined in V, and Pa+1 = Pa®P TM Das defined in M. Thus

(p,q)ER01 iff PER, & ¢ EVI(D";)TV(* &p iy GeC”

(p.0)EPa1 Iff pEPy & M )TM“ &p i “qeD”.
Let <p7é)>€ROt+1' .
Then p % “gE€C”, so pTV, Hi 'q eC” , by Lemma 19, using (30.10). Let p; < pTV,, in
RV, = P,TM,,. p1 Hi ‘q “cC” . Let G be R, TV,-generic over V (and hence
PM,,- -generic over M by Lemma 25, as |[RoTVy| = |]3aTMa| < a < K) so that p; €G. Then
VIGIE “¢“€C(a, (k) 7, and so ¢ “E€C(a, j(k))VIC). By (26.3) V[Gle = M[G]e for all € < j(x),
hence by (32.1), qOGGC(a,j(/i))M[G]. So M|G]E “§G€C(a,j(m)) “, and so for some p2€G,



Do H# “¢E€D” . Since pIp; in IADaTMa, there is p3 so that p3 < py in P, TM, and D3 H#

g en”. Thus, pTV, Hﬁ “q eD”. pTV, = pTM,, hence by Lemma 17, using (30.11), p Higi

56[0) Now it follows that <p,(f>€]5a+1.
Let (p, ‘;>€Pa+1- . .
Then p |2~ “g€D”. By Lemma 19, using (30.10), pTM, Hﬁ “¢ED”. Let p; < ptM,

in P,TM,, = R,TV,. Then p1 Hﬁ “q €D”. Let G be PQTMa—generic over M (and hence

R, 1V,-generic over V by Lemma 25, as |RoTVa| = |PaTM,| < @ < &) so that p;€G. Then
MGl “¢9€C(r, (k) 7, and so ¢ €C(y,j(k))M[G]. By Lemma 26 V[G]e = M[G]¢ for all
¢ < j(w),and so by (32.1) C(v.§(R)M[G) = C(7,5(x)V[G). Hence ¢€C(3,j(r)V[G] and so

o

VIG]E= “(})GGC’(%j(F;)) . Therefore there is p2€G so that py Hﬁ “¢€C”. Since pyCp; in

R TV, there is p3 < pi,p2 in R, TV, and so ps Hﬁ “¢€C”. Thus pTM, Hﬁ “gEeC”,

and thus p HRLQ “q ECO'”, by Lemma 17, using (30.11) and the fact that pTM, = pTV,. It follows
that (p,q)ERu1.

Let a < j(k) be limit.
Let’s prove (1) first.

pER, iff supp(p)Gfa & p(&) = 0 if £ < a not inacc. in V, and p(f)e\/j}(:if;)ﬁ/5 if £ < « is inacc. in V,

and p|{€R, for every £ < a.
pEP, iff supp(p)Efa & p(€) = 0 if £ < a not inacc. in M, and p(g)EMf()gMg if £ < a is inacc. in M,

and p|§€]35 for every ¢ < a.
Since £ < ais inacc. in V' iff € < « is inacc. in M (by Lemma 4), and since Mﬁng = VJI(%:)TVE for
every inacc. £ < a (as PETMg = R¢TVe by the induction hypothesis (2)), and since Re = ]55 for every
¢ < a by the induction hypothesis (1), then R, = P,.
Let’s prove (2) for inacc. a < k, inacc. § so that a < 8 < k.
(A)  «is the least inacc. (and so @ < k). Then
pEP TV iff supp(p) = {0} & p(0)€C(wo, B)" (by (28.2)),
PERTV i supp(p) = {0} & p(0)€C(wo, B)Y (by (28.2)),
hence P,TV3 = Ry TVj. By (1) R,TVs = PalTMg, since Vz = Mp.
(B)  « has an immediate inacc. predecessor v (and so « < k).
Let C’gEVPWTV — V&1V be a name for C(v, B) as defined in VATV Let pEP,TV5. Then
there are two possibilities (see (*) in the proof of Lemma 30):
(i) supp(p)Cy and p|y€P, V5. Since P,TV3 = R, TVj by the induction hypothesis (1), pE R, TVj.
(ii) yEsupp(p)Cy+1, plyEP, V3, p(y)EVﬁleTV” so that p|y Hﬁ “p(*y)ECO’B ”. By Lemma 19,
using (3010), (p"'}/)TVry Hw, “p(’y)GCB ”. ThuS (p|"}/)TV»Y Hw, “p('}/)GCB ”, as R’YTV’Y
Y v Y v
= P,TV, by the induction hypothesis. By Lemma 17, using (30.11), p|y HW “p(v)€ECs ”.
al ad

Hence p€R,TV; (by (*) in the proof of Lemma 30).

