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Isomorphisms of Infinite Steiner Triple Systems II

Frantisek Franek

Abstract.

A combinatorial method in conjuction with the results presented in [F] is introduced to prove

that for any infinite cardinal κ, and every cardinal λ, 0≤λ≤κ, there are 2κ mutually non-isomorphic

Steiner triple systems of size κ that admit exactly 2λ automorphisms. In particular, there are 2κ

mutually non-isomorphic rigid Steiner triple systems of size κ.

Introduction.

Mathematicians have been mostly interested in finite Steiner systems, and so the published

literature dealing with finite Steiner systems is quite extensive (see e.g. [DR]). There has been very

little published on infinite Steiner systems (see e.g. [So], [Si], [V], [GGP], [N], [F]).

We are going to present a combinatorial method to generate a family of mutually non-

isomorphic ”nice” Steiner triple systems of any desirable (infinite) size κ with features controlling

the number of their automorphisms. The method utilizes results presented in [F], and so it extends

these to all cardinalities.

(1) Notation and definitions.

The standard set-theoretical notation is used. (x, y) denotes an ordered pair, < x, ..., y > a

sequence. Lower case Greek letters denote ordinal numbers. Many terms used here are defined in

[F] (namely: quadrilateral, complementary quadrilateral, quadrilateral chain, quadrilateral family,

anti-quadrilateral chain, a quadrilateral graph).

Let S=〈V, S〉 be a Steiner triple system (from now on STS).

(1.1) We shall call S quadrilateral family complete iff for any x∈V there are y, z∈V and quadrilateral

families F1, F2 of S so that {x, y, z}∈S and y∈
⋃⋃

F1 and z∈
⋃⋃

F2.



(1.2) We shall call S quadrilateral complete iff for every x∈V there is a quadrilateral q of S such

that x∈
⋃

q.

(1.3) The weak quadrilateral graph of S is an undirected graph whose vertices are the quadrilaterals

of S, and quadrilaterals q1, q2 are connected by an edge iff
⋃

q1∩
⋃

q2 6=∅.

(1.4) S is quadrilateral connected iff its weak quadrilateral graph is connected.

(1.5) S is rich iff for every x, y, z∈V there is a quadrilateral q of S such that x, y, z∈
⋃

q.

(1.6) A STS S is nice iff it is quadrilateral complete, quadrilateral connected and quadrilateral family

complete.

(1.7) Let = = {Sα =〈V, Sα〉 : α∈κ} be a family of STS’s, κ an infinite cardinal. A product of = is a

STS T=〈W, T 〉 obtained as follows:

Let R=〈κ, R〉 be a rich STS. Let A=〈V, A〉 be an anti-Pasch STS. Then W=κ×V and T is defined

by {(α, x), (β, y), (γ, z)}∈T iff

(i) α=β=γ and {x, y, z}∈Sα, or

(ii) {α, β, γ}∈R and x=y=z, or

(iii) {α, β, γ}∈R and {x, y, z}∈A.

(1.8) Definition (1.7) is correct and the product of = is, indeed, a STS of size κ×|V |.

The existence of a rich STS R of size κ is assured by Lemma (2.1). The existence of an anti-Pasch

STS A of size |V | is assured by Lemma (2.19) in [F]. It si easy to verify that the definition of blocks

in the product assures that every pair is covered by a unique block.

(1.9) Consider the weak quadrilateral graph of S. 〈qi : i≤n〉 is a path connecting q0 and qn iff {qi, qj} is

an edge if and only if j=i+1.

Let q0, q1 be quadrilaterals in S. Let 〈qi : i≤n〉 be a path connecting q0 and qn. qm (1≤m<n) is

a κ-oscilation point (κ a cardinal) of the path iff there are exactly κ quadrilaterals q so that

〈q0, ..., qm−1, q, qm+1, ..., qn〉 is a path connecting q0 and qn.

qm (1≤m<n) is an oscilation point iff it is a κ-oscilation point for some κ, κ is then called the

magnitude of the oscilation.

(1.10) Let T=〈W, T 〉 be a STS. S is nicely included in T (we shall denote it S≺T ) iff



(1) V ⊂W , and S⊂T ;

(2) |S| < |T |;

(3) for all quadrilaterals q0, q1 in S, every T -path connecting q0 and q1 which has an |T |-oscilation

point has at least two distinct |T |-oscilation points;

(4) for every quadrilateral q0 in S, and every quadrilateral q1 in T−S, there is an T -path connecting

q0 and q1 which has at most one |T |-oscilation point and all other oscilation points are of

magnitude <|T |.

Note: It is easy to prove that ”nice inclusion” is transitive. In particular, if S ≺ T , then any oscilation

point on an S-path remains with the same magnitude in T .

(1.11) {Sαβ = 〈Vβ , Sαβ〉 : α<ℵδ+1, β≤δ} is an ℵδ-telescope system iff

(1) for every α, for every β, Sαβ is a nice STS of size ℵβ ;

(2) for every β, for every α0, α1<ℵβ+1, Sα0β and Sα1β are not isomorphic;

(3) for every α, for every β0, β1, if β0<β1, then Sαβ0
≺ Sαβ1

;

(4) for every α, for every β limit, Sαβ is a product of some subfamily of size ℵβ of the family

{Tα : α<ℵβ}, where Tα =
⋃

{Sαγ : γ<β};

(5) for every α, for every β+1<δ, Sα(β+1) is a product of some subfamily of size ℵβ+1 of the family

{Sαβ : α<ℵβ+1}.

