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Disproving Erdos’s conjecture on multiplicities

of complete subgraphs using computer
F. Franek, V. Rodl

Abstract

Denote by k:(G) the number of cliques of order ¢ in the graph G. Let ki(n) =
min{k:(G) + k:(G) : |G| = n}, where G denotes the complement of G, and |G| denotes the
order of G. Let ¢;(n) = %, and let ¢; = lim,_o0ct(n). A well known conjecture of Erdos
[E], related to Ramsey’s theorem, states that ¢; = 91-(2), Tt was shown false by Thomason
[T]. We present an alternative proof of the falsity of Erdds conjecture for ¢ = 4, using graphs
generated by computer. These graphs, though of large orders (29 - 2!4), are rather simple and
highly regular. The smallest lower bound for ¢4 0.976501 obtained by this method is given by the
graph on 10 elements (and hence of order 2'°) determined by the configuration {1, 3,4, 7,8, 10},

and by the graph on 11 elements (and hence of order 2!!) determined by the configuration

{1,3,4,7,8,10,11} (see Def. 1).

1. Introduction.

Denote by k¢ (G) the number of cliques of order ¢ in the graph G. Let k¢ (n) = min{k;(G) +k:(G)
: |G| =n}, where G denotes the complement of G, and |G| denotes the order of G. Let c;(n) = %, and
let ¢; = limp_ooct(n). Thus ¢;(n) denotes the minimum proportion of monochromatic K;’s in a coloring
of the edges of K, with two colors. A well known conjecture of Erdds [E], related to Ramsey’s theorem,
states that ¢; = 21-(). 1t follows from Goodman’s work [G], that the conjecture is true for ¢ = 3.
Erdés and Moon showed in [EM] that a modified conjecture for complete bipartite subgraphs of bipartite
graphs is true. Sidorenko [S] showed that a modified conjecture is true for cycles, and not true for certain
incomplete subgraphs. Erdos’s conjecture is obviously true for random graphs, and it follows from results
of various people that it is also true for "pseudo-random” graphs (see [GS], [FRW], [T1]). Thomason
[T] disproved the conjecture in general, producing an infinite sequence from a single underlying graph
leading to a limit smaller than what the conjecture stipulates. He obtained the following results (upper

bounds): for ¢ = 4, 0.976 x 2'~(2) = 0.976 x L, for t = 5, 0.906 x 2'=(3) and for ¢ > 6, 0.936 x 2!~ (),

327

His underlying graphs are formed by vectors in orthogonal geometries. As far as the lower bound, Giraud
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[Gi] showed that ¢4 > ;. On the other hand the authors showed (a manuscript) that the conjecture not
only holds for ”pseudo-random” graphs, but also for graphs obtained by perturbing less than en? edges
of the ”"pseudo-random” graph, and that the conjecture holds for subgraphs on 4 vertices with 5 edges
(i.e. K4 less one edge).

Improving the upper bound for ¢; is interesting for its relation to Ramsey numbers. If

;t) , then the lower bound of diagonal Ramsey number r(t,¢) improves exponentially (i.e.

(24 (&
logs 7(t,t) >

Ct<

L-logs (2 + €) from the current > £-(1+ o(1))), and if ¢; = ﬁ; then the upper bound improves

(2+0(1)) (3
exponentially (i.e. logs r(t,t) < t-logs %ﬁ from the current < 2¢-(1 — o(1))) (see [R], [T2]).
It is easy to realize that in order to obtain an infinite sequence {G,}, -, of graphs with a given
. k4(Gn)+k4(Gn) . . . . ..
value of lzmn_mow it suffices to find just one graph that satisfies certain conditions (see
4
Lemma 6 here, Lemma 1 in [T]). We are going to present an alternative way of obtaining the underlying

graphs to get counterexamples to the conjecture for ¢ = 4. The graphs were found (generated) by

computer. These graphs, though of large orders (2'0 - 2!4), are rather simple and highly regular.