On the other hand, let p€ R, TVj3. Then there are two possibilities (see (*) in the proof of Lemma
30):

(i) supp(p)Cy and p|yER,TVp. Since R, TV = P,TVj by the induction hypothesis (1), p€ P, TVj.
(ii) vEsupp(p)Cy+1, plyER, TV, p(y)EV,@Ij_”lTV7 so that p|y HR—7 “p('y)GCO’g ”. By Lemma 19,
using (30.10), (p|7)TV, HW’ “p(v)€Cs ”. Thus (p|y)TV, HW’ "p(7)€Cs 7, as

P,TV, = R, TV, by the induction hypothesis. By Lemma 17, using (30.11), p|y }W



“p(y)ECO’ﬁ . Hence p€P,TVj (by (*) in the proof of Lemma 30).
Thus PoTVs = RaTVj. Since Vz = Mg, by (1) RaTVs = PoTMj;.
(C)  «a <k has a cofinal sequence of inacc. cardinals below.
Then M= “(VXEM,)(X€EI, = |X| <a)”. Since M, = V,, and using Lemma 4,
VE “(VX€V,)(X€l, = |X| < a) ”. Hence both, P, and R, contain only direct limits with
the same support.
Let p€P,TV3. Then for some inacc. v < a supp(p)Cy and p|yEP,TVs. Hence p|y€R,TV3 by
the induction hypothesis, and so p€R,TVj.
The proof that p€R,TVs = pEP,TV; is identical.
Thus (1) and (2) are proven.
By (30.6), if p€ P, then p(£)€V,, for every £ < k, and so p1V,, = p. Hence P, TV, = P,, and by (1) and
(2), R1Vi = BV, = P
(RK,TVK)@RHTVKC(Haj(’i))RNTVK cC RK®RNTVHC(n,j(n))R”TVN = R,.+1 by Lemma 22 as R, is separative
(by (30.5)), and RV, CC R, by (3*) in the proof of Lemma 30. As we have proven (see above) that
RV, = P,, it follows that (RHTVR)®RRTVKO(K’7j(’{’))RKTVK = P.@p,C(k,j(k) ' = PuxC(k, j(r))"=.
Since j(P,;) = Pj(n) = Rj(,) and contains only direct limits (by (29.3)) as j(x) is inacc. in both, M and
V by Lemma 4). R.11CCR;(,). Hence P.xC(r, j(r))= CCj(Py).]

To simplify the notation, we shall fix it for the rest of this chapter.

Let j:V—M, k, I = (I, : alimit < k), I = j(I) = (Io : alimit <j(k)), P = (Pa: w<a<k), P =
j(P) = (P, : a < j(k)), and C be as in Lemma 34.

Let P denote P,. Then |P| < k. Let G; be P-generic over V. Let @ denote C(a, j(k))V1¢1]. Let COZbe a
VP_term for Q. Let B denote P*C}. Then by Lemma 34, B can be completely embedded in j(P) and so
j(P) = Bxj(P)/B. Let Gy be Q-generic over V[G1], and G3 j(P)/B-generic over V[G] (G = G1 * G2),
then Hy = G x G3 is j(P)-generic over V' (and hence over M). If p€P, then supp(p)€I,; and so

supp(p) = supp(j(p)). Thus j(p)(e) = p(a) for w < a < K, and j(p)(a) = 1p, for k < o < j(k). Hence
pEGy; iff j(p)€H;. By Lemma 26 there is an elementary j:V[G1]—M[H;] definable in V[H;] and
extending j, so that (V[Hi])a = (M[H1])s for every a < j(k). Then 5(Q) = C(j(k),7(j()))MH],

Lemma 35: assume that

(35.1) 7 is huge;

(35.2) P satisfies the k-c.c. in V;

(353) VIGiF IQI < j(w) “:

(35.4) for every directed AC;"Q of size < j(k) and AEM[H,], there is a ¢€3(Q) so that ¢ << A.
Then there is a so-called master condition ¢,,€7(Q) so that if Hy is j(Q)-generic over V[H;] and ¢,,€H>,
then j(p)€H = Hy * Hy whenever p€G. Therefore, there is an elementary embedding i:V[G]—M[H]
definable in V[H]| extending j so that if V[Gi]= “@Q satisfies the j(x)-c.c. 7, then if X€V, YEV[H],
YCX, Y| <j(k), YCM[H], then YEM[H].

Proof: G2€V[H;] and |G2| < j(k) by (35.3). Let G2 = {eq : a < j(k)}. Since ] is definable in V[H;],
"Gy = {i(ea) : a < j(k)}YEV[H,], and j" G2Cj" Q. Since (") MCM, and since P satisfies the k-c.c. in
V by (35.2), j(P) satisfies the j(k)-c.c. in M, and by hugeness of j, in V as well, by (26.2) "' Go€M[H;].
Since 7" G5 is directed, there is a ¢, €7(Q) so that ¢, << 7" G2 by (35.4). Let Hy be j(Q)-generic over
V[H1] (and hence also over M [H;]) so that g, €Ha. Then, if (p,q)€EG = G1 * G2, i({p,q)) = {i(p), (q)),
and j(p)€H; and j(q) > gm, and so j(q)€Hs>. Thus j({p,q))€EH. By Lemma 26 there is an elementary
embedding i:V[G]—M[H] definable in V[H] extending j (and also j). If V[G1]= “Q satisfies the
j(k)-c.c. 7, then B satisfies the j(k)-c.c., and so if X€V, YEV[H], |Y| < j(k), YCX, and YCM|[H],
then YEM|[H] by (26.2). [



