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Isomorphisms of Infinite Steiner Triple Systems

Frantisek Franek

Abstract.

A generalization and extension of the method used in [GGP] is presented to prove that for any

infinite cardinal κ there are 2λ mutually non-isomorphic Steiner triple systems of size κ that admit

2κ automorphisms, where λ = min{κ, 2ℵ0}. If κ≤2ℵ0 , then there are 2κ mutually non-isomorphic

rigid Steiner triple systems of size κ [rigid = admits no non-trivial automorphism], and also there

are 2κ mutually non-isomorphic Steiner triple systems of size κ that admit exactly one non-trivial

automorphism.

Introduction.

Mathematicians have been mostly interested in finite Steiner systems, and so the published

literature dealing with finite Steiner systems is quite extensive (see e.g. [DR]). There has been very

little published on infinite Steiner systems (see e.g. [So], [Si], [V], [GGP], [N]).

We are going to present a general method to generate Steiner triple systems of any desirable

(infinite) size κ with features controlling the number of quadrilaterals and anti-quadrilaterals in them.

Such systems will admit 2κ automorphisms (see (3.1)). Similarly as in [GGP], the ”structure” of the

quadrilateral graph (which is an invariant under isomorphism) will be used to generate the desired

number of non-isomorphic systems with many automorphisms (see (3.1)), and to ”eliminate” possible

automorphisms as well (for rigid systems see (3.2), for systems with exactly one non-trivial automor-

phism see (3.3)). Since by definition quadrilateral graphs are countable in their nature and hence

there are at most 2ℵ0 ”different” ones, this method does work only for numbers up to 2ℵ0 . For higher

cardinalities a different invariant has to be used.

(1) Notation and definitions.
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The standard set-theoretical notation is used. Lower case Greek letters will denote ordinal

numbers. Z denotes the set of all integers, N denotes the set of all non-negative integers, Q is the set

of all rational numbers.

Let 〈G, +〉 be an additive Abelian group of size κ (κ infinite) with O its identity element.

(1.1) As usual, define n·x for any n∈Z and any x∈G by

0·x = O,

for n > 0 by induction : (n+1)·x = n·x+x,

for n < 0 by n·x = (−n)·(−x).

Assume that the group G satisfies

(1.2) (∀x∈G−{O})(∃y∈G−{O})(x = 2·y).

(1.3) (∀x∈G)(∀n∈Z)(n·x = O ⇒ (n = 0 ∨ x = O)).

It is easy to prove that the y such that x = 2·y from (1.2) is unique and so we shall denote it as x
2 or

2−1·x.

Also, the following properties hold for any n, m∈Z, and x∈G :

n·x+n·y = n·(x+y),

n·x+m·x = (n+m)·x,

−(n·x) = (−n)·x = n·(−x),

n(m·x) = (nm)·x,

n·x = m·x ⇒ x = O ∨ n = m.

Define a relation ∼ on G−{O} by

(1.4) x∼y iff (∃n∈Z)(x = (−2)n·y).

It is easy to show that ∼ is an equivalence relation on G−{O}.

(1.5) For x∈G−{O} define [x] = {y∈G−{O}:y∼x}.

|[x]| = ℵ0 (define f :[x]→Z by f((−2)n·x) = n; then f is a bijection).

(1.6) Let V be a set. Then

〈V, B〉 is a Steiner Triple System iff B⊂[V ]3 and for any {x, y}∈[V ]2 there is a unique b∈B so

that {x, y}⊂b. The elements of B are usually called blocks or triples, set V is usually called index

set of the system.
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(1.7) The size of the system is the size of its set of blocks, B.

(1.8) Let f :V1→V2, then f induces a mapping f∗:[V1]
3→[V2]

3 defined by f∗({x, y, z}) = {f(x), f(y), f(z)}

and a mapping f∗∗:[[V1]
3]4]→[[V2]

3]4 defined by f∗∗({b1, b2, b3, b4}) = {f∗(b1), f
∗(b2), f

∗(b3), f
∗(b4)}.

If f is a bijection, so are f∗ and f∗∗. Moreover,

f∗(b1∪b2) = {f(x):x∈b1∪b2}; f∗(b1∩b2) = {f(x):x∈b1∩b2}; f∗(b1−b2) = {f(x):x∈b1−b2};

f∗∗(q1∪q2) = {f∗(x):x∈q1∪q2}; f∗∗(q1∩q2) = {f∗(x):x∈q1∩q2}; f∗∗(q1−q2) = {f∗(x):x∈q1−q2}.

(1.9) Let 〈V1, B1〉 and 〈V2, B2〉 be Steiner triple systems. A mapping f :V1→V2 is an isomorphism iff

f :V1→V2 is a bijection, and also the induced mapping f∗ restricted to B1 is a bijection onto B2.

(1.10) An automorphism of a Steiner triple system S is an isomorphism from S onto S.

(1.11) A Steiner triple system is rigid iff its group of automorphisms has size 1 (i.e. it admits no non-trivial

automorphism).

(1.12) A group of 4 blocks is called a quadrilateral iff their (set) union has size 6 and every pair-wise

(set) intersection has size 1.

Note that a quadrilateral is determined by 6 elements such that each occurs exactly in two blocks;

e.g. {a, b, c}, {a, y, z}, {x, b, z}, and {x, y, c}.

All 6 elements of a quadrilateral are completely determined by any 3 blocks of the quadrilateral.

(1.13) A quadrilateral graph of a Steiner triple system S is a graph whose vertices are quadrilaterals of

S and two quadrilaterals form an edge if their (set) intersection is non-empty (i.e. they have at least

one block in common).

(1.14) If b1, b2, b3, and b4 form a quadrilateral, the complementary quadrilateral is formed by c1, c2, c3,

and c4 where ci =
⋃

{bj :1≤j≤4}−bi, 1≤i≤4. In other words, each ci is formed by the complement

(in the union of the quadrilateral) of bi. If q is a quadrilateral q̄ will denote the complementary

quadrilateral. Note that (q̄) = q.

(2) Construction and auxiliary results.

(2.1) Let S1 = 〈V1, B1〉 and S2 = 〈V2, B2〉 be Steiner triple systems. Let f :V1→V2 be an isomorphism of

S1 onto S2. Then
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(i) q∈[[V1]
3]4 is a quadrilateral iff f∗∗(q)∈[[V2]

3]4 is a quadrilateral;

(ii) q is a quadrilateral of S1 (i.e. q∈[B1]
4 and it is a quadrilateral) iff f∗∗(q) is a quadrilateral

of S2;

(iii) if q∈[[V1]
3]4 is a quadrilateral, then f∗∗(q̄) = f∗∗(q), and q̄∈[B1]

4 iff f∗∗(q)∈[B2]
4.