4
Since the relative count of monochromatic K4’s in the random 2-coloring 21_(2) = % was the

lowest value for the upper bound for ¢4, known before Thomason’s result [T], some attempts had been
made to disprove Erdds’s conjecture by modifying the structure of random graphs slightly to lower the
value below 3% The reason why they were not successful lies in the fact that ”pseudo-random” graphs
are not a good ”start” for such modifications as they represent a local minimum of relative counts of
monochromatic K4’s in a certain space of "representatives” of graphs (see our manuscript mentioned
above). Moreover ”small” modifications do not allow for getting out of the ”hole”. This realization lead
us to computer-generate our graphs in a different way, starting with graphs ”far away” from ”pseudo-
random” graphs, and in each step of the search a rather big class of edges is removed or added. As good
candidates the so-called Boolean graphs were considered (see Def. 1). The effort, after a few weeks of
computing on the departmental VAX 11/780 panned out. We obtained a class of graphs which all leads
to infinite sequences with ¢, smaller than 1 x 3% (see the appendix). The lowest upper bound for ¢4
0.976501 obtained by this method is given by the sequence built from a graph Gx, r, where |X| = 10,
and F' = {1,3,4,7,8,10}, and coincidentally for |X| = 11 and {1,3,4,7,8,10,11} (see the appendix).
Interestingly, as Thomason graphs, these graphs have slightly different number of edges than non-edges,

which runs counter the received wisdom prior to Thomason’s work. The actual programs were written
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in the programming language C, and the source code and the results are presented in the appendix. The

results presented here were re-computed on the departmental SUN 4/280-S.

2. Methods.

Def.1: Let X be a finite set, and let F'C{1,2,...,|X|}. Graph Gx r = (Vx r, Ex, ) is defined by Vx
={a:aCX}, and {a,b}€Ex p iff |aAb|EF, where aAb denotes the symmetric difference of sets a and

b.

Note 2: By F we shall denote {1,2,...,|X|} — F. It follows that Gx r = Gx p, where Gx r denotes the

complement of Gx r.

Def.3: Let X be a finite set, and let FC{1,2,....|X]|}.

(3.1)  An ordered triple {fo, f1, fo) is an X, F-triple, if fo, f1, f2CX, |fi|€EF for each i < 2, and
|fiAfj|EF for all i # j < 2.

(3.2)  An ordered pair (fo, f1) is an X, F-pair, if fo, fiCX, |f;|€F for each i <1, and |f;Af;|€F for
alli#j <1

(3.3) A singleton (fp) is an X, F-singleton, if f/oCX, an |fo|EF.

Lemma 4: Let X be a finite set, and let FFC{1,2,...,|X|}. Let k,(Gx, r) denote the number of cliques
of size ¢ in the graph Gx p. Let te(X, F) denote the number of X, F-triples, pe(X, F) the number of
X, F-pairs, and sc(X, F') the number of X, F-singletons. Then

(41)  ka(Gx.p) = G te(X, F),

(42)  ks(Gxr) = Zetpe(X, F),

(4.3)  ko(Gxp) = Z9=sc(X, F).

Proof: (1) Let {a,b,c,d} be a 4-clique in Gx r. It is easy to verify that (aAb,alAc,aAd) is an X, F-
triple, and all elements in the triple are mutually distinct. But any permutation of the three elements
in the triple forms an X, F-triple. Thus there are 6 distinct X, F- triples. We could have chosen any
of the vertices of the clique to determine the 6 X, F-triples, not just a. Therefore the clique {a,b, ¢, d}
determines 4 x 6 = 24 distinct X, F-triples. On the other hand, it is easy to show that if (fo, f1, f2) is
an X, F-triple, and if aCX, then {a,aAfo,af1,a\f2} is a 4-clique in Gx p. Thus there are exactly

%tC(X, F) 4-cliques in Gx p.



(2) The proof for 3-cliques is practically identical to (1), except one has to realize that there are 2
permutations of a pair, and a 3-clique has 3 vertices, hence each 3-clique determines 2 x 3 = 6 distinct
X, F-pairs.