Lemma 36: Assume that

(36.1)  j is huge;

(36.2) P satisfies the k-c.c. in V;

(363) VIGilE 1@l < j(s) “:

(36.4) VI[Gi]E “Q is k-closed “;

(365) VIGIE “lp(s)] = 5+ 7

(36.6) for every directed AC7" @ of size < j(k) and so that AEM[H;], there is a ¢€j(Q) so that
q << A.

Then V[Hi]E “(3U)(U is a non-principal V[G]—k-complete V [G]-ultrafilter over j(x)) ~

(In fact j(VP[)Cj]B “(3U)(U is a non-principal V[G]—k-complete V[G]-ultrafilter over j(k)) ”, since G
was chosen arbitrarily.).

Proof: Apply Lemma 35 to obtain a master condition ¢, €j(Q), and Hs j(Q)-generic over V[H;] so that
gm€Hz, and an elementary i:V[G]—M|[H| definable in V[H]| and extending j (where H = H; * Hy). In
V[H] define for X€V[G]|Np(j(k)): XeW iff U@E"j(k))€i(X).

It is easy to check that W is a non-principal V[G]—«-complete V[G]-ultrafilter over j(x) in V[H]. Hence
Im H% “(IW)(W is a non-principal V[G]—k-complete V[G]-ultrafilter over j(k)) ”. Let
VOVEV[Hl]j(Q) so that ¢, H% “Wis a non-principal V[G]—k-co mplete V|G]-ultrafilter over

Jj(k) 7. Now, V[GIE “|p(k)| = T 7, so M[H]E “p(j(k))] = j(k)T ~ by the elementarity of i. Hence
M{H)= “lp((s)NVIG] < j(x)* ~, and so VIHIE “lp(i()VIG] < j(k)* . Since @ is r-closed,
Q) is j(r)-closed, and so (j(x) ")V = (j(x)")VIH). Thus VIHi]E “|e(i(r))NVIG]| < j(k)* 7. Let
{Ko: a<j(k)T} = p((k)NV[G] in V[H;]. In V[Hi] let (s : a < j(k)T) be a descending sequence of
elements of j(Q) so that each s, decides “K.€W . In V[H;] define U by:

if X€p(j(k)NVIG], then XU iff (3o < j(k)*)(sa AL “XEW)”

It is left to the reader to verify that U is a non-principal V[G]—k-complete V[G]-ultrafilter over j(x) in
V[H,]. O

Lemma 37: Assume that

(37.1) j is huge;

(37.2) P satisfies the k-c.c. in V;

(37.3)  VIGilE "QI <j(k) 7

(37.4) V[Gi]E “Q is <k-closed “;

(37.5)  VIGIE “lpe) = j(r) "

(37.6) for every directed AC)"Q of size < j(x) and so that A€M [H,], there is a ¢€)(Q) so that
q << A.

Then V[Hi]E “(3U)(U is a non-principal V[G]—r-complete V[G]-ultrafilter over x) ”

(In fact H% “(3U)(U is a non-principal V[G]—xk-complete V[G]-ultrafilter over k) ”, since G5 was
chosen arbitrarily.).

Proof: So similar to the proof of Lemma 36, that it is left to the reader. []

Lemma 38: If j(VP[)C;}B “(3U)(U is a non-principal V[G]—k-complete V[G]-ultrafilter over ) ”, then
VIG]E= “(3I)(ZT is a s-complete ideal over A so that p())/Z can be embedded into Comp(j(P /B))

Proof: Let U be a V[GPP)/B_term so that H% U s a non-principal V[G]—k-complete V[G]-
ultrafilter over A “. Define Z in V[G] by:
if XCA, then XET iff for no p&j(P)/B, p 4l “Xeu”.
(1) Let XCYC\, and Y€ET.
By the way of contradiction assume that X¢Z. Hence for some p€j(P)/B, p H%



“X€EU . Also P H% “XCY ”. Then p H% “Yeu “, and so Y¢T, a contradiction.
(2) Let {Xo: a<&}CT, &<k
By the way of contradiction assume that (J{X, : o < {}€Z. Then for p€j(P)/B, p }%
"U{Xa: a< {}EL? ”. But then p H% “(Ha<§)(Xa€Z/?) ”. Hence there are ¢€j(P)/B
and a < ¢ so that ¢ < p and ¢ H% “XQGL?) “ hence X,¢Z, a contradiction.
3) 0€Z, for no p can force “OEYU ~

(

(4)  AEZ, for H% “NEU )

(5) if @€\, then {a}€Z, for no p can force “{a}elU ”
To embed p(A)/Z into D = Comp(j(P)/B), notice that

(i) XeT iff ||X€Z/{||D = Op, and

(i) X,Y¢Z and X =Y (mod I) then ||X€L{||D = ||Y€U||D For (X-Y), (Y X)€EZ and so then

|(X-Y)eUllp = |(Y—X) Ul p, thus | XEU|p = |(XAV)eUllp = ¥ li]p.