(1.12) Let T (ℵγ) = {S0
αβ : α<ℵγ+1, β≤γ} be an ℵγ-telescope system. Let T (ℵδ) = {S1

αβ : α<ℵδ+1, β≤δ}

be an ℵδ-telescope system. Let γ≤δ. We say that T (ℵδ) extends T (ℵγ) (we shall denote it by

T (ℵγ)⊂T (ℵδ)) iff and S0
αβ = S1

αβ for all α<ℵγ+1 and all β≤γ.

(2) Auxiliary results.

(2.1) Lemma: For every infinite cardinal κ there is a rich STS of size κ.

Proof:

Let B be a Boolean algebra of size κ, let 0B be its zero. Consider the binary operation ”symmetric

difference” on B defined by: a4b=(a−b)∨(b−a)=(a∨b)−(a∧b). This operation satisfies the following:

a4b=b4a, a4(a4b)=b, and (a4b)4(a4c)=b4c. Let us define a STS R=〈V, R〉 by: V =B−0B and

R={{a, b, a4b} : a, b∈V }. Given the properties of 4, it is easy to check that R is a STS of size κ.



Prove that R is rich: given x, y, z∈V . If {x, y, z}∈R, then for any t∈V q={{x, y, z},{x, t, x4t},

{y, t, y4t}, {z, t, z4t}} is a quadrilateral of R and x, y, z∈
⋃

q. If, on the other hand {x, y, z}/∈R, then

for any t∈V , q={{x, y, x4y}, {x, t, x4t}, {y, t, y4t}, {x4y, x4t, y4t}} is a quadrilateral of R and

x, y, z∈
⋃

q. tu

(2.2) Lemma: Let a STS T be a product of a family of STS’s = as in (1.7). Then T is quadri-

lateral complete and every quadrilateral has either ”horizontal” form, i.e. {{(α, x), (β, x), (γ, x)},

{(α, x), (δ, x), (ε, x)}, {(β, x), (δ, x), (ϑ, x)}, {(γ, x), (ε, x), (ϑ, x)}} for some x∈V where {{α, β, γ},

{α, δ, ε}, {β, δ, ϑ}, {γ, ε, ϑ}} is a quadrilateral in R, or ”vertical” form, i.e. {{(α, x), (α, y), (α, z)},

{(α, x), (α, x1), (α, y1)}, {(α, y), (α, x1), (α, z1)}, {(α, z), (α, y1), (α, z1)}} for some α∈κ where

{{x, y, z}, {x, x1, y1}, {y, x1, z1}, {z, y1, z1}} is a quadrilateral in Sα.

Proof:

First consider an arbitrary element (α, x). Since R is rich, there is a quadrilateral q={{α, β, γ},

{α, δ, ε}, {β, δ, ϑ}, {γ, ε, ϑ}} in R for any β, δ. Then (α, x)∈
⋃

q.

Now, for the other part. Let q={{(α, x), (β, y), (γ, z)}, {(α, x), (δ, x1), (ε, y1)}, {(β, y), (δ, x1), (ϑ, z1)},

{(γ, z), (ε, y1), (ϑ, z1)}} be a quadrilateral in T . If every block of q was of type (1.7)(iii), then {{x, y, z},

{x, x1, y1}, {y, x1, z1}, {z, y1, z1}} would be a quadrilateral in A, a contradiction. Hence at least one

of the blocks of q must be of type (1.7)(i) or (1.7)(ii). WLOG assume it is the first block.

First consider the case that {x, y, z} is of type (1.7)(i), i.e. α=β=γ. Thus q={{(α, x), (α, y), (α, z)},

{(α, x), (δ, x1), (ε, y1)}, {(α, y), (δ, x1), (ϑ, z1)}, {(α, z), (ε, y1), (ϑ, z1)}}. From the form of the sec-

ond and third blocks of q follows that ε=ϑ. Hence q={{(α, x), (α, y), (α, z)}, {(α, x), (δ, x1), (ε, y1)},

{(α, y), (δ, x1), (ε, z1)}, {(α, z), (ε, y1), (ε, z1)}}. Now from the form of the fourth block follows that

α=ε, and thus q={{(α, x), (α, y), (α, z)}, {(α, x), (δ, x1), (α, y1)}, {(α, y), (δ, x1), (α, z1)},

{(α, z), (α, y1), (α, z1)}}. From the form of the second and third blocks follows that δ=α and so q has

”vertical” form. In order q was a quadrilateral, {{x, y, z}, {x, x1, y1}, {y, x1, z1}, {z, y1, z1}} must be

a quadrilateral in Sα.

Second consider the case that {x, y, z} is of type (1.7)(ii), i.e. x=y=z. Thus q={{(α, x), (β, x), (γ, x)},

{(α, x), (δ, x1), (ε, y1)}, {(β, x), (δ, x1), (ϑ, z1)}, {(γ, x), (ε, y1), (ϑ, z1)}}. From the form of the sec-

ond and third blocks follows that y1=z1. Hence q={{(α, x), (β, x), (γ, x)}, {(α, x), (δ, x1), (ε, y1)},



{(β, x), (δ, x1), (ϑ, y1)}, {(γ, x), (ε, y1), (ϑ, y1)}}. From the form of the third block follows that x=y1.

Thus q={{(α, x), (β, x), (γ, x)}, {(α, x), (δ, x1), (ε, x)}, {(β, x), (δ, x1), (ϑ, x)}, {(γ, x), (ε, x), (ϑ, x)}.