(2.2) Let κ be an infinite cardinal. Let x∈κQ (i.e. x:κ→Q). Then define supp(x) = {α∈κ:x(α) 6= 0}.

Let G = {x∈κQ:|supp(x)| < ℵ0}. Then |G| = κ. For x, y∈G define x+y by (x+y)(α) = x(α)+y(α)

for all α∈κ. Clearly, (x+y)∈G (since supp(x+y)⊂supp(x)∪supp(y)) and it is an associative and

commutative binary operation on G. Define O(α) = 0 for all α∈κ. Then O∈G and it is the identity

element of G with respect to +. Define −x by (−x)(α) = −x(α) for all α∈κ. Then −x∈G, in fact

−x is the inverse element of x.

Thus, G together with + form an additive Abelian group of size κ. Since Q satisfies (1.2) and (1.3),

so does G.

(2.3) Let G be as in (2.2). Then supp(x) 6= supp(y) ⇒ x/∈[y]∪[−y].

By the way of contradiction assume that x∈[y]∪[−y]. x = (−2)n·z for some n∈Z, z = y or −y. By

the definition of G, x(α) = ((−2)n·z)(α) for every α∈κ. Then x(α) = (−2)n·(z(α)) for every α∈κ

and so by (1.3) x(α) = 0 iff z(α) = 0 for every α∈κ. It follows that supp(x) = supp(z) = supp(y),

a contradiction.

(2.4) Let G be as in (2.2). Then (∀x, y∈G−{O})(∃z∈G−{O})(z /∈[y]∪[−y] & (−x−z)/∈[y]∪[−y] &

(−x−y−z)/∈[y]∪[−y]).

For given x, y∈G−{O} choose any z∈G−{O} so that supp(z)∩(supp(x)∪supp(y)) = ∅. Then

supp(z) 6= supp(y), and so by (2.3) z /∈[y]∪[−y].

supp(−x−z) = supp(x)∪supp(z) 6= supp(y), and so by (2.3) (−x−z)/∈[y]∪[−y].

supp(−x−y)⊂supp(x)∪supp(y). Since supp(z)∩supp(−x−y) = ∅, supp(−x−y−z) =

supp(−x−y)∪supp(z) 6= supp(y). So (−x−y−z)/∈[y]∪[−y] by (2.3).

(2.5) Let G be as in (2.2). Then there are {fϕ:ϕ∈κ2}, and G1⊂G−{O} so that

(i) each fϕ is a (group) automorphism of G;

(ii) fϕ1
6= fϕ2

whenever ϕ1 6= ϕ2;
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(iii) fϕ(fϕ(x)) = x for any x∈G;

(iv) [x]∪[−x]⊂G1 whenever x∈G1, |G1| = |G−G1| = κ and for every ϕ∈κ2 and every x∈G1, fϕ(x)

= x.

Let κ1⊂κ so that |κ1| = |κ−κ1| = κ. For every ϕ:κ→2 so that ϕ(α) = 0 for all α∈κ1 define fϕ by

fϕ(x)(α) =

{

x(α), if ϕ(α) = 0;
−x(α), otherwise.

Clearly, supp(fϕ(x)) = supp(x), and so fϕ(x)∈G. If x 6= y, then if supp(x) 6= supp(y), it follows

that supp(fϕ(x)) 6= supp(fϕ(y)) and so fϕ(x) 6= fϕ(y). If supp(x) = supp(y), it follows that x(α) 6=

y(α) for some α∈supp(x). But then also −x(α) 6= −y(α) and so fϕ(x)(α) 6= fϕ(y)(α) and so fϕ(x)

6= fϕ(y). Thus fϕ is injective.

It follows directly from the definition of fϕ that fϕ(fϕ(x)) = x (so (iii) is proven), and thus fϕ is

surjective, and hence fϕ is a bijection from G onto G.

Let ϕ(α) = 0, then fϕ(x+y)(α) = (x+y)(α) = x(α)+y(α) = fϕ(x)(α)+fϕ(y)(α). Let ϕ(α) = 1, then

fϕ(x+y)(α) = −(x+y)(α) = −x(α)+(−y(α)) = fϕ(x)(α)+fϕ(y)(α).

henceforth fϕ(x+y) = fϕ(x)+fϕ(y) and so fϕ is a (group) automorphism of G ((i) is proven).

Let ϕ1 6= ϕ2. WLOG asssume that for some α, ϕ1(α) = 0 and ϕ2(α) = 1. Let x∈G−{O} so that

α∈supp(x). Then fϕ1
(x)(α) = x(α) 6= −x(α) = fϕ2

(x)(α). Hence fϕ1
(x) 6= fϕ2

(x), and so fϕ1
6= fϕ2

((ii) is proven).

Define G1 = {x∈G:supp(x)⊂κ1}. If x∈G1 and x∼y, then y∈G1 as by (2.3) supp(x) = supp(y).

Hence [x]⊂G1. Since supp(x)=supp(−x), −x∈G1 and so by the previous argument [−x]⊂G1. |G1| =

|G−G1| = κ and if x∈G1, then fϕ(x) = x as ϕ(α) = 0 for any α∈supp(x), for any ϕ ((iv) is proven).

(2.6) Let G be as in (2.2). Let {fϕ:ϕ∈κ2} be as in (2.5). Then there is {Rα:α∈κ} so that G−{O} =

⋃

{[Rα]:α∈κ}, Rα /∈[Rβ ] whenever α 6= β, and for any α∈κ and any ϕ∈κ2, there is β∈κ so that

fϕ(Rα) = Rβ .

Since for any n∈N−{0}, {n}×κn×{0}×Zn−1×Nn⊂κ2n+1, then |{n}×κn×{0}×Zn−1×Nn| = κ.

Hence
⋃

{{n}×κn×{0}×Zn−1×Nn:n∈N−{0}} has size κ. Enumerate

⋃

{{n}×κn×{0}×Zn−1×Nn} = {tα:α∈κ}. It is easy to see that there is {rn:n∈N} so that Z−{0} =

⋃

{[rn]:n∈N}, and rn /∈[rm] whenever n 6= m. Define Rα by :
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consider tα = 〈n, α1...αn, k1...kn, m1...mn〉, where k1 = 0. Define supp(Rα) = {α1, ..., αn}, and Rα(αi)

= (−2)kirmi
for i≤n. Clearly, Rα∈G−{O}.