For [X]€p(A\)/Z define h([X]) = HXEZ/IHD By (i) and (ii), this is a well-defined mapping from @(\)/Z
into D. Let [X] < [Y]. Then (X—Y)€Z and so | X€U|p < ||Y€U| p, hence h([X]) < h([Y]). Also, if
[X] # [Y], then || X€U||p # |YEU||p, so h([X]) # h([Y]). Thus & is an embedding. []

Chapter 2.
Model 1.
A model with an N;-complete Na-saturated ideal over wy, and which satisfies Chang’s conjecture.
(Kunen’s model, see [Ka].)

We shall start with a huge embedding j:V—M with critical point k. We shall do a (finite support,x)-
iteration of Silver’s collapse S.

Def. 39: Let v, be regular cardinals, v < 4. Silver’s collapse of § to v" is a poset S(v,d) defined by:
s€S(y,0) iff

(39.1) sCoxp(yxd) is a function with dom(s)Cd;

(39.2) sl <

(39.3) there is f€v so that for every a€dom(s), s(a)COxa is a function with dom(s(a))Cp;

(39.4) if 5,t€5(n,9), then s <t iff dom(t)Cdom(s) and for every a€dom(t), t(a)Cs(a).

Note: If § is inacc., then S(v,0) is a <v-closed é-c.c. poset and HW "2T =4t =487 (see [J],[Ki]).
Lemma 39: Silver’s collapse satisfies (28.1) - (28.6), and also (32.1).
Proof: Left to the reader. [

Lemma 40: Let I, = [o]<% for every limit o < k. Then I = (I, : «a < k) satisfies (29.1) - (29.3), and
(33.1).

Proof: Easy, and hence left to the reader. [

Let P = (P, : a < k) be the (I, k)-iteration of S in V (see Lemma 30). Then P = j(P) = (P, : o < j(k))
is the (j(I), j(k))-iteration of S in V' by Lemma 34.

Lemma 41: P, satisfies the s-c.c. in V. (and so j(P,) satisfies j(k)-c.c. in V.)

Proof: A sketch:



It is carried by induction in the usual way. The limit case is standard, for we are using finite support
iteration (e.g. see [Ki], [B]). Thus we shall prove that each P, for « a successor satisfies the k-c.c. For
P, it is known. Consider P, ;. If a is not inacc., then P, = P,*{0}, and so satisfies the r-c.c. as P,
does. For a inacc. it is a bit harder.

Let {(pe, c;g> : €€k} be an antichain in P,11. Let CevPa1Va be a name for S(a, k) as defined in yPalva,
Since |P, 1V, | < a < k, by pigeon-hole argument there exists X €[k]® and pEP,TV,, so that peTV, = p for
every {€X. Then pe {5 q£€C for any £€X. By Lemma 19, using 30.10, p¢ TV, W q£€C

for any £€X, and so p W q£€C’ for any £€X, and hence p HW \q€| < a”. By Lemma
12, we can assume WLOG that \q05| <~ for some a < v < K, as |P,TV,| < a < v and hence satisfies

the v-c.c. By the A-system lemma (see e.g. [Ki]), there must be Y€[X]", ¢ €V F~ Tve \q| < 7, 80 that
dom(ﬁg) N dom((fp) = dom(q) whenever &, p€Y. Hence for every £, p€EY, p Hi qE N qp =q 7,

and so p Hi “q 53qu . Then peTV, Hi quqP , and by Lemma 17 using (30.11),

De }% §jtqp ”. Since (pg,q§>DC<pp,qp>, 1t follows that p:DCp,. Therefero {p; : (€Y'} is an
antichain of size x in P,, which contradicts the induction hypothesis.[]

Let G be P-generic over V. Let @ denote S(k,j(k)) as defined in V[G;]. Let QO be a VP-term so that
(COQ)Gl =Q. Let B= P*QO. Let G5 be Q-generic over V[G1]. Let G = G1xG5. By Lemma 34, B can be reg-
ularly embedded into j(P). By Lemma 26 there is an elementary embedding 7:V[G1]—M[H;] extending
j and definable in V[H;]. Since 7" S(k,j(k))VICICS(j(k), (5 ()M for every ACG"S(k,j(k))VIE],
A directed, |A| < j(k), and AEM[H,], there is s€S(j(k), 7(j(x)))M!H1] so that s << A (s is the set union
of A; note that for every s€S(k,j(x)), the 8 [see (39.3)] is not moved by j, hence j(s) has the same
0 as s, and that ’s why the union of A is a condition from S(j(k),jj(k))). Therefore, by Lemma 37,
there exists a non-principal V[G]-s-complete V[G]-ultrafilter over « in V[H;|. By Lemma 38 there is a
k-complete ideal Z over & so that p(x)/Z can be embedded into Comp(j(P)/B). Since j(P) satisfies the
j(k)-c.c. in V', j(P)/B satisfies the j(k)-c.c. in V[G]. Hence Comp(j(P)/B) satisfies the j(k)-c.c. in
V[G], and so p(k)/Z satisfies the j(k)-c.c. in V[G] as well; and so, V[G]E “T is j(k)-saturated ~. Slnce
VIGIE "Ry = k and Ry = j(k) 7, V[G]= "7 is an Ry-complete, No-saturated ideal over wy ”