Now, from the form of the second and third blocks follows that x=x1 and henceforth q =

{{(α, x), (β, x), (γ, x)}, {(α, x), (δ, x), (ε, x)}, {(β, x), (δ, x), (ϑ, x)}, {(γ, x), (ε, x), (ϑ, x)}}. So, q has

”horizontal” form, and in order q was a quadrilateral in T , {{α, β, γ}, {α, δ, ε}, {β, δ, ϑ}, {γ, ε, ϑ}}

must be a quadrilateral in R. tu

Note: since every quadrilateral family started in fact as ”a straight chain” of quadrilaterals being

connected by having a block in common (see [F]), every quadrilateral family (i.e. its quadrilaterals)

in a product is of ”vertical” type.

Note: if α∈κ, q is a quadrilateral of Sα, then αq will be used to denote the corresponding ”vertical”

quadrilateral of the product; if x∈V , q is a quadrilateral of R, then qx will be used to denote the

corresponding ”horizontal” quadrilateral of the product. Similarly for quadrilateral families.

(2.3) Lemma: Let = be a family of nice STS’s of size less than κ, while |=| = κ. Let a STS T be a product

of the family = as defined in (1.7). Then for every α∈κ, Sα≺T .

Proof:

Let R be the rich STS used in the product T .

(?) Consider a T -path {qi : i≤n}. Let for some m, 0≤m≤n−2, qm be ”vertical” and qm+1 be

”horizontal”. Then qm+1 is a |T |-oscilation point.

Let qm=αq for some α∈κ. Let qm+1=q′x for some x∈V . Let (α, x) be a common point between

αq and q′x. Let (β, x) be a common point between q′x and qm+2. Pick any γ∈κ. Since R is

rich, there is a quadrilateral qγ in R so that α, β, γ∈
⋃

qγ . Then quadrilateral qγx has (α, x)

in common with qm and (β, x) in common with qm+2. Hence 〈q0, ..., qm, qγx, qm+2, ..., qn〉 is a

T -path connecting q0 and qn.

(??) Consider a T -path {qi : i≤n}. Let for some m, 1≤m≤n−1, qm be ”horizontal” and qm+1 be

”vertical”. Then qm is a |T |-oscilation point.

Proof is practically identical to the proof of ?, and so omitted here.

Fix α∈κ.



Note: for simplicity we shall treat the canonic isomorphic embedding of Sα into T (defined by

φ(x)=(α, x)) as an inclusion.

Then V ⊂W , Sα⊂T , and |Sα| < |T |.

Consider quadrilaterals q0, q1 from Sα. Consider a T -path ℘ connecting αq0 and αq1 and having a

|T |-oscilation point. Since every Sα-path has all oscilation points of magnitude ≤|Sα|, ℘ is not an

Sα-path. Thus ℘ has to include a ”horizontal” quadrilateral. The next quadrilateral in the path must

also be ”horizontal” (since path ··· − βq − q′x − βq′′ − ··· implies that {βq, βq′} is an edge of the weak

quadrilateral graph of T , and hence the above would not be a path, a contradiction). To get back to

the α’s (”vertical”) component on a different (”horizontal”) level, there must be at least two edges of

type {q, q′} where one of the quadrilateral is ”vertical” and the other is ”horizontal”. So by ? and ??

the path has to have at least two |T |-oscilation points.

Consider a quadrilateral αq0 (q0 from Sα) and a quadrilateral q1 from T−Sα.

Case I: q1=qx for some x∈V , and some quadrilateral q of R.

Subcase Ia: (α, x)∈
⋃

qx.

Since Sα is quadrilateral complete, there is a quadrilateral q′ in Sα so that x∈
⋃

q′. Since Sα is

quadrilateral complete there is an Sα-path 〈q′

i : i≤k〉 connecting q0 and q′. Every oscilation on

this path is of magnitude ≤|Sα|. Then 〈αq′

i : i≤k〉 is a T -path connecting αq0 and αq′. One more

edge connects αq′ and qx. This path has all oscilations of magnitude ≤|Sα|.

Subcase Ib: (α, x)/∈
⋃

qx.

There is some β∈κ so that (β, x)∈
⋃

qx. Since R is rich, for any γ∈κ, γ 6=α, γ 6=β, there is a

quadrilateral qγ so that α, β∈
⋃

qγ . By Subcase Ia there is a T -path connecting αq0 and qγx with

all oscilations of magnitude ≤|Sα|. Since qγx and qx form an edge, we have a T -path which has

one |T |-oscilation point (qγ), all other oscilations are of magnitude ≤|Sα|. tu

Case II: q1=βq for some β∈κ, and some quadrilateral q of Sβ .

Let x∈V be so that (β, x)∈
⋃

q1. Since Sα is quadrilateral complete, there is a quadrilateral q′ in Sα so

that x∈
⋃

q′. Since Sα is quadrilateral connected, there is an Sα-path ℘ connecting q0 and q′. For any

γ∈κ, γ 6=α, γ 6=β there is a quadrilateral qγ in R so that α, β, γ∈
⋃

qγ as R is rich. Hence {αq′, qγx} is



an edge of the weak quadrilateral graph of T , as well as {qγx, βq}. These two edges extend the path

α℘ connecting αq0 and αq′ to a path connecting αq0 and βq=q1. This path has one |T |-oscilation

point (qγx), all the other oscilation points are of magnitude ≤|Sα|. tu

(2.4) Lemma: Let =0 = {S0
α = 〈V 0, S0

α〉 : α∈κ}, and let =1 = {S1
α = 〈V 1, S1

α〉 : α∈κ}, be families of

nice STS’s, κ an infinite cardinal, |V 0| < κ, |V 1| < κ. Let T 0 be a product of =0, and let T 1 be a

product of =1. Let T 0 and T 1 be isomorphic. Then for every α∈κ there is a unique β∈κ so that S0
α

is isomorphic to S1
β , and vice versa.