Consider Rα∼Rβ . Then Rα = (−2)k·Rβ for some k∈Z. Hence supp(Rα) = supp(Rβ). Assume that

tα = 〈n, α1...αn, k1...kn, m1...mn〉, and tβ = 〈n, α1...αn, s1...sn, p1...pn〉, where k1 = s1 = 0. Then

Rα(αi) = (−2)kirmi
, and Rβ(αi) = (−2)sirpi

for all i≤n. henceforth (−2)kirmi
= (−2)k+sirpi

, so

rmi
∼rpi

, and so rmi
= rpi

for all i≤n. Therefore rm1
= (−2)k1rm1

= (−2)k+s1rp1
= (−2)krm1

, thus

k = 0. So Rα = Rβ .

Let x∈G−{O}. Let supp(x) = {α1, ..., αn}. Since x(αi)∈Z for every i≤n, there are unique ki∈Z and

mi∈N so that x(αi) = (−2)kirmi
. There is α∈κ so that tα = 〈n, α1...αn, l1...ln, m1...mn〉, where li =

ki−k1. Then Rα(αi) = (−2)lirmi
, and so (−2)k1Rα(αi) = (−2)kirmi

= x(αi). Hence x = (−2)k1 ·Rα

and so x∼Rα. Thus G−{O} =
⋃

{[Rα]:α∈κ} and Rα /∈[Rβ ] whenever α 6= β∈κ.

Let ϕ∈κ2, and let α∈κ. fϕ(Rα) = ? . Let tα = 〈n, α1...αn, k1...kn, m1...mn〉, where k1 = 0. Then

Rα(αi) = (−2)kirmi
for all i≤n. fϕ(Rα)(αi) = ±(−2)lirmi

. If ϕ(αi) = 0, then put hi = mi, otherwise

hi is the (unique) m∈N so that rmi
= −rm. Then fϕ(Rα)(αi) = (−2)kirhi

for all i≤n. There is β∈κ

so that tβ = 〈n, α1...αn, l1...ln, h1...hn〉, then fϕ(Rα)(αi) = Rβ(αi) for all i≤n, and so fϕ(Rα) = Rβ .

(2.7) Thus we have proven that for every infinite cardinal κ there is an additive Abelian group G of size κ

satisfying (1.2) and (1.3) and such that

(i) it has κ classes of the equivalence ∼ (as defined in (1.4)),

(ii) (∀x, y∈G−{O})(∃z∈G−{O})(z /∈[y]∪[−y] & (−x−z)/∈[y]∪[−y] & (−x−y−z)/∈[y]∪[−y]).

(iii) there are {fϕ:ϕ∈κ2}, {Rα:α∈κ}, and G1⊂G−{O} so that [x]∪[−x]⊂G1 whenever x∈G1, |G1|

= |G−G1| = κ; G−{O} =
⋃

{[Rα]:α∈κ}; Rα /∈[Rβ ] whenever α 6= β; each fϕ is a (group)

automorphism of G; fϕ1
6= fϕ2

whenever ϕ1 6= ϕ2; for any ϕ and any x∈G1, fϕ(x) = x; for

any ϕ and any x∈G, fϕ(fϕ(x)) = x; and for any ϕ and any α∈κ there is β∈κ so that fϕ(Rα)

= Rβ .

(2.8) Let κ be an infinite cardinal and let 〈G, +〉 with the identity element O be a group satisfying (2.7).

First we shall define a few functions which will be parameters of our construction.

For each class of ∼ pick a representative, i.e. choose a function R:κ→G−{O} so that [R(α)] 6= [R(β)]

whenever α 6= β, and G−{O} =
⋃

{[R(α)]:α∈κ}. We shall call R the rep function.
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(2.9) For each rep function R define a function CR:G−{O}→κ by CR(x) = α iff x∈[R(α)]. We shall

call CR the R-class function, and CR(x) will be called R-class of x (we shall use simple ”class

function” and ”class of x” if no confusion arises).

(2.10) For each rep function R define a function TR:G−{O}→{−1, +1} by :

if x∈G−{O}, then x = (−2)n·R(α) for some n∈Z. Define

TR(x) =

{

−1, if n is odd;
+1, if n = 0, or n is even.

We shall call TR the R-type function, and TR(x) will be called R-type of x (we shall use simple

”type function” and ”type of x” if no confusion arises).

(2.11) Choose a function CT :κ→{−1, +1}. We shall call CT the class-type function.

It is easy to prove that for every x∈G−{O}

(2.12) CR(x) = CR(−2·x);

(2.13) TR(x) 6= TR(−2·x).

(2.14) Let G, {Rα:α∈κ}, and {fϕ:ϕ∈κ2} be as in (2.7). Then there are a rep function R:κ→G−{O} and

a class-type function CT :κ→{−1, +1} so that TR(x)CT (CR(x)) = TR(fϕ(x))CT (CR(fϕ(x))) for any

x∈G−{O} and any ϕ∈κ2.

Define R(α) = Rα for all α∈κ. Obviously, R is a rep function. Define CT (α) = +1 for every α∈κ.

Now let x∈G−{O}. There are (unique) m∈Z and α∈κ so that x = (−2)m·R(α). Then fϕ(x) =

(−2)m·fϕ(R(α)) = (−2)m·R(β) for some β∈κ. Hence TR(x) = TR(fϕ(x)). Since CT (α) = CT (β) =

+1, TR(x)CT (CR(x)) = TR(x)CT (α) = TR(fϕ(x))CT (β) = TR(fϕ(x))CT (CR(fϕ(x))).

(2.15) Now we shall describe the construction of a Steiner triple system of size κ from a given group G

satisfying (2.7), a given rep-function R, and a given class-type function CT :

Choose any two distinct elements e0, e1 /∈G. The index set of our system will be V = G∪{e0, e1}. Fix

a rep function R and a class-type function CT . Following [GGP] we shall build three types of blocks,

A, B, and C :

A-blocks : {x, y, z} where x, y, z∈G, x 6= y, x 6= z, y 6= z, and x+y+z = O.

B-blocks : {x, −2·x, e} where x∈G−{O}, and where

e =

{

e0, if TR(x)CT (CR(x)) = −1;
e1, otherwise (i.e. if TR(x)CT (CR(x)) = +1).
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the C-block : {O, e0, e1}.

(2.16) Lemma : All A-blocks, B-blocks and the C-block as described in (2.15) form a Steiner triple system

of size κ.

Proof.

V = G∪{e0, e1}. Let {x, y}∈[V ]2. Let us discuss possible cases.

(i) x, y∈G and x 6= −2·y, y 6= −2·x.

Clearly, {x, y} is covered by the (unique) A-block {x, y, −x−y}. Since neither x = −2·y nor y

= −2·x, no B-block can cover it. Since x, y∈G, the C-block does not cover it either. Thus no

other block covers it.