Now to show that Chang’s conjecture holds in V[G]: by Lemma 35 there are H j(B)-generic over V and
an elementary embedding :V[G]—M[H| definable in V[H] and extending j so that if X€V, YEV[H],
YCX, [Y] < j(k), and YCMI[H], then YEM[H]. Let A be a structure of type (Ry,Rz) (i.e. of type
(k,j(x))) in V[G]. WLOG assume that its universe is j(x). Then i(A) is a structure of type (X1, Rp) in
MT[H]. Since i" ACMIH], i"" A€V [H] and has size < j(k), i"" A€M[H] and it is not hard to prove that
M[H]E “i"'Ais a structure of type (x,j(x)), it is an elementary substructure of i(A), |x| = Ny and
l7(x)| = Ry 7. Hence M[H]= “i(A) has an elementary substructure of type (Xg,®;) “. By the elemen-
tarity of i, V[G]= “A has an elementary substructure of type (Rg,¥;) . [

Note: If GCH holds in V, then GCH also holds in V[G].
Model II.

A model with an Ni-complete N3-saturated ideal over ws.
(Magidor’s model - see [M].)

We shall start with a huge embedding j:V—M with critical point k. We shall do a (finite support,x)-
iteration of Magidor’s collapse D.

Def. 42: Let 7,0 be regular cardinals, v < §. Magidor’s 7, ¢ collapse is a poset D(7,d) defined by:
_ ) S(wo,0), ify=wp;
D(y,9) = {S(7+, ), otherwise,




where S is Silver’s collapse (see Def. 39).

Note: if § is inacc. and 7 regular so that w < v < 4, then D(v,d) is a y-closed, d-c.c. poset.
Lemma 43: Magidor’s collapse satisfies (28.1)-(28.6), (32.1).

Proof: See Lemma 39. [

For every « limit so that w < o < & define I, = [a]<¥. Then I = (I, : limit o < k) satisfies (29.1) -
(29.3), (33.1) (see Lemma 40). Let P = (P, : a < k) be the (I, )-iteration of D in V. Then P =

J(P) = (P, : a < j(k)) is the (j(I),j(x))-iteration of M in V by Lemma 34. By induction in the usual
way (see Lemma 41) it is easy to show that P, satisfies the x-c.c. in V, and so j(P,) = P Pj( satisfies the
j(k)-c.c. in V. Let P denote P,. Let G1 be P- generlc over V. Let @ denote D(k,j(k)) = S(kT,j(k))
as defined in V[G;]. Let Q be a VP -term so that (Q)G1 = Q. Let B=Px Q Let G2 be @Q-generic over
V[G4]. Let G = G1 *G2. By Lemma 34, B can be regularly embedded into j(P). Since j(P) satisfies the
j(k)-c.c. in V, by Lemma 26 there is an elementary embedding j:V[G1]— M |[H;] extending j, definable
in V[H;]. Since 7" D(k,j(k))VICICD(j(k),j(j ()M for every ACF" D(k,j(r))VI%] A directed,
|A| < j(k), and AEM[H,], there is s€D(j(k), j(j(x)))MHF1] so that s << A; s is the set union of A. Since
Q is k-closed, by Lemma 36 there is a non-principal V[G]-k-complete V[G]-ultrafilter over j(x) in V[H].
Therefore by Lemma 38 there is a k-complete ideal Z over j(x) so that p(j(x))/Z can be embedded into
Comp(j(P)/B). Since j(P) satisfies the j(k)-c.c. in V, j(P)/B satisfies the j(k)-c.c. in V[G]. Hence
Comp(j(P)/B) satisfies the j(k)-c.c. in V[G], and so p(j(k))/Z satisfies the j(k)-c.c. in V[G]. In other
words, V[G]E T is j(k)-saturated “. Since V[G]E "Ry = k and N3 = j(k) 7, V[G]E “Z is an
N;-complete, N3-saturated ideal over wg 7. [

Note: If GCH holds in V, then GCH also holds in VI[G].

Model III.

A model with an X;-complete (Ng, Rg, Xg)-saturated ideal over wy, and which satisfies Chang’s conjecture.
(Laver’s model, see [L].)

We shall start with a huge embedding j:V— M with critical point k. We shall do an (w-Easton,x)-iteration
of Easton’s collapse E.