Proof:

Consider an isomorphism φ:T 0→T 1.

Fix α∈κ. Consider some quadrilateral families F0, F1 in S0
α. Consider a quadrilateral q0 from F0

and a quadrilateral q1 from F1. By the note after Lemma (2.2) both q0 and q1 must be mapped on

”vertical” quadrilaterals. Assume that φ maps αq0 onto βq2 in S1
β and that it maps αq1 onto γq3 in

S1
γ . If β 6=γ, then by Lemma (2.3) there is an T 1-path connecting βq2 and γq3 which has exactly one

κ-oscilation points, and all the other oscilations are of magnitude <κ. Thus (as φ is an isomorphism)

there must be such a path in T 0 connecting αq0 and αq1. By Lemma (2.3) such path has to have

at least two κ-oscilation points, a contradiction. Hence β=γ, and so all quadrilateral families of S0
α

are mapped by φ onto quadrilateral families of S1
β . Consider an element (α, x). Since S0

α is nice,

and hence quadrilateral family complete, there are (α, y), (α, z), and quadrilateral families F0, F1,

and quadrilaterals αq0 from F0 and αq1 from F1 so that {(α, x), (α, y), (α, z)} is a block in S0
α and

(α, y)∈
⋃

αq0 and (α, z)∈
⋃

αq1. So φ maps both (α, y) and (α, z) into S1
β . Since φ maps a block onto

a block, it must map (α, x) into S1
β . Thus φ maps everything from S0

α into S1
β . By the same token

φ−1 maps everything from S1
β into S0

α. Thus, φ (restricted to S0
α) is an isomorphism of S0

α onto S1
β .

tu

(2.5) Lemma: There are 2ℵ0 non-isomorphic nice rigid STS of size ℵ0.

Proof:

Let Aα=〈V, Aα〉 be a system of 2ℵ0 non-isomorphic rigid quadrilateral family complete STS’s of size

ℵ0 constructed as in the proof of Theorem (3.2) in [F] from a STS A=〈V, A〉 with exactly one anti-

quadrilateral chain determined by [a]∪[−a] using a group G, where V =G∪{e0, e1}. Let Bα=〈V, Bα〉



be a system of 2ℵ0 non-isomorphic rigid quadrilateral family complete STS’s of size ℵ0 constructed as

in the proof of Theorem (3.2) in [F] from a STS B=〈V, B〉 with exactly one anti-quadrilateral chain

determined by [b]∪[−b] using the same group G, V =G∪{e0, e1}, and so that [a]∪[−a]6=[b]∪[−b].

Define S0
0 = A0, S1

0 = B0 and

Si
n+1 =

{

An+1, if Si
n = Bn;

Bn+1, if Si
n = An.

for all n∈ω; i=0, 1.

Let χ:ω→2 be a non-oscilating function, i.e. χ(n)=χ(n+1) for some n∈ω. Let Tχ be a product of

the family {Sχ(n)
n : n∈ω}. By Lemma (2.2) Tχ is quadrilateral complete, and since every Sχ(n)

n is

quadrilateral family complete, so is Tχ.

Let us show that Tχ is quadrilateral connected.

Consider two distinct quadrilaterals of Tχ:

(i) nq0, nq1. Since O∈
⋃

q0∩
⋃

q1 (see [F]), then (n, O)∈
⋃

nq0∩
⋃

nq1, so nq0 and nq1 are connected.

(ii) nq0, mq1, n6=m. Since R is rich, there is a quadrilateral (in fact a lot) q so that n, m∈
⋃

q.

Then ”horizontal” quadrilateral qO is connected to nq0 as well as to mq1. Thus nq0 and mq1

are connected.

(?) For every x∈V and for every n∈ω so that χ(n)=χ(n+1) either there is a quadrilateral q in

Sχ(n)
n so that x∈

⋃

q, or there is a quadrilateral q in S
χ(n+1)
n+1 so that x∈

⋃

q.

If x=O, e0, or e1, then clearly true (see [F] about the form of all quadrilaterals). Let us

assume that x∈G−{O}. Now assume that x/∈[a]∪[−a] (where [a]∪[−a] determines the only

anti-quadrilateral chain in Aα’s). Then there is such a quadrilateral q in every Am for every m.

Since χ(n+1)=χ(n), either S
χ(n+1)
n+1 = An+1, or Sχ(n)

n = An, so we are done. On the other

hand, if x∈[a]∪[−a], then x/∈[b]∪[−b] (where [b]∪[−b] determines the only anti-quadrilateral

chain in Bα’s). Now proceed as in the previous case, but with Bn’s.

(iii) nq0, q1x. By (?) there are m∈ω and a quadrilateral q2 in Sχ(m)
m so that x∈q2. Hence

(m, x)∈
⋃

mq2. Let (k, x)∈q1x. Since R is rich, there is a quadrilateral q3 in R so that m, k∈
⋃

q3.

Hence (m, x), (k, x)∈
⋃

q3x. Thus q1x is connected to q3x, which is connected to mq2, which si

connected to nq0 (by (i) or (ii)).



(iv) q0x, q1y. As in (iii), it can be reduced to (i) or (ii).

Hence Tχ is quadrilateral connected, and therefore nice.

Consider χ, θ:ω→2 non-oscilating. Consider an isomorphisms φ:Tχ→T θ. Let n∈ω. Consider quadri-

lateral families F0, F1 in Sχ(n)
n . Consider a quadrilateral q0 from F0 and a quadrilateral q1 from F1.