(3) The proof for 2-cliques (edges) is again practically identical to (1), except one has to realize that there
is only 1 permutation of a singleton, and a 2-clique has 2 vertices, hence each 2-clique determines 1 x 2

= 2 X, F-singletons.
Similarly as Thomason did, we shall produce an infinite sequence of graphs from a single graph:

Def. 5: Let G = (V, E) be a graph, and let n be a positive integer. The graph G,, = (V,,, E,) is defined
as follows: let {B, : v€EV} be a system of mutually disjoint sets of size n. Then V,, = J{B, : vEV}.
If a,bEB,, then {a,b}EE,, and if a€B,, bEB,, u # v, then {a,b}€E, iff {u,v}EE. (In other words,
each vertex of G is "blown up” to a set of vertices of size n, every two vertices in a ”blown up” G-vertex
form an edge in G,, and two vertices from different ”blown up” G-vertices form an edge in G,, only if

the original G-vertices formed an edge in G.)

Lemma 6: If all graphs in an infinite sequence of graphs {G, },., were obtained from a single graph G

of size t as in Def. 4, then

lim ka(Gp) + ka(Gr)  24(ka(G) + ka(G)) + 36ks(G) + 14k2(G) + t

Proof: Fix an n. Let’s calculate the number of all 4-cliques in G,; there are 5 possible cases:

(1)  Each of the four vertices of the 4-clique are from distinct ”blown up” G-vertices.
Since each vertex of such a 4-clique can be chosen independently, there are nk4(G) such 4-cliques
in G,,. Denote this number as H;(n).

(2) Two of the four vertices of the 4-clique are from the same ”blown up” G-vertex, while the
remaining two vertices are from distinct ”blown-up” G-vertices.
There are 3 ways to choose the ”blown up” G-vertex with two vertices, and (’2’) ways to choose
the vertices in it. The remaining two can be chosen independently, hence there are 3(})n*ks(G)
such
4-cliques in Gy,. Denote this number as Ha(n).

(3) Three of the four vertices of the 4-clique are from the same ”blown up” G-vertex, while the

remaining one vertex is from a different ”blown-up” G-vertex.
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There are 2 ways to choose the ”blown up” G-vertex with three vertices, and (2) ways to choose
the vertices in it. The remaining one can be chosen independently, hence there are 2(%)nk2(G)
such 4-cliques in G,,. Denote this number as Hz(n).
(4)  Two of the four vertices of the 4-clique are from one ”blown up” G-vertex, while the remaining
two vertices are from a different ”blown-up” G-vertex.
There are (’;) ways to choose the two vertices in each of the ”blown up” G-vertices. Hence there
are (g)2k2(G) such 4-cliques in G,. Denote this number as Hy(n).
(5 Finally, the four vertices of the 4-clique are from a single ”blown up” G-vertex.
There are (7}) ways to choose the four vertices in the ”blown up” G-vertex. Hence there are ()¢
such 4-cliques in G,,. Denote this number as Hs(n).
Hs(n) = 2n'k3(G)02(n), where Oz(n) = 1— L, and so limy_,0c02(n) = 1.
Hs(n) = $n*k2(G)Os(n), where O3(n) = 1— 2 + % and so limpn_,0c03(n) = 1.
Hy(n) = {n*k2(G)O04(n), where O4(n) = 1— 2 + 5 and s0 limp—0004(n) = 1.
H;(n) = 3;n*t05(n), where O5(n) =1— £ + L1 — % "and so limy_,0c05(n) = 1.

("M = &t*n*06(n), where Og(n) = 1 — & + AL — - and so lim,—e.0g(n) = 1.

k4(Gn) H1(n)+H2(n)+H3(n)+H4(n)+H5(n) — 24k4(G)+36k3(G)+14k2(G)+t‘

Hence lim,,— o ) = limy— oo o1
4 4

Fa(Gn) _ 24k4(G)

oy =

k4(Gn)+k4(Gn) _ 24(k4(G)+k4(é))+346k3(G)+14k2(G)th I:]
tn - t .