Def. 44: Let v, d be regular cardinals, v < §. Easton’s collapse of § to 4 is a poset FE(v,d) defined by:
SEE(y,0) iff
(44.1)  sCoxp(yxd) is a function with dom(s)Cé;

(44.2) dom(s) is a y-Easton subset of J;
(44.3) there is S€7 so that for every a€dom(s), s(a)CBxa is a function with dom(s(a))Cg;
(44.4) if s,t€s(y,d), then s <t iff dom(t)Cdom(s) and for every a€dom(t), t(a)Cs(a).

Note: If § is Mahlo, then E(7,6) is a <7-closed d-c.c. poset and {75 27 = vyt =47 (see [L]).

Lemma 45: Let § be Mahlo and let v be regular so that v < §. Let A be a family of y-Easton subsets
of § so that |A| > §. Then there is a family BCA, |B| > ¢ so that B forms a A-system with root ACo

for some o < 6.

Proof: WLOG assume that |A| = §. Let A = {$€6 : 3 regular}, and let A = {Xg : SEA}. By Lemma
4, for each X3 there is some og so that v < og < ¢ and XgCog. Let B = {fE€A : o5 < [}.

(a)  Assume that B is stationary in ¢.



For every B€B—+ define f(5) = “the least 7 so that XgNBCr ”. Since |XgNF| < B and G is
regular, f is regressive. By Fodor’s theorem there are stationary CCB—+v and o < § so that
f"C = {o}. Thus, if geC, X3NBCo and X3CozCP, so XgCo.
Thus D = {X€A: XCo} has size 6. Now apply the A-system lemma to D to obtain a A-system
BCD of size §. Then A, the root of B, is a subset of o.

(b)  Assume that B is not stationary in J.
Then there is a cub C in § so that BNC = (). D = ANC is stationary and if €D, then 3¢ B and
so < o3. Define a regressive function f on D—v by f(8) = “the least 7 so that XgNGCr ”. By
Fodor’s theorem there are a stationary FCD—~v and o < § so that f""E = {c}. So for all SEFE,
XpNBCo and § < og. By induction choose a sequence (B, : a < §)CE so that og, < Ba41 for
all « < 4. Let p <v < and let §€X3 NXp, . Then £€X5, Cop, CB,, so {€X5, NGB, Co. Thus
Xp,NXp,Co whenever pu,v < 0. Now apply A-system lemma to {Xs,No : a < §}. So there is
F€[6]° so that {Xp, No : a€F} is a A-system with root ACo. Then B = {Xg, : a€F} is also
a /\-system with the same root A. [

Lemma 46: Easton’s collapse satisfies (28.1) - (28.6), (32.1), if one replaces “inacc. ” by “Mahlo ~.
Proof: Left to the reader. [

Lemma 47: Let I, is the ideal of w-Easton subsets of «, for every limit o < k. Then I = (I, : limit
a < k) satisfies (29.1) - (29.3), and (33.1) with respect to j, if one replaces “inacc. ” by “Mahlo ~.

Proof: Left to the reader. [J

Let P = (P, : a < k) be the (I, k)-iteration of F in V as described in Lemma 30 with “inacc. ” replaced
by “Mahlo “. One can check that (30.7) - (30.11) still hold true with this replacement. Using the fact
that  is huge (in fact for this measurability suffices), the set of Mahlo cardinals bellow k is stationary
in k. Since all Mahlo cardinals < j(k) in M are the same as in V' (see Lemma 4), conclusions of Lemma
34 still hold. Hence j(P) = (P, : a < j()) is the (j(I),j(k))-iteration of E in V, and PyxE(k, j(k))
can be regularly embedded into j(P,) in V.

Lemma 48: P, satisfies the (s, k, <x)-c.c..

Proof: By Induction.

(a)  Let a be the least Mahlo. We shall show that P, satisfies the (k, k, 0)-c.c.. WLOG assume that
a<o.
Since « is the least Mahlo, P, is isomorphic to Py = E(w, k). Let X€[E(w,k)]®. By Lemma
45 there is X;1€[X]" so that {dom(p) : p€X;} is a A-system with root ACr < k. WLOG
assume o < v. Since k is inacc., there are less than x possibilities for p|v. Thus, by pigeon-
hole argument, there is YE€[X;]" so that if p; # po€Y, then pi|v = pao|v. Let ZE[Y]”. Define
q€E(w, k) by dom(q) = J{dom(p) : p€EZ} and q(a) = p(a) for any p€EZ so that a€dom(p).
Then g < p for all p€Z, since a union of v w-Easton sets is v-Easton, hence dom(q) is v-Easton
and so dom(q)—v is w-Easton. But dom(q)Nv = dom(p)Nv for any p€Z and hence w-Easton.
So dom(q) is w-Easton. Therefore ¢€E(w, k) and ¢ << Z.