(ii) x∈G−{O} and y = −2·x.

Then no A-block can cover it, the C-block does not cover it either, and {x, −2·x, e} (whatever

e is, e0 or e1) is the only B-block covering it.

(iii) x∈G−{O} and y = e0.

Then no A-block and not the C-block can cover it. There are two possibilities :

(α) TR(x)CT (CR(x)) = −1. Then {x, −2·x, e0} is in our system and covers {x, e0}. Is it

the only B-block covering it? By the way of contradiction assume that {a, −2·a, e0} is a

different B-block covering it. Then x = −2·a and by (2.12) and (2.13) TR(a)CT (CR(a))

6= TR(−2·a)CT (CR(−2·a)) = TR(x)CT (CR(x)). So TR(a)CT (CR(a))= +1 and thus

{a, −2·, e1} is in our system and {a, −2·, e0} is not, a contradiction with our assumption.

(β) TR(x)CT (CR(x)) = +1. Then by (2.12) and (2.13) TR(x
2 )CT (CR(x

2 )) = −1. Therefore

{x
2 , −x, e0} is in our system and covers {x, e0}. To show that it is the only B-block

covering it is almost identical to the discussion in (α), so we omit it here.

(iv) x∈G−{O} and y = e1.

Almost identical to (iii), so we omit it here.

(v) x = 0, y = e0 or e1.

The only block covering {x, y} is the C-block.

Hence all blocks together form a Steiner triple system.
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Let B be the set of all A-blocks, B-blocks and the C-block. Since |G| = κ and V = G∪{e0, e1}, |V |

= κ and also |[V ]3| = κ. Now, |G|≤|B|≤|[V ]3|. Hence the size of B is κ. tu

(2.17) Lemma : In a Steiner triple system constructed as in (2.15) every quadrilateral consists of 2 B-

blocks and 2 A-blocks and has the form {x, −2·x, e}, {−x, 2·x, e}, {x, −x, O}, and {2·x, −2·x, O} for

some x∈G−{O} and some e∈{e0, e1}.

Proof.

(i) No quadrilateral contains the C-block.

By the way of contradiction assume that there is a quadrilateral with the C-block {O, e0, e1}.

Call it block I. In the quadrilateral there must a block (distinct from I) which contains O, it

must be an A-block {x, −x, O}; call it block II. Also there must be a block (distinct from I,

and II) which contains e0, it must be a B-block {y, −2·y, e0}; call it block III. And finally,

there must be a block (distinct from I,II, and III) which contains e1, it must be a B-block

{z, −2·z, e1}; call it block IV. Clearly, O, e0, e1, x, −x are all distinct elements. There are four

possibilities for the sixth element :

(α) y is the sixth element. Then either −2·y = x (which forces z to be either −x and that

makes −2·z seventh distinct element, or y and that makes blocks III and IV identical), or

−2·y = −x (which forces z to be either x and that makes −2·z seventh distinct element,

or y and that makes blocks III and IV identical). Both cases lead to contradictions.

Almost identical discussions (for the situations are symmetric) show that (β) −2·y is the sixth

element, (γ) z is the sixth element, and (δ) −2·z is the sixth element, also lead to contradictions.

(ii) No quadrilateral contains 3 A-blocks.

By the way of contradiction assume that there is such a quadrilateral. Clearly, all 4 blocks

must be A-blocks. Let {x, y, −x−y} be one of the A-blocks ; call it block I. Call block II the

other block (distinct from I) containing x. Call block III the other block (distinct from I, and

II) containing y. Finally, call block IV the other block (distinct from I,II and III) containing

−x−y. Hence I = {x, y, −x−y}, II = {x, a, −x−a}, III = {y, b, −b−y}, IV = {−x−y, •, •}.

Clearly, x, y, −x−y, a, −x−a are distinct. Now, we shall discuss possibilities for b :
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b = x or b = −x−y implies that I and III are identical, a contradiction;

b = a makes III = {a, y, −y−a} and IV = {−x−y, −x−a, −y−a}. So −x−y−x−a−y−a = O,

hence a = −x−y, which is a contradiction;

b = −x−a makes III = {−x−a, y, −x−a−y} and IV = {−x−y, a, −y+x+a}. So

−x−y+a−y+ x+a = O, hence a = y, a contradiction.

Thus x, y, −x−y, a, −x−a, b are all distinct. Let us discuss possibilities for −b−y :

−b−y = x implies that b = −x−y, a contradiction;

−b−y = y implies that b = −2·y and that makes III = {y, −2·y, y}, a contradiction;

−b−y = −x−y implies b = x, a contradiction;

−b−y = a makes III = {y, −y−a, a}, and IV = {−x−y, −x−a, −y−a}. It follows that a =

−x−y, a contradiction;

−b−y = −x−a makes III = {y, x+a−y, −x−a}, and IV = {−x−y, a, x+a−y}. It follows that

a = y, a contradiction;

−b−y = b makes III = {−2·b, b, b}, a contradiction.

Thus all possibilities lead to contradictions, claim (ii) is proven.

(iii) No quadrilateral contains 3 B-blocks.

(α) Assume all 3 B-blocks contain the same e.

Let I = {x, −2·x, e}, II = {y, −2·y, e}, and III = {z, −2·z, e}. x, −2·x, y, −2·y, z, and

−2·z must be 5 distinct elements. By symmetry, either x = −2·y, or y = −2·z, or z =

−2·x. WLOG we can discuss just the case x = −2·y.

Then I = {−2·y, 4·y, e} and II = {y, −2·b, e}, which contradicts (2.12) and (2.13).

(β) Assume that only two of the 3 B-blocks contain the same e.

WLOG let I = {x, −2·x, e0}, II = {y, −2·y, e0}, and III = {z, −2·z, e1}. x, −2·x, y,

−2·y, z, and −2·z must be 4 distinct elements. Since x, −2·x, y, and −2·y must be

distinct, let us discuss what z can be.

z = x implies III = {x, −2·x, e1}, a contradiction;

z = −2·x makes −2·z = 4·x which is the 5th distinct element, a contradiction.
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Situations z = y and z = −2·y are similar and lead to contradictions as well.

(iv) A quadrilateral has the form {x, −2·x, e}, {−x, 2·x, e}, {x, −x, O}, and {2·x, −2·x, O} for some

x∈G−{O} and some e∈{e0, e1}.

I = {x, −2·x, e}, II = {y, −2·y, e}, III = {x, •, •}, IV = {−2·x, •, •}. There are two

possibilities :

(α) III = {x, y, −x−y} and IV = {−2·x, −2·y, 2·x+2·y}. It follows that −x−y = 2·x+2·y

and so x = −y. henceforth the quadrilateral has the desired form.