(%)

Since for G,, only case (1) can happen, lim, s

It follows that lim.,_ o

Def. 7: We shall call

24(k4(Q) + ka(GQ)) + 36k3(GQ) + 14ka(G) + ¢

32 o

Erdos’s number of the graph G.

Lemma 8: Let X be a finite set, and let FC{1,2,...,|X|}. Let tc(X, F) denote the number of X, F-
triples, tc(X, F') denote the number of X, F-triples, pc(X, F) the number of X, F-pairs, and sc¢(X, F') the

number of X, F-singletons. Then Erdds’s number of Gx r =

te(X, F) +te(X, F) + 6pc(X, F) + Tse(X, F) + 1
231X|—5 :

Proof: Follows directly from Lemma 4 as 2/X| is the size of the graph Gx,F.

Our task will be to find such a set X and such a family F' so that Erdds’s number of G x_r is less

than 1. In the following we shall describe the algorithm to compute Erdds’s number for given X and F.
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Based on Lemma 8, it suffices to compute the number of X, F-triples, X, F-pairs, and X, F-singletons.
(Note: the number of X, F-triples can be computed by the same procedure having the family F as a

parameter.)

How to compute the number of all X, F-triples:

Consider (fo, f1, f2), an ordered triple of mutually distinct subsets of X. Denote | f;| as a; (i < 2),
|foAf1] as as, |foAfa| as as, and |f1Afo] as as. Let zg12 = fo N f1 N fa, let 201 = (fo N f1) — Zo12,
let zo2 = (fo N f2) — To12, let 12 = (f1 N f2) — Zo12, let 20 = fo — (f1 U fa), let 21 = fi — (fo U fa),
and let 2o = fo — (fo U f1). Then g, x1, T2, To1, To2, T12, To12 are mutually disjoint and fo U fi U fo =
xo Uz Uy Uz Uxoa Uxia Uzgra. Let mg = |xo|, m1 = |z1], ma = |z2|, mo1 = |Zo1]|, mo2 = |zoz|,
miy = |z12|, and mo12 = |To12|. Since fo, fi and fo are mutually distinct, 2 < |fo U fi1 U fo2|, and so
2 <mgy + my + my + moy + mo2 + my2 + mer2 < |X|. Thus

mo + mo1 + Moz + Mo12 = ao,
my + mo1 + mi2 + Mo12 = a1,
mg + Moz + Mi2 + Mo12 = a2,
mo + Moz + M1 + M1z = ag,
mo + mo1 +mao + M2 = ag,
my + mo1 +m2 + mo2 = as.
These equations lead to the following solutions:

mo = So + Mo12, where so = %ﬂ’

my = $1 + Mmgi2, where s = 7(134_(155(10_(12,

S5 + mg12, Where 5o = W’

3
Il

agtaj—as

me1 = So1 — Mo12, where sp1 = 2 )

Moz = S02 — Mo12, where sgp = 20H82-04,

aitas—as

miy = S12 — Mo12, Where s15 = 5

Thus 0 < moi2 < |X|, —=so < moi2 < |X| =50, —s1 < moi2 < |X|—51, —s2 < moi2 <

| X| — 52, —s01 —|X| < mo12 < s01, —S02 — |X| < mo12 < Sp2, —S12 — X| < me12 < 812, and