(b)  Assume that « has an immediate Mahlo predecessor v. We are going to show that P, satisfies
the (k, k,0)-c.c. for 0 < k. WLOG assume that o < o.
Let E GVPWTVW be a name for E(v, k) as defined in VPWTVW. pEP, iff supp(p)Cy+1, p|yvEPR,,
p(’y)GVPVTVW, and p|y H?W “p(’y)EEo”. Since |P,TV,| < v < k, there are p€P,TV,, and

X1€[k]" so that pTV, = p for every £€X;. Since each pely Hﬁ “pg('y)EEo‘”7 be Lemma



19, using (30.10), (pe|y)TV, }W “pg(fy)el%”, and so p HW “pf(’y)Gl%” for all £€X.
Define A; = {0€k : p HW “0€dom(pe(y)) 7}, for (£€X4. Let B = A¢ — 0. Then each Be
is an w-Easton subset of x:
If not, then for some regular 7 > w, |[BeN7| =7 (soT>0>a>7). Let BeNT =
{0, : n < 7}. Then each §,€7. For every n < 7, p HW "o, €dom(pe(y)) ”. Since
PV, preserves 7, p HW “|dom(pe(y)) N 7| = 7 7, which is a contradiction.
By Lemma 45 there is Xo€[X]" so that {B¢ : £€X5} form a A-system with the root ACw, for
some v < k. WLOG assume that o < v. By smallness of V,,, there is X3€[X5]" so that
peNV, = p,NV, whenever &, p€Xs.
Let Y€[X3]?. Since P, satisfies the (k, k,0)-c.c., as by the induction hypothesis it satisfies the
(K, K, <k)-c.c., there is 7€P, so that r < p¢|y for every (€Y. Since the root of {Bg : £€EX,} is
a subset of v, for every § > v, at most one £€Y satisfies that p HW “d€dom(pe(y)) ~. So,
D HT “U{dom(pe()) : €Y} is a o-Faston subset of k ~. It follows that (for o < v)

P,
D }W “U{dom(pe(7)) : €EY} is a y-Easton subset of k ~, and so p HW “ULpe(v) :

fEY}EEO”. Let £ €V TV be so that D HW M= U{pe(7) : EEY} 7. Then for every (€Y,
¥ v
D HW “t < pein E”. By (5%) from the proof of Lemma 30, vV, < (pe|y)TV, = p, so
ad ¥
TV, HW M < pe in E7, for every €Y. By Lemma 17, using (30.11), r h < pe
in E “, for every £€Y. Now define t so that tjy = r, t(y) = ¢, and t(¢) = ) for all vy < £ < a.
teP,, and t < p¢ for every (€Y.
Assume that o has a cofinal sequence of smaller Mahlo cardinals. Then the support is (by

Lemma 3) is of size smaller than «, and in fact direct limits are taken. The proof now continues

along standard lines, using Lemma 45 to obtain the required A-system of supports (see e.q. [K],

B]).00

Since j(P) is the same kind of iteration in V, and since j(k) is Mahlo in V', we also proved that j(P,)
satisfies the (j(k),j(k), <j(k))-c.c. in V.

As before, let P denote Py, let @ denote E(k,j(x)) as defined in V¥ and let B denote P x Q.

Lemma 49: [ “j(P)/B satisfies the (j(x), (), <r)-c.c. ”.

Proof: Let [ “j(P)/B = {sa : a <j(x)} ~. Let XeVB and bo€B so that by [ “Xe

[j(k)][7(%) . There is Yo€[j(x)]’") so that for any a€Yy there is b€B, b < by and b {5 “a€X ”. For
each a€Y) choose one such b and denote it b,. Since B = P * @, for each a€Y| there are p,€P and
4o €Q so that by, = (Pa,qa). Hence, for every a€Yy, (pa,qa) 5 “a€X ”. Since |P| < j(k), there are
Y1€[Y]/ ") and pEP so that (pa,qa) = (P, qa) Whenever a€Y;. Thus, for every a€Y7, (p, qa) =
“a€X ”. For any €Y1, (P, ¢, Sa)€J(P). By the proof of Lemma 48,

*)

(**)

there is Y2€[Y1)9®) so that the coordinatewise union of {(p, ¢a,Sa) : ®€C} is a condition from
§(P) whenever C€[Y]<I(%),

Let G; be P-generic over V so that p€G1. Now switch to V[G1]. Since j(k) still is Mahlo here
(as |P| < j(k)), there are Y3€[Y5]7%) and o < j(k) so that {dom(q,) : a€Y3} form a A-system
with root ACo. By pigeon-hole argument there are Y4€[Y3]j("“) and ¢€Q so that g|o = ¢ for
every a€Yy. Hence

{dom(qu) : @€Yy} form a A-system with root ACo, and g, |0 = ¢ for every a€Y}.



Let §5€V[G1]Q so that % “04630/5 iff a€Yy & q,€G, 7, where G, is the canonical name

for the Q-generic filter over V[G1]. Let }O/GV[Gl]Q so that H% €Y iff aE)%(ﬂ;s “. Let

G2 be Q-generic over V[G1] so that ¢€Ga. Let G = Gy * Ga. Then G is B-generic over V.
() VIGE Y| = j(x) ”, where Y = (Y)%.