Assume that φ maps nq0 to Sθ(m)
m and nq1 to S

θ(k)
k . Since

⋃

nq0∩
⋃

nq1 6=∅, m=k. Hence all quadri-

lateral families from Sχ(n)
n must be mapped to Sθ(m)

m . Since Sχ(n)
n is quadrilateral family complete,

all elements of Sχ(n)
n must be mapped to Sθ(m)

m (see e.g. proof of Lemma (2.4)). Since some of

quadrilateral families of Sθ(m)
m are mapped by φ−1 to Sχ(n)

n , consequently all elements of Sθ(m)
m are

mapped by φ−1 to Sχ(n)
n . Therefore Sχ(n)

n and Sθ(m)
m are isomorphic, and so n=m and so χ(n)=θ(n),

and thus φ must be the identity on Sχ(n)
n . This is true for every n and so φ must be the identity. If

χ6=θ, then this is impossible, and so Tχ and T θ are not isomorphic. If χ=θ, then there is only one

automorphism, the trivial one. Hence Tχ is rigid. tu

(2.6) Lemma: There are 2ℵ0 non-isomorphic nice STS of size ℵ0 with the same index set and a bijection

of this set which is the only non-trivial automorphism of all of them.

Proof:

Let Aα=〈V, Aα〉 be a system of 2ℵ0 non-isomorphic quadrilateral family complete STS’s of size ℵ0

constructed as in the proof of Theorem (3.3) in [F] from a STS A=〈V, A〉 with no anti-quadrilateral

chain, using a group G, where V =G∪{e0, e1}. They all admit only one non-trivial automorphism f

defined by f(x)=−x for x∈G−{O}, f(O)=O, f(e0)=e0, and f(e1)=e1.

Define S0
n=An and S1

n=Aω+n for all n∈ω.

Let χ:ω→2. Let Tχ be a product of the family {Sχ(n)
n : n∈ω}. By Lemma (2.2) Tχ is quadrilateral

complete, and since every Sχ(n)
n is quadrilateral family complete, so is Tχ.

Let us show that Tχ is quadrilateral connected.

Consider two distinct quadrilaterals of Tχ:

(i) nq0, nq1. Since O∈
⋃

q0∩
⋃

q1 (see [F]), then (n, O)∈
⋃

nq0∩
⋃

nq1, so nq0 and nq1 are connected.

(ii) nq0, mq1, n6=m. Since R is rich, there is a quadrilateral (in fact a lot) q so that n, m∈
⋃

q.

Then ”horizontal” quadrilateral qO is connected to nq0 as well as to mq1. Thus nq0 and mq1

are connected.



(?) For every x∈V and for every n∈ω there is a quadrilateral q in Sχ(n)
n so that x∈

⋃

q.

Check the proof of Theorem (3.3) in [F] that (?) holds for every Aα.

(iii) nq0, q1x. By (?) there are m∈ω and a quadrilateral q2 in Sχ(m)
m so that x∈

⋃

q2. Hence

(m, x)∈
⋃

mq2. Let (k, x)∈q1x. Since R is rich, there is a quadrilateral q3 in R so that m, k∈
⋃

q3.

Hence (m, x), (k, x)∈
⋃

q3x. Thus q1x is connected to q3x, which is connected to mq2, which si

connected to nq0 (by (i) or (ii)).

(iv) q0x, q1y. As in (iii), it can be reduced to (i) or (ii).

Hence Tχ is quadrilateral connected, and therefore nice.

Consider χ, θ:ω→2. Consider an isomorphism φ:Tχ→T θ. Let n∈ω. Consider quadrilateral families

F0, F1 in Sχ(n)
n . Consider a quadrilateral q0 from F0 and a quadrilateral q1 from F1. Assume that

φ maps nq0 to Sθ(m)
m and nq1 to S

θ(k)
k . Since

⋃

nq0∩
⋃

nq1 6=∅, m=k. Hence all quadrilateral families

from Sχ(n)
n must be mapped to Sθ(m)

m . Since Sχ(n)
n is quadrilateral family complete, all elements of

Sχ(n)
n must be mapped to Sθ(m)

m (see a.g. proof of Lemma (2.4)). Since some of quadrilateral families

of Sθ(m)
m are mapped by φ−1 to Sχ(n)

n , consequently all elements of Sθ(m)
m are mapped by φ−1 to Sχ(n)

n .

Therefore Sχ(n)
n and Sθ(m)

m are isomorphic, and so n=m and χ(n)=θ(m). Since this must be true for

all n, it is impossible if χ6=θ. Henceforth Tχ and T θ are not isomorphic if χ6=θ.

In case χ=θ, φ must be either the identity on Sχ(n)
n , or it must be equal to f .

Pick any m6=n, and any x∈V . There is a quadrilateral q in R so that n, m∈
⋃

q. The isomorphism

φ must map qx onto some q′y (for if it mapped qx onto a ”vertical” βq′ than φ−1 would map

βq′ onto a ”horizontal” quadrilateral. But βq′ is in some quadrilateral family, and hence must be

mapped onto a ”vertical” quadrilateral, a contradiction). Since φ(n, x)=(n, f(x)), y=f(x) and thus

φ(m, x)=(m, f(x)). Thus φ is either the identity on all Sχ(n)
n ’s, and hence the identity on Tχ, or it is

equal to f on all Sχ(n)
n ’s. Thus Tχ has exactly one non-trivial automorphism. tu

(2.7) Lemma: Let T (ℵδ) = {Sαβ = 〈Vβ , Sαβ〉 : α<ℵδ+1, β≤δ} be an ℵδ-telescope system such that all

Sαδ’s for all α<ℵδ+1 are rigid. Then

(1) there are 2ℵδ+1 non-isomorphic nice rigid STS’s of size ℵδ+1;

(2) there is an ℵδ+1-telescope system extending T (ℵδ).