(β) III = {x, −2·y, 2·y−x} and IV = {−2·x, y, 2·x−y}. It follows that 2·y−x = 2·x−y and

so x = y, a contradiction.

Thus claim (2.17) is proven. tu

The combinatorics of R, CR, TR, and CT determines the number of quadrilaterals in a Steiner triple

system constructed as in (2.15).

(2.18) From (2.17) follows that in a Steiner triple system S constructed from a group G satisfying (2.7) as in

(2.15) a quadrilateral graph consists of countably infinite quadrilateral chains; each quadrilateral

chain has ”ordertype” Z and is formed by quadrilaterals with blocks containing only elements from

[x]∪[−x] (not considering e0, e1, and O), e.g. :

[each column represents a quadrilateral] :

..... {x
2 , −x, e1} — {x, −2·x, e0} — {2·x, −4·x, e1} ....

..... {−x
2 , x, e1} — {−x, 2·x, e0} — {−2·x, 4·x, e1} ....

..... {x
2 , −x

2 , O} — {x, −x, O} — {2·x, −2·x, O} ....

..... {x, −x, O} — {2·x, −2·x, O} — {4·x, −4·x, O} ....

The quadrilateral chains of the quadrilateral graph are mutually disjoint and each chain is uniquely

determined by any element (distinct from e0, e1, O) from any block of any quadrilateral of the chain.

(2.19) Lemma : Let κ be an infinite cardinal. Let λ be a (finite or infinite) cardinal ≤κ. Then there is a

Steiner triple system of size κ with exactly λ quadrilateral chains.

Proof.

Fix a λ. Fix a group G as in (2.7). Choose {rα:α∈κ}⊂G−{O} so that rα /∈[rβ ] and rα /∈[−rβ ] for

every β 6= α and so that G−{O} =
⋃

{[rα]:α∈κ} ∪
⋃

{[−rα]:α∈κ}. Partition κ into two disjoint sets
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A and B of size κ. Let A = {γα:α∈κ} and B = {δα:α∈κ}. Define a rep function R by R(γα) = rγα

and R(δα) = rδα
for all α∈κ. Select a class-type function CT so that CT (γα) = CT (δα) if α < λ,

and CT (γα) 6= CT (δα) if λ≤α < κ.

Construct a Steiner triple system S as in (2.15), using the group G.

Let x∈G−{O}. If CT (x) = γα, then CT (−x) = δα, and vice versa. Thus TR(x) = TR(−x). Clearly,

TR(x)CT (TR(x)) = TR(−x)CT (TR(−x)) iff α < λ. Hence from (2.17) follows that the B-blocks

{x, −2·x, •} and {−x, 2·x, •} have the same • (• = e0, e1) iff α < λ, and so they form (a part of) a

quadrilateral iff α < λ. It is obvious from the construction (2.15) that such a quadrilateral is in a

quadrilateral chain. Hence there are exactly λ quadrilateral chains in S. tu

Note. If λ = 0, then S does not have any quadrilaterals, i.e. it is a so-called anti-Pasch Steiner

triple system.

For λ≤ℵ0, S has exactly ℵ0 quadrilaterals.

For an infinite λ, S has exactly ℵ0·λ = λ quadrilaterals.

(2.20) From (2.17) follows that in a Steiner triple system S constructed from a group G satisfying (2.7) as in

(2.15) it is possible for an element x∈G−{O} to be a part of what we shall call an anti-quadrilateral

chain; each anti-quadrilateral chain has ”ordertype” Z and is formed by anti-quadrilaterals with

blocks containing only elements from [x]∪[−x] (not considering e0, e1, and O), e.g. :

[each column represents an anti-quadrilateral] :

..... {x
2 , −x, e1} — {x, −2·x, e0} — {2·x, −4·x, e1} ....

..... {−x
2 , x, e0} — {−x, 2·x, e1} — {−2·x, 4·x, e0} ....

..... {x
2 , −x

2 , O} — {x, −x, O} — {2·x, −2·x, O} ....

..... {x, −x, O} — {2·x, −2·x, O} — {4·x, −4·x, O} ....

The anti-quadrilateral chains are mutually disjoint and each chain is uniquely determined by any

element (distinct from e0, e1, O) from any block of any anti-quadrilateral of the chain.

(2.21) Lemma : Let κ be an infinite cardinal. Let λ be a (finite or infinite) cardinal ≤κ. Then there is a

Steiner triple system of size κ with exactly λ anti-quadrilateral chains.

Proof.
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Fix a λ. Fix a group G as in (2.7). Choose {rα:α∈κ}⊂G−{O} so that rα /∈[rβ ] and rα /∈[−rβ ] for

every β 6= α and so that G−{O} =
⋃

{[rα]:α∈κ} ∪
⋃

{[−rα]:α∈κ}. Partition κ into two disjoint sets

A and B of size κ. Let A = {γα:α∈κ} and B = {δα:α∈κ}. Define a rep function R by R(γα) = rγα

and R(δα) = rδα
for all α∈κ. Select a class-type function CT so that CT (γα) 6= CT (δα) if α < λ,

and CT (γα) = CT (δα) if λ≤α < κ.

Construct a Steiner triple system S as in (2.15), using the group G.

Let x∈G−{O}. If CT (x) = γα, then CT (−x) = δα, and vice versa. Thus TR(x) = TR(−x). Clearly,

TR(x)CT (TR(x)) 6= TR(−x)CT (TR(−x)) iff α < λ. Hence from (2.17) follows that the B-blocks

{x, −2·x, •} and {−x, 2·x, •} have the same • (• = e0, e1) iff α≥λ, and so they form (a part of) a

quadrilateral iff α≥λ. It is obvious from the construction (2.15) that such a quadrilateral is in a

quadrilateral chain. Hence there are exactly κ−λ quadrilateral chains and exactly λ anti-quadrilateral

chains in S. tu

(2.22) Consider a quadrilateral chain containing the quadrilateral {x, −2·x, e}, {−x, 2·x, e}, {x, −x, O},

and {2·x, −2·x, O}. Replace this quadrilateral in the system S by its complementary quadrilateral

{−x, 2·x, O}, {x, −2·x, O}, {2·x, −2·x, e}, and {x, −x, e}. It is easy to check that the new system still

is a Steiner triple system, that it has the same index set and the same number of blocks as the original

system. Since none of the blocks of the complementary quadrilateral is of type A, B or C, this new

quadrilateral does not have any common block with any other quadrilateral of the original system.