It will suffice to prove that ¢ H% Do/| = j(k) 7, since ¢€G5. Let us assume by the way of

contradiction that ¢ H%L |};| = j(k) 7. There are § < g and v < j(k) (WLOG assume that

o < v) so that ¢ H% “YCu ”. Since q < g, by (**) there is T€Y;—v so that
(dom(q)Ndom(q.))—o = . Thus ¢ and ¢, are compatible, i.e. there is ¢ < @,q,. Since ¢,
Hiv[gll . €Gy 7, qr Hiv[gll “7€Y5 ”. Hence ¢ Hiv[gl] “r€Y5 ”. Since g, Hiv[gll “re
X “,q H% “r€X . Therefore q H% €Y ”. On the other hand, ¢ H% “yc

v”, and so ¢ }% “YCu ”, a contradiction as 7 > v.

(%) VGl “(YDE[Y3]<*)(FEQ  j(P)/B)(t = (U{gn : #€D},5) << {{gar50) : aED})
Let V[G1]|E “DE[Y3]<" 7. Then V[Gi]E “D€[Y2]<* ”. Since P satisfies the k-c.c. in V, and
since Yo€V, there is C€[Y3]<" so that V[G1]l= "DCC . By (*), the coordinatewise union of
{{p, 4, Sa) : @ECY} is a condition from j(P). Since p€G1, in V[G1], the coordinatewise union of
{{qas Sa) : a€CY is a condition from @ * j(P)/B. Since DCC, the coordinatewise union of of
{{4a, Sa) : @€D} is a condition ¢ from @ * j(P)/B. The condition ¢ has the form
(U{qa : a€ED},s) for some VE-term s so that {5 “s€j(P)/B ~, and clearly
t << {{4qq, Sa) : ®ED}.

(F*¥6) VIGIE “(VZE[Y]<F)(Is€4(P)/B)(s << {sq : a€Z}).
If VIG]E “Z€[Y]<* 7, then V[G]E “Z€[Y3]<* ”. Since Y3E€V[G;], and since Q is s-closed,
Z€V[G1). By (***%*), in V[G4] there is a condition t = (| {q : @€Z},s)€EQ * j(P)/B so that
t << {{qa, Sa) : @€Z}. Since ZCY, and so ZC(}O/5)G2, each q,, a€Z, is in G4. Since
{qa 1 @EZ}EV[G4], and Gy is Q-generic over V[G1], U{¢a : «€EZ}EG,. Thus V[G]E
Vs << {80 @EZ} .

If a€Y, then by > (p, ¢a) and (p, ¢a)E€G, hence byE€G. Thus there is by < by so that by [

“(VZE[Y]<F)(3s€(P)/B)(s << {5 : a€Z}). O

Let G1 be P-generic over V, let Gy be Q-generic over V[G1]. Then G = G1 * G4 is B-generic over V. Let
G35 be j(P)/B-generic over V[G] (possible by Lemma 34). Then H; = G1 * Ga * G3 is j(P)-generic over
V. By Lemma 26 there is an elementary embedding 7:V[G1]—M|[H;] definable in V[H;] and extending
j. Similarly as in Model I, for every directed AC3" E(x,j(r))VI¢, |A] < j(k), and AEV[H,], there is
q€E(j(k),j(j(r)))VIH1] so that ¢ << A; the set union of A. Thus, by Lemma 37 there is a non-principal
V[G]-k-complete V[G]-ultrafilter over « in V[H;]. By Lemma 38 there is a x-complete ideal Z over s in
V[G], so that p(k)/Z can be embedded into Comp(j(P)/B). By Lemma 49, j(P)/B satisfies the
(j(k),j(K), <K)-c.c. in V[G]. Since k = X; and j(k) = Ry in V[G], T is wi-complete (Ra, Ra, Rg)-saturated
ideal over ws.

Note:

(1) If GCH holds in V, then it also holds in V[G].

(2) V]G] also satisfies Chang’s conjecture (see Model I).

(3) Laver showed (see [L]) that from the existence of an wy-complete (Ng, Ra, Rg)-saturated ideal over
w; follows that (gf)%(ig);l Juhazs and Hajnal (private communication to Laver) showed that
adding N; Cohen reals destroys the partition relation, hence destroys all wy-complete
(Ng, Ng, Rg)-saturated ideals over w;. Since adding Ry Cohen reals is a o finite-c.c. forcing, it
preserves (see [BT]) wi-complete No-saturated ideals over w;. Hence if N is a model with an

wi-complete No-saturated ideal over wq, and if P is a forcing notion for adding X; Cohen reals,



than any generic extension of N via P is a model with an wi-complete Ny-saturated ideal over
w1, and with no w;-complete (Rg, Ry, Np)-saturated ideal over wy.
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