Proof:

Split the sequence {Sαδ : α<ℵδ+1} into two disjoint sequences {S0
α : α<ℵδ+1}, and {S1

α : α<ℵδ+1}.

Let χ:ℵδ+1→2. Define Tχ to be a product (as defined in (1.7)) of the family {Sχ(α)
α : α<ℵδ+1}. By

Lemmas (2.2) and (2.3), Tχ is a nice STS of size ℵδ+1 and every Sχ(α)
α is nicely included in Tχ.

Consider χ, θ:ℵδ+1→2. Let φ:Tχ→T θ. By Lemma (2.4) for every α<ℵδ+1 there is β<ℵδ+1 so that φ

maps isomorphicaly Sχ(α)
α onto S

θ(β)
β , and vice versa. So α=β and χ(α)=θ(β).

If χ6=θ, then this is impossible, and so there is no isomoprhism φ.

If χ=θ, then φ maps Sχ(α)
α onto itself and hence (as it is rigid) φ must be the identity on Sχ(α)

α . Since

this is true for any α, φ must be the identity. Hence Tχ is rigid. (1) has been proven.

To prove (2), choose a sequence {Tα : α<ℵδ+2} from the 2ℵδ+1 non-isomorphic nice rigid STS’s of

size ℵδ+1 obtained in (1). Let us define a system T (ℵδ+1) = {Tαβ : α<ℵδ+2, β≤δ+1} by:

Tαβ=Sαβ for α<ℵδ+1, β≤δ;

Tαβ=S0β for ℵδ+1≤α<ℵδ+2, β≤δ;

Tαδ=Tα for α<ℵδ+2. It is now straightforward to check that T (ℵδ+1) is an ℵδ+1-telescop extending

T (ℵδ). tu

(2.8) Lemma: Let T (ℵδ) = {Sαβ = 〈Vβ , Sαβ〉 : α<ℵδ+1, β≤δ} be an ℵδ-telescope system such that there

is a bijection f of Vδ which is the only non-trivial automorphism of all Sαδ’s for all α<ℵδ+1 . Then

(1) there are a bijection φ of a set W and 2ℵδ+1 non-isomorphic nice STS’s of size ℵδ+1 with the index

set W , so that φ is their only non-trivial automorphism, and φ extends f ;

(2) there is an ℵδ+1-telescope system extending T (ℵδ).

Proof:

Split the sequence {Sαδ : α<ℵδ+1} into two disjoint sequences {S0
α : α<ℵδ+1}, and {S1

α : α<ℵδ+1}.

Let χ:ℵδ+1→2. Define Tχ to be a product (as defined in (1.7)) of the family {Sχ(α)
α : α<ℵδ+1}. By

Lemmas (2.2) and (2.3), Tχ is a nice STS of size ℵδ+1 and every Sχ(α)
α is nicely included in Tχ.

Consider χ, θ:ℵδ+1→2. Let φ:Tχ→T θ. By Lemma (2.4) for every α<ℵδ+1 there is β<ℵδ+1 so that φ

maps isomorphicaly Sχ(α)
α onto S

θ(β)
β , and vice versa. So α=β and χ(α)=θ(β).

If χ6=θ, then this is impossible, and so there is no isomoprhism φ.



If χ=θ, then φ maps Sχ(α)
α onto itself and hence φ must be the identity or equal to the only non-trivial

automorphism of Sχ(α)
α , f . If φ is not the identity on some Sχ(α)

α , then it is not the identity on all of

them (see e.g. the proof of Lemma (2.6)). Hence Tχ has exactly one non-trivial automorphism. (1)

has been proven.

To prove (2) is identical to the proof of (2) in Lemma (2.7) and so omitted here. tu

(2.9) Lemma: Let ℵδ be a limit cardinal (i.e. δ is a limit ordinal). Let {T (ℵβ) : β<δ}, be an ⊂-increasing

sequence of ℵβ-telescope systems (β<δ) with all STS’s involved being rigid.

(1) there are 2ℵδ non-isomorphic nice rigid STS’s of size ℵδ;

(2) there is an ℵδ-telescope system T (ℵδ) which extends all T (ℵβ)’s for all β<δ.

Proof:

Let T (ℵβ) = {Sβ
αγ = 〈V β

γ , Sβ
αγ〉 : α<ℵβ+1, γ≤β}, β<δ.

For any α<ℵδ define Tα =
⋃

{Sβ
αβ : β<δ}. Since each sequence {Sβ

αβ : β<δ} is a ≺-increasing

sequence of nice STS’s, all Tα’s are nice STS’s of size ℵδ, all with the same index set V =
⋃

{V β :

β<δ}.

Split the sequence {Tα : α<ℵδ} into two disjoint sequences {T 0
α : α<ℵδ} and {T 1

α : α<ℵδ}.

Let χ:ℵδ→2. Define Sχ to be a product of the family {Tχ(α)
α : α<ℵδ}. By Lemma (2.2), Sχ

is quadrilateral complete, and since all STS’s involved are quadrilateral family complete, it is also

quadrilateral family complete. In the same way as in the proof of Lemma (2.3) one can prove that

Sχ is quadrilateral connected. Hence Sχ is quadrilateral is a nice STS of size ℵδ, with the index set

ℵδ×V . Let Tχ(α)
α =

⋃

{Sε
γε : ε<δ} for some γ<δ. Similarly as in the proof of Lemma (2.3), one can

show that each Sε
γε ≺ Tχ(α)

α , for all α’s.