The ”neighbouring” quadrilaterals {x
2 , −x, ē}, {−x

2 , x, ē}, {−x
2 , x

2 , O}, {−x, x, O}, and {2·x, −4·x, ē},

{−2·x, 4·x, ē}, {−2·x, 2·x, O}, {−4·x, 4·x, O} (where ē denotes e0 if e is e1, and it denotes e1 if e is

e0) will disappear, for the blocks {−x, x, O} and {−2·x, 2·x, O} were replaced by blocks {−x, x, ē}

and {−2·x, 2·x, ē}. In fact, this ”breaks” the quadrilateral chain into two unconnected parts (it sort

of punches a ”double-hole” in the quadrilateral chain) :

the quadrilateral chain before :

=O===O===O===O===O=

q2 q1 q0 q3 q4

the quadrilateral chain after ”punching out” quadrilateral q0 :
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=O X tu X O=

q2 q̂1 q̄0 q̂3 q4

We shall define a quadrilateral fragment of a Steiner triple system S to be a group of 3 blocks

of S so that a replacement of a quadrilateral of S by its complementary quadrilateral completes this

group of 3 blocks to a quadrilateral. By this definition, after q0 was ”punched out”, we ware left with

two quadrilateral fragments denoted q̂1 and q̂3.

We say that two quadrilateral chains are brothers iff a replacement of a quadrilateral by its

complementary quadrilateral joins them to a single quadrilateral chain. A transitive closure of the

relation ”being brothers” will be called a quadrilateral family.

(2.23) Let f be an isomorphism of a Steiner triple system S1 = 〈V1, B1〉 onto a Steiner triple system S2 =

〈V2, B2〉.

(i) {b1, b2, b3}⊂B1 is a quadrilateral fragment of S1 iff {f∗(b1), f
∗(b2), f

∗(b3)}⊂B2 is a quadri-

lateral fragment of S2;

(follows from (2.1))

(ii) let {..., q1} and {q2, ....} be two quadrilateral chains in S1 that are brothers. Then {..., f∗∗(q1)}

and {f∗∗(q2), ....} are two quadrilateral chains in S2 that are are also brothers;

(follows from (2.1))

(iii) f∗∗ maps a quadrilateral family onto a quadrilateral family.

(follows from (ii))

(2.24) Consider the quadrilateral chain containing the quadrilateral {x, −2·x, e}, {−x, 2·x, e}, {x, −x, O},

and {2·x, −2·x, O}. First, enumerate the quadrilaterals in the quadrilateral chain starting with the

above quadrilateral (or any other as a matter of fact) as qad(0), the quadrilateral with 2·x as qad(1),

the quadrilateral with x
2 as qad(−1) and so forth. Let a∈ωω. Let p(0) = 5, p(1) = 7, p(2) = 11 and

so forth, enumerating all primes ≥5. By induction we shall ”punch out” some quadrilaterals (i.e.

replace them by their complementary quadrilaterals) in the quadrilateral chain according to a : first

punch out qad(0). Then punch out qad(p(0)a(0)). Then punched out qad(−p(1)a(1)). Then punch

out qad(p(2)a(2)), then qad(−p(3)a(3)). And so forth. This will break the quadrilateral chain into
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finite length segments (no two segments have the same length) forming a quadrilateral family. The

lengths of the segments are determined by a : the nth segment has length p(n)a(n) − 3. We shall call

a the type of the family. Thus, by this procedure 2ℵ0 quadrilateral families of different types can be

produced.

Note. It is important to punch the holes at least five quadrilaterals apart so there is something left

connected in the original quadrilateral chain. That is why p(0) starts with 5, rather than with 1.

(2.25) Let f be an isomorphism of S1 onto S2 as in (2.23).

(i) f∗∗ maps a finite length quadrilateral segment onto a quadrilateral segment of the same length.

By the way of contradiction and WLOG assume that f∗∗ maps a shorter segment onto a longer

one. Proceed by induction over the length of the shorter segment :

(a) length=2.

The shorter segment :

tu X O===O X tu

q̄4 q̂3 q1 q2

Assume that f∗∗(q2) = q where q is not an end-quadrilateral of the longer segment,

i.e. :

tu X O= · · · =O===O===O= · · · =O X tu

q5 q q6

Consider q3 before q4 was punched out. Since |q3∩q1| = 1, by (2.1) |f∗∗(q3)∩f∗∗(q1)| =

|f∗∗(q3)∩q| = 1. Hence f∗∗(q3) = q5 or q6. Since both, q5, q6∈[B2]
4, by (2.1) q3∈[B1]

4,

but it is not. Hence f∗∗ must map both, q1, q2 on end-quadrilaterals of the longer

segment. Consider a ”second” quadrilateral of the longer segment (i.e. a ”neighbour”

of one of the end-quadrilaterals). It must be an f∗∗-image of a quadrilateral which has

an empty intersection with both, q1, q2. Hence it itself must have an empty intersection

with both end-quadrilaterals, a contradiction.

(b) length = n+1, and assume the assertion holds true for n.

The discussion is very much like in (a), so we omit it here.
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(ii) f∗∗ maps a quadrilateral family (obtained as in (2.24)) onto a quadrilateral family of the same

type.

Assume that F1 is a family of type a1 in S1, and F2 is a family of type a2 in S2, and that

f∗∗ maps F1 onto F2. By (i) f∗∗ preserves the length of quadrilateral segments, and so f∗∗

maps the mth segment of F1 (its length is p(m)a1(m)−3) onto an nth segment of F2 (its length

is p(n)a2(n)−3). Since p(m)a1(m)−3 = p(n)a2(n)−3, it follows that n = m and also a1(m) =

a2(n). Hence a1 = a2.

(iii) Let f be an automorphism of S1. Let F1 be a quadrilateral family of S1 obtained from

a quadrilateral chain determined by [x]∪[−x] for some x∈G−{O}. Let f∗∗ map F1 onto

itself. Then f∗∗ is identity on quadrilaterals of the type {y, −2·y, e}, {−y, 2·y, e}, {−y, y, O},

{−2·y, 2·y, O}, and their complementary quadrilaterals, for y∈[x]∪[−x].