2—s5 < mpi2 < |X|—s, where s = mo + m1 + ma + mo1 + Moz + M2 + Mme12.  Let spmin =
max (0, —sg, —S1, —S2, So1—| X |, S02—| X |, s12—| X |, 2—s), and let spq4p =
min(|X|, | X|=so, | X|=51,|X|=52, 01, S02, 512, | X |=5). Then s,in < mo12 < Smaz-
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Generate all possible ordered 5-tuples {(ag, a1, as2,as, as,as) so that each a;€F. For each ordered
5-tuple {ag, a1, as,as, as,as) compute sg, S1, S2, So1, S02, S12, S, Smin, aNd Spmaz. If any of these are not
integers, the 5-tuple has no solution, if ;42 < Smin, then again the 5-tuple has no solution. If everything
is all right, generate all possible mg12 so that spyin < Mmo12 < Spmaz- For each generated mgi2 compute
mg = So + Mo12, M1 = S1 + Mo12, M2 = S + Mo12, M1 = So1 — Mo12, Mo2 = Se2 — Mo12, and miy =

S19 — Mo12- For each solution mo, My, M2, Mo1, M2, M 12, M012 calculate

XN (|IX]|- X|—mo— X|—mo— X|—mo—m1— X|—mo—m1—mo—
() - (o) - (e - (I gmm) - (I mmmme) (Mo mmammer).

) (|X\*m0*m1*m2*m01*m02) . (\X|*m0*m1*m2*m01 *m02*m12)
mi2 moi2 )

Cumulate these numbers, and when done with all 5-tuples (ag, a1, a2, as, a4, as), we have the number of

all X, F-triples.
How to compute the number of all X, F-pairs:

Consider {fo, f1), an ordered pair of mutually distinct subsets of X. Denote |f;| as a; (i < 1),
|foAfi| as as. Let zo1 = fo N f1, let zg = fo — f1, and let 2y = f1 — fo. Then g, z1, 201 are mutually
disjoint and fo U fi = 2o Uxy Uxzo1. Let mg = |zo|, m1 = |z1], and mo1 = |xo1]|. Since fo and f; are
mutually distinct, 2 < |fo U f1], and so 2 < mg +my + mo1 < | X|. Thus

mo + Mo1 = ao,

my + me1 = ay,
mo +my1; = a».

These equations lead to the following solutions:

— aotai—as
mo = 2 ’
my = 7‘1“”22*‘“, and
Moy = a1+a2*a0‘

2

Generate all possible ordered 3-tuples {(ag, a1, as) so that each a;€F. For each ordered 3-tuple
(ao,a1,a2) compute mqg, my, and mg;. If any of these are not integers, the 3-tuple has no solution, if any
of these are less than 0, or bigger than |X|, then again the 3-tuple has no solution. If mg + my + mq; is

< 2 or > |X|, then again the 3-tuple has no solution. If everything is all right, calculate (lX ) - (‘Xl*m") .

mo ma

X|—mo— X|—mo—
(XImmommay . (IXIZmo=may

Cumulate these numbers, and when done with all 3-tuples {(ag, a1, as), we have the number of all X, F-

pairs.



How to compute the number of all X, F-singletons:

Consider (fy), where fy is a subset of X. Denote |fo| as ag. Generate all possible ag€F. For
each ag compute (lj‘; ‘). Cumulate these numbers, and when done with all ag€F, we have the number of

all X, F-singletons.

The computer program calculates for a given | X | Erdés’s number of G x p for all possible families
F' in lexicographical order starting with the complete family F. Note that when F' is compelte every
subset of 4 vertices is a 4-clique, and no subset of 4 vertices is a 4-clique in the complement of any graph
“blown up” from Gx r. Hence Erdos’s number of such a sequence must be 32. This can be used as one
of criteria to test the credibility of the computer program. Also it is easy to verify by hand the number
of F-singletons. For small X, even the number of F-pairs can be computed by hand. For the case of | X|
= 4 the complete generation of F-triples was checked by hand. All these tests were performed to our
satisfaction and so our confidence in the program’s results is high. The programs outputs the results of
its calculations only when a new minimal value of Erdés’s number is found. In the appendix the outputs
for | X| =9, 10, 11, 12, 13 are presented. The results for |X| < 10 are not interesting as they do not
lead to counterexamples to the conjecture. We also computed all configurations for |X| = 14, but the
number of configurations with Erdés’s number less than 1 is too big to reproduce it here, but the least

one obtained is 0.993069 .
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