Let χ, θ:ℵδ→2. Let φ:Sχ→Sθ be an isomorphism.

(?) for every α<ℵδ there is β<ℵδ such that φ (restricted to Tχ(α)
α ) is an isomorphism of Tχ(α)

α

onto T
θ(β)
β .

Let α∈ℵδ. Tχ(α)
α =

⋃

{Sε
γε : ε<δ} for some γ<δ. Consider two quadrilateral families F0, F1

in Tχ(α)
α . Let q0 be from F0, let q1 be from F1. Assume that φ maps αq0 into T

θ(β)
β and

αq1 into T
θ(β0)
β0

. By the way of contradiction assume that β 6=β0. Similarly as in the proof of



Lemma (2.3) one can show that there is a T θ-path connecting φ(αq0) and φ(αq1) which has

exactly one ℵδ-oscilation points and all other oscilation points have magnitude < ℵδ. Hence

there must be such a Tχ-path ℘ connecting αq0 and αq1. There is γ0 < δ so that ℘ is an

Sε
γ0ε-path, and as such it cannot have an ascilation point of magnitude bigger than the size of

Sε
γ0ε, a contradiction. Henceforth β=β0. Thus all quadrilateral families of Tχ(α)

α are mapped

by φ onto quadrilateral families of T
θ(β)
β , and so by quadrilateral family completeness (as in

the proof of Lemma (2.3)) φ (restricted to Tχ(α)
α ) is an isomorphism of Tχ(α)

α onto T
θ(β)
β .

(??) Let φ map Tχ(α)
α onto T

θ(β)
β . Then Tχ(α)

α = T
θ(β)
β , and so α=β and χ(α)=θ(β).

Let Tχ(α)
α =

⋃

{Sε
γε : ε<δ} for some γ<δ. Let T

θ(β)
β =

⋃

{Sε
ρε : ε<δ} for some ρ<δ. Pick

a quadrilateral q0 in Tχ(α)
α . Since α, β<ℵδ, there is δ0<δ so that α, β<ℵδ0

. Then there is

δ1≥δ0 so that q0 is a quadrilateral of Sδ1

γδ1
and φ maps q0 into Sδ1

ρδ1
. Pick any quadrilateral q1

of Sδ1

γδ1
distinct from q0. If φ mapped q1 outside of Sδ1

ρδ1
, say into Sδ2

ρδ2
(for some δ1<δ2<δ),

there would be a T
θ(β)
β -path connecting φ(q0) and φ(q1) with exactly one ”big” oscilation point

and all other oscilation points of ”small” magnitude (”big” means bigger than size of Sδ1

γδ1

which is ℵδ1
, ”small” means smaller or equal to ℵδ1

), as Sδ1

ρδ1
is nicely included Sδ2

ρδ2
. On the

other hand every Tχ(α)
α -path connecting q0, q1 having a ”big” oscilation points has to have at

least two ”big” oscilation points, a contradiction. Thus φ has to map q1 into Sδ1

ρδ1
, and so

by quadrilateral family completeness, Sδ1

γδ1
must be isomorphic to Sδ1

ρδ1
. Thus Sδ1

γδ1
= Sδ1

ρδ1
.

Similar argument shows that in fact Sδ3

γδ3
= Sδ3

ρδ3
for any δ1≤δ3<δ. Hence Tχ(α)

α = T
θ(β)
β .

By (?) and (??) χ(α)=θ(α) for all α’s, which is clearly impossible if χ6=θ, and so Sχ and Sθ are not

isomorphic.

If χ=θ then by (?) and (??) for every α<δ, φ must be an automorphism of all STS’s in the sequence

{Sε
γε : ε<δ} (where Tχ(α)

α =
⋃

{Sε
γε : ε<δ}). But these are all rigid, hence φ must be the identity on

Tχ(α)
α , and hence on Sχ. Thus Sχ is rigid. Therefore (1) is proven.

To prove (2), first choose a sequence {Tα : α<ℵδ+1 from the STS created in (1). Then define an

ℵδ-telescope system T (ℵδ) = {Sδ
αγ = 〈V δ

γ , Sδ
αγ〉 : α<ℵδ+1, γ≤δ} by

Sδ
αγ = Sγ

αγ for α<ℵδ and γ<δ,



Sδ
αγ = Sγ

0γ for ℵδ≤α<ℵδ+1, and

Sδ
αδ = Tα for all α<ℵδ+1.

To verify that it is an ℵδ-telescope system extending all T (ℵβ) for all β<δ is left to the reader. tu

(2.10) Lemma: Let ℵδ be a limit cardinal. Let {T (ℵβ) : β<δ}, be an ⊂-increasing sequence of ℵβ-telescope

systems (β<δ). Let T (ℵβ) = {Sβ
αγ = 〈V β

γ , Sβ
αγ〉 : α<ℵβ+1, γ≤β}, β<δ. Let {fγ : γ<δ} be a sequence

such that for every γ<δ, fγ is a bijection of V γ
γ , and it is the only non-trivial automorphism of all

Sβ
αγ (for all β≥γ), and fγ0

extends fγ1
whenever γ1<γ0<δ.

(1) there are 2ℵδ non-isomorphic nice STS’s of size ℵδ with the same index set W , and a bijection φ

of W extedning all fγ ’s, and being the only non-trivial automorphism of all of them;

(2) there is an ℵδ-telescope system T (ℵδ) which extends all T (ℵβ)’s for all β<δ.