Similar discussion as in (ii) shows that f∗∗ maps every segment of F1 onto itself. Since being the

end-quadrilateral of a segment must be preserved by f∗∗, f∗∗ is either identity on a segment,

or it reverses the segment. If f∗∗ reverses one segment, then it has to switch over the two

neighbouring segments, a contradiction. Thus f∗∗ is identity on segments, and thus identity

on the quadrilaterals of segments. By the same token the ”punched out” quadrilaterals must

be mapped onto themselves, as they are in fact ”segments” of length 1. When f∗∗ preserves a

quadrilateral, then it also preserves its complementary quadrilateral (easy to prove). Thus we

are almost done, the only unresolved cases are the quadrilaterals whose quadrilateral fragments

were left when the family F1 was created. By the way of contradiction assume that there is

such a quadrilateral q which is not preserved by f∗∗. There must be a quadrilateral q1 which

was ”punched out” and that destroyed q. Hence |q∩q̄1| = 1. f∗∗(q̄1) = q̄1 and so |f∗∗(q)∩q̄1|

= 1. There are only two quadrilaterals, call them q2, q3, with non-empty intersections with q1,

the ones which get destroyed by punching q1 out. Hence q is either q2 or q3. WLOG assume

that q = q2. Then f∗∗(q) must be q3 to preserve a non-empty intersection with q1. Then f∗∗

must switch over the neighbouring segments, and that is a contradiction.

(3) Main results
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Now we are ready to prove the main theorems.

(3.1) Theorem : Let κ be an infinite cardinal, and let λ = min{κ, 2ℵ0}. Then there are 2λ mutually

non-isomorphic Steiner triple systems of size κ that admit 2κ automorphisms.

Proof.

Let G, G1, {fϕ:ϕ∈κ2} be as in (2.7), and let R:κ→G−{O}, and CT :κ→{−1, +1} be as in (2.14).

Build a Steiner triple system S of size κ with the index set V = G∪{e0, e1} as in (2.15) with no

anti-quadrilateral chains (see (2.21)). Let A⊂{α∈κ:R(α)∈G1} so that |A| = λ. Let {aα:α∈A}⊂ωω.

Fix χ∈A2. For each α∈A so that χ(α) = 1 change the quadrilateral chain determined by R(α) to a

quadrilateral family of type aα (according to (2.24)). The resulting system will be called Sχ, and it

is a Steiner triple system of size κ. Let ϕ∈κ2. Extend fϕ to map V onto V by defining fϕ(e0) = e0

and fϕ(e1) = e1. Then fϕ is an automorphism of Sχ : there are four possibilities for a block b∈Sχ;

(i) b = {x, y, −x−y} is an A-block. Then f∗

ϕ(b) = {fϕ(x), fϕ(y), −fϕ(x)−fϕ(y)} since fϕ is a (group)

automorphism of G. Hence f∗

ϕ(b) is an A-block. Is this A-block in Sχ? If not, then it was a block

in a quadrilateral which was ”punched out” and it means that fϕ(x)∈[R(α)]∪[−R(α)] for some α∈A.

Since fϕ is an identity on [R(α)]∪[−R(α)] (as [R(α)]∪[−R(α)]⊂G1), we have fϕ(x) = fϕ(fϕ(x)) =

x. Similarly fϕ(y) = y and −x−y = fϕ(−x−y) = −fϕ(x)−fϕ(y). Hence f∗

ϕ(b) = b and so b∈Sχ, a

contradiction.

(ii) b = {x, −2·x, e} is a B-block. Then f∗

ϕ(b) = {fϕ(x), −2·fϕ(x), e} since fϕ is a (group) auto-

morphism of G and also fϕ(e) = e. Hence f∗

ϕ(b) is a B-block. Is this B-block in S? Yes, for

TR(x)CT (CR(x)) = TR(fϕ(x))CT (CR(fϕ(x))) (see (2.14)). Is this B-block in Sχ? Similar discussion

as above for A-blocks shows that if assumed not, then f∗

ϕ(b) = b and so f∗

ϕ(b) is in Sχ, a contradiction.

(iii) b = {e0, e1, O} is the C-block. Then f∗

ϕ(b) = b and so f∗

ϕ(b) is in Sχ.

(iv) b is not an A-block, a B-block, not the C-block. Then b was in a quadrilateral which was ”punched

out” and the same discussion as above for the A-block will show that f∗

ϕ(b) = b and so f∗

ϕ(b) is in Sχ.

We have shown that, indeed, fϕ is an automorphism of Sχ, and so Sχ admits 2κ automorphisms.

Now consider χ1 6= χ2∈
A2. WLOG assume that χ1(α) = 1 and χ2(α) = 0 for some α. Then Sχ1

and

Sχ2
are not isomorphic, for Sχ1

contains a quadrilateral family of type aα while Sχ2
does not. tu
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(3.2) Theorem : Let κ be an infinite cardinal ≤2ℵ0 . Then there are 2κ mutually non-isomorphic rigid

Steiner triple systems of size κ.

Proof.

Using a group G as in (2.7) construct Steiner triple systems S of size κ, with exactly 1 anti-quadrilateral

chain (see (2.21)). Let {aα:α∈κ}⊂ωω. Fix a g∈[κ]κ. For every α∈g change exactly one of quadrilateral

chains (by ”punching” holes in them according to (2.24)) to a quadrilateral family of type aα. Do it

is so that every of κ quadrilateral chains is changed to a (unique) quadrilateral family. The result is

a Steiner triple system Sg of size κ with the same underlying index set as S. Now, if g 6= h, then Sg

and Sh are not isomorphic : let α∈κ be so that α/∈g∩h. WLOG assume that α∈g and α/∈h. Then

Sg contains exactly one quadrilateral family of type aα, while Sh does not. Thus any isomorphism

would have to map this quadrilateral family of type aα in Sg to a quadrilateral family of a different

type in Sh, a contradiction.

Let us consider an automorphism f of Sg. Let x∈(G−{O})−([a]∪[−a]), where a is an element deter-

mining the only anti-quadrilateral chain. By (2.25)(iii) f∗∗ must preserve quadrilateral {x, −2·x, e},

{−x, 2·x, e}, {−x, x, O}, {−2·x, 2·x, O}, and so f may map x to x, or to −x, or to 2·x, or to −2·x, or

to O, or to e. By the same token, f∗∗ must preserve quadrilateral {x
2 , −x, ē}, {−x

2 , x, ē}, {x
2 , −x

2 , O},

{x, −x, O}. So f may map x to x, or to −x, or to x
2,

or to −x
2 , or to O, or to ē. The conditions from

these two quadrilaterals force f to map x to x, or to −x, or to O. If f(x) = O, then {x, −2·x, e}

will be mapped onto {O, f(−2·x), f(e)} and so f(e) must be either x, or −x, or 2·x, or −2·x. Now

consider quadrilateral q : {2·x, −4·x, e}, {−2·x, 4·x, e}, {2·x, −2·x, O}, {4·x, −4·x, O}. f∗∗(q) 6= q for

any of the possibilities for f(e), thus f cannot map x onto O and so f can map x either to x, or to

−x.

We have established that for any x∈(G−{O})−([a]∪[−a]), f(x) = x or f(x) = −x.