Proof:

The proof is identical to the proof of Lemma (2.9). Just realize that when φ is an automorphism of

Tχ(α)
α , it must be an automorphism of all STS’s in the sequence {Sε

γε : ε<δ} (where Tχ(α)
α =

⋃

{Sε
γε

: ε<δ}). Clearly, if it is a non-trivial automorphism of one of them, it must be the (only) non-trivial

automorphism on all of them, hence there is only one non-trivial automorphism φ extending all fγ ’s.

tu

(3) Main results.

(3.1) Theorem: For every infinite cardinal κ there are 2κ non-isomorphic nice rigid STS’s of size κ.

Proof:

We shall proceed by induction over κ.

(1) κ=ℵ0.

By Lemma (2.5) there are 2ℵ0 non-isomorphic nice rigid STS’s of size ℵ0, and one can easily form an

ℵ0-telescope system T (ℵ0) from them.

(2) As the induction hypothesis assume that we have an ⊂-increasing sequence of T (ℵα) of ℵα-telescope

systems, α≤δ, with all STS’s involved being rigid.

Then by Lemma (2.7) there are 2ℵδ+1 non-isomorphic nice rigid STS’s of size ℵδ+1, and also there is

an ℵδ+1-telescope system T (ℵδ+1) containing some of them and extending all T (ℵα)’s for all α≤δ.



(3) As the induction hypothesis assume that we have an ⊂-increasing sequence of T (ℵα) of ℵα-telescope

systems, α<δ, δ a limit ordinal, with all STS’s involved being rigid.

By Lemma (2.9) there are 2ℵδ non-isomorphic nice rigid STS’s of size ℵδ, and also there is an ℵδ-

telescope system T (ℵδ) containing some of them and extending all T (ℵα)’s for all α<δ. tu

(3.2) Theorem: For every infinite cardinal κ there are 2κ non-isomorphic nice STS’s of size κ with the

same index set and a bijection of the index set which is their only non-trivial automorphism.

Proof:

We shall proceed by induction over κ.

(1) κ=ℵ0.

By Lemma (2.6) there are 2ℵ0 non-isomorphic nice STS’s of size ℵ0 with the same index set, and

a bijection of this index set which is their only non-trivial automorphism. One can easily form an

ℵ0-telescope system T (ℵ0) from them.

(2) As the induction hypothesis assume that we have an ⊂-increasing sequence of T (ℵα) of ℵα-

telescope systems, α≤δ and an increasing sequence fα (α≤δ) so that all STS’s on the level α have

the same index set, fα is a bijection of this index set, and it is the only non-trivial automorphism of

all of STS’s on level α.

Then by Lemma (2.8) there are 2ℵδ+1 non-isomorphic nice STS’s of size ℵδ+1 with the same index

set, and a bijection fδ+1 of this index set, which is the only non-trivial automorphism of all of them,

extending all fα’s, α≤δ. Also, by Lemma (2.8), there is an ℵδ+1-telescope system T (ℵδ+1) containig

some of them and extending all T (ℵα)’s for all α≤δ.

(3) As the induction hypothesis assume that we have an ⊂-increasing sequence of T (ℵα) of ℵα-

telescope systems, α<δ, δ a limit ordinal, and an increasing sequence fα (α<δ), such that all STS’s

on level α have the same index set, and fα is a bijection of this index set, and it is the only non-trivial

automorphism of all of STS’s on level α.

By Lemma (2.10) there are 2ℵδ non-isomorphic nice STS’s of size ℵδ with the same index set, and a

bijection fδ of this index set, extending all fα’s, and being their only non-trivial automorphism. Also

there is an ℵδ-telescope system T (ℵδ) containing some of them and extending all T (ℵα)’s for all α<δ.

tu



(3.3) Theorem: For every infinite cardinal κ and every cardinal λ, 2≤λ≤κ, there are 2κ non-isomorphic

STS’s of size κ admitting exactly 2λ automorphisms.

Proof:

Fix λ. Let {S0
α = 〈V, S0

α〉 : α≤λ} and {S1
α = 〈V, S1

α〉 : α≤λ} be disjoint sequences of non-isomorphic

nice STS’s of size κ with the same index set V , and let f be a bijection of V which is the only

non-trivial automorphism of all S0
α’s and S1

α’s (by Theorem (3.2)).

Let χ:κ→2.

Let Tχ be a product of the family {Sχ(α)
α : α≤λ} as in (1.7), but with the change that the ”underlying”

STS R be anti-Pasch rather than rich. It is easy to show that the result is an STS of size κ with the

index set κ×V , and so that all its quadrilaterals are of ”horizontal” type.

Consider χ, θ:κ→2. Let φTχ→T θ be an isomorphism. Consider Sχ(α)
α . Consider two distinct quadri-

laterals q0,q1 from Sχ(α)
α . Suppose that φ maps αq0 into S

θ(β)
β , and that it maps αq1 into Sθ(γ)

γ . If

γ 6=β, then φ(αq0) and φ(αq1) are not connected in T θ. But Sχ(α)
α is nice, and hence quadrilateral

connected, a contradiction. Thus γ=β, and so Sχ(α)
α and S

θ(β)
β are isomorphic, hence equal.

If χ6=θ, this is impossible, so Tχ and T θ are not-isomorphic.

If χ=θ, then φ (restricted to Sχ(α)
α ) must be an automorphism of Sχ(α)

α . Thus φ must be a combination

of automorphisms on all components, and there are exactly 2λ such combinations. tu
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