Now, assume that there is at least one x∈(G−{O})−([a]∪[−a]) so that f(x) = −x. It is easy to

see, that this ”propagates” through [x]∪[−x], i.e. f(y) = −y for every y∈[x]∪[−x] (it follows from

(2.25)(iii)).

Let y∈(G−{O})−([a]∪[−a]) so that y/∈[x]∪[−x] and (−x−y)/∈[a]∪[−a]. Then f(y) = y or −y. Assume

that f(y) = y. Then f∗∗ maps the A-block {x, y, −x−y} either onto the A-block {−x, y, −x−y} (which

20



implies that x = O), a contradiction, or onto the A-block {−x, y, x+y} (which implies that y = O),

also a contradiction. Thus f(y) = −y.

We have established that f(y) = −y for every y∈G−{O} so that y, (−x−y)/∈[a]∪[−a].

Let b∈[a]∪[−a]. Since f∗∗ cannot map the anti-quadrilateral {b, −2·b, e}, {−b, 2·b, ē}, {−b, b, O}, and

{−2·b, 2·b, O} onto a quadrilateral, f(b) = c for some c∈[a]∪[−a]. By (2.7)(ii), for x, b there is some

z∈G−{O} so that z /∈[b]∪[−b], (−x−z)/∈[b]∪[−b], and (−x−b−z)/∈[b]∪[−b]. Since [a]∪[−a] = [b]∪[−b],

f(z) = −z and also f(−b−z) = b+z. Thus f∗∗ maps the A-block {b, z, −b−z} onto the A-block

{c, −z, b+z}, and so c = −b.

Thus, we have established that f(b) = −b for any b∈[a]∪[−a].

Finally, let y∈(G−{O})−([a]∪[−a]) so that y/∈[x]∪[−x] and (−x−y)∈[a]∪[−a]. Then f(−x−y) =

x+y and so f∗∗ maps the A-block {x, y, −x−y} onto the A-block {−x, f(y), x+y}, and so f(y) = −y.

So, we have proven that if f(x) = −x for some x∈(G−{O})−([a]∪[−a]), then f(x) = −x for every

x∈G−{O}.

Now consider the anti-quadrilateral {a, −2·a, e}, {−a, 2·a, ē}, {−a, a, O}, and {−2·a, 2·a, O}, which

is being mapped by f∗∗ onto {−a, 2·a, e}, {a, −2·a, ē}, {a, −a, O}, and {2·a, −2·a, O}. But the block

{−a, 2·a, e} is not in the system Sg. Hence there is no x∈(G−{O})−([a]∪[−a]) so that f(x) = −x

and so f(x) = x for all x∈(G−{O})−([a]∪[−a]).

Let b∈[a]∪[−a]. As discussed above, f(b) = c for some c∈[a]∪[−a]. By (2.7)(ii), for x, b there is some

z∈G−{O} so that z /∈[b]∪[−b], (−x−z)/∈[b]∪[−b], and (−x−b−z)/∈[b]∪[−b]. Since [a]∪[−a] = [b]∪[−b],

f(z) = z and also f(−b−z) = −b−z. Thus f∗∗ maps the A-block {b, z, −b−z} onto the A-block

{c, z, −b−z}, and so c = b.

We have just proven that f(x) = x for all x∈G−{O}. Since, clearly, f cannot move O, e0, and e1, f

must be the identity. tu

(3.3) Theorem : Let κ be an infinite cardinal ≤2ℵ0 . Then there are 2κ mutually non-isomorphic Steiner

triple systems of size κ that admit exactly one non-trivial automorphism.

Proof.
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Using a group G as in (2.7) construct Steiner triple systems S of size κ with no anti-quadrilateral chain

(see (2.21)). Let {aα:α∈κ}⊂ωω. Fix a g∈[κ]κ. For every α∈g change exactly one of quadrilateral

chains (by ”punching” holes in them according to (2.24)) to a quadrilateral family of type aα. Do it

is so that every of κ quadrilateral chains is changed to a (unique) quadrilateral family. The result is

a Steiner triple system Sg of size κ with the same underlying index set as S. Now, if g 6= h, then Sg

and Sh are not isomorphic : let α∈κ be so that α/∈g∩h. WLOG assume that α∈g and α/∈h. Then

Sg contains exactly one quadrilateral family of type aα, while Sh does not. Thus any isomorphism

would have to map this quadrilateral family of type aα in Sg to a quadrilateral family of a different

type in Sh, a contradiction.

Let us consider an automorphism f of Sg. Let x∈G−{O}. By (2.25)(iii) f∗∗ must preserve quadri-

lateral {x, −2·x, e}, {−x, 2·x, e}, {−x, x, O}, {−2·x, 2·x, O}, and so f may map x to x, or to −x, or

to 2·x, or to −2·x, or to O, or to e. By the same token, f∗∗ must preserve quadrilateral {x
2 , −x, ē},

{−x
2 , x, ē}, {x

2 , −x
2 , O}, {x, −x, O}. So f may map x to x, or to −x, or to x

2,
or to −x

2 , or to O, or to

ē. The conditions from these two quadrilaterals force f to map x to x, or to −x, or to O. If f(x) = O,

then {x, −2·x, e} will be mapped onto {O, f(−2·x), f(e)} and so f(e) must be either x, or −x, or 2·x,

or −2·x. Now consider quadrilateral q : {2·x, −4·x, e}, {−2·x, 4·x, e}, {2·x, −2·x, O}, {4·x, −4·x, O}.

f∗∗(q) 6= q for any of the possibilities for f(e), thus f cannot map x onto O and so f can map x either

to x, or to −x.

We have established that for any x∈G−{O}, f(x) = x or f(x) = −x.

Now, assume that there is at least one x∈G−{O} so that f(x) = −x. It is easy to see, that this

”propagates” through [x]∪[−x], i.e. f(y) = −y for every y∈[x]∪[−x] (it follows from (2.25)(iii)).

Let y∈G−{O} so that y/∈[x]∪[−x]. Since f(y) = y or −y, and also f(−x−y) = (−x−y) or (x+y),

f∗∗ maps the A-block {x, y, −x−y} either onto the A-block {−x, f(y), −x−y} or onto the A-block

{−x, f(y), x+y}. Assuming f(y) = y, it follows in the first case that x = 0, which is a contradiction,

and in the latter case that y = 0, also a contradiction. Hence f(y) = −y.

We have established that if f(x) = −x for some x∈G−{O}, then f(x) = −x for all x∈G−{O}. Since

f cannot move O, e0, and e1, there are only two automorphisms of Sg : the identity and the one

moving x onto −x for all x∈G−{O}. tu
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