tr_lisp.asc Page 1

McESE- FranzLl SP: McMASTER EXPERT SYSTEM EXTENSI ON OF FranzL| SP

F. Franek

Techni cal Report no TR-22/88
Depart ment of Conputer Science and Systens

McMast er University 1988
McESE- FranzLl SP: McMASTER EXPERT SYSTEM EXTENSI ON OF FranzLl SP

F. Franek 1)
Dept. of Conmp. Sci. & Systens
McMast er University
Ham I ton, Ontario
L8S 4Kl Canada
TABLE OF CONTENTS:
(1) | NTRODUCTI ON.
(2) HOWTO MAKE McESE SOFTWARE AN | NTEGRAL PART OF FranzlLl SP.
(3) HOWTO MAKE McESE COWPI LED KNOALEDGE BASES PART OF FranzlLl SP.

(4) MESE-FranzLl SP SYSTEM BEHAVI OUR.

tr_lisp.asc
(5) CONCLUSI ON

APPENDI X: | ndex of MESE- FranzLI| SP functi ons;
Description of individual functions.

REFERENCES.

Acknowl edgenent :

1) Research supported by SERB 5-26397 and NSERC OGP0025112 research
grants.
ABSTRACT

McESE - McMaster Expert System Environment is a software
tool designed to help create problemspecific shells
with inmprecise and inconplete know edge, and fast and
conpact expert systens applications in a particular
progranmm ng |anguage. This is achieved by "extending"
the programm ng | anguage with a set of comands al |l owi ng
comuni cation with MESE know edge bases and MESE
special software (see [FB], or [FB1]). 1In this paper
i mpl ement ati onal details of FranzLl SP extension (called
McESE- FranzLI SP) are presented and di scussed.

(1) | NTRODUCTI ON.

As described in [FB] and [FB1], MESE is a progranm ng
environnent for building of expert systens. Its mamin features
include the ability to specify the way of handling uncertainty for
the whol e knowl edge base, or for each rule separately, to utilize
conpiled rule-formknow edge bases for fast inferring, and the
ability to build the expert systemin a particular progranm ng
| anguage. The software of McESE is witten in the programm ng
| anguage C for two reasons; conpact code that leads to fast
execution, and the ability to program in C lowlevel tasks
efficiently enough. In this paper the extension of FranzLISP is
descri bed and di scussed. Fromnow on we nmay use termlisp instead
of FranzLISP for the sake of brevity.

The task of extending FranzLI SP to MESE- FranzLl SP consi st ed
of two mmjor tasks:

- to nwake the software of McESE witten in C an integral part
of the lisp systemwith sufficient conmunication between
McESE software and lisp systemw thout disturbing the |lisp
systemtoo nuch and without a need of extensive re-witing of
the existing McESE software. |t nust be ensured that any of

Page 2

tr_lisp.asc

the C functions of MESE required can be invoked from wthin
lisp, and conversely, any lisp function, be it built-in or
user defined, interpreted or conpiled, can be invoked from
within the C functions;

- to nake the non-lisp data structure of conpiled know edge
base (we shall call it know edge tree in accordance with [FB]
and [FBl]) an integral part of lisp system accessible from
within lisp, but protected fromlisp's garbage collector as
| ong as needed.

O course, there were sone other problenms to be resolved as
well, e.g. howto sinplify invocation of McESE, how to protect the
conponents of MESE fromthe user and so on

(2) HOWTO MAKE McESE SOFTWARE AN | NTEGRAL PART OF FranzLl SP.

Since the kernel of FranzLISP in UNIX is witten in C, the
major lisp function eval can be directly invoked from any C
program | oaded into the lisp system To speed up the |oading of
McESE software into the lisp system the whole McESE system is
first conpiled as a single source file, and then |oaded into the
lisp system wusing lisp built-in function cfasl. «cfasl in fact
works as a dynanmic on-line |oader and so only one linking to the
lisp systemis necessary (the required C functions nay be | oaded
one at a time, but then many linkings are required slowing down
the whol e procedure). The individual C functions needed are then
nmade available to the lisp system (in fact made into |isp objects)
using lisp built-in function getaddress:

(cfasl '/uO/rsch/ntese/lisp/nteses.o ' _conpiler 'f_ 100 "c-function")

(getaddress ' _getsizekbtree 'f__101 "c-function")
(getaddress ' | oadkbtree 'f_ 102 "c-function")

(getaddress " helpcop 'f__ 118 "c-function")

Any of the specified C function (e.q. conpi l er, or
get si zekbtree) are now integral part of the Iisp systemand can be
i nvoked fromwithin any lisp function (e.g. conpiler is known in
the lisp system as f__ 100, while getsizekbtree is known as
f_101). The values they returned are formatted by the |isp system
into |isp val ues.

A nore conplicated problemwas the problem of invocation of
arbitrary lisp functions fromw thin C functions.

First, there was the need of invocation of cvpf's (witten in
lisp) fromwithin the inference engine (witten in C. Cvpf's nust
have fl onum argunents, and nust return a flonum (see [FB], [FB1]).
A special C function invokel provides the service. Wen MESE
system is |loaded into the |isp system a global symbol f_ 1 is
bound to the list (eval (fake addr0)) where addrO is the address
of lisp function f__12. The C function invokel is passed f__1 as

an argunent, invokel evaluates f_ 1 using eval, and that invokes
f__12 which creates and returns a |ist

(eval (list (fake addrl) flonum... flonun)) back to invokel
i nvokel pops froma special stack address of the desired 1ips

function and inserts it into the list as addrl, then it pops from
the special stack one be one all (flonum and hence double in Q)
argunents and inserts theminto the list instead of flonuns

Finally, invokel termnates the list where needed. The last step
i nvol ves evaluating the list using eval, which in fact invokes the

Page 3

tr_lisp.asc

required lisp function with the specified argunents. The result of
the invocation (again a flonum and so double in C) is returned to
i nvokel. Wen a lisp function is to be invoked froma C function

the address of that function and its argunents are pushed on the
special stack, and invokel(f_ 1) is called, invokel in turns
i nvokes the required lisp function (as described above) and passes
the value returned by the lisp function into the C function

Second, there was the need of invocation of predicate service
procedures (witten in lisp) fromwithin the inference engine
(witten in Q). Predicate service procedures nmay have any
argunments, but nust return a flonum (see [FB], [FB1]). A special C
function invoke3 provides the service. Wien MESE systemis | oaded
into the lisp system a global synmbol f 3 is bound to the [list

(eval (fake addr0Q)) where addrO is the address of 1lisp function
f 32. The C function invoke3 is passed f 3 as an argunent,
i nvoke3 evaluates f__3 using eval, and that invokes f_32 which
creates and returns a |ist

(eval (list (fake addrl) (fake addr) ... (fake addr))) back to
i nvoke3. invoke3 pops froma special stack address of the desired

lips function and inserts it into the list as addrl, then it pops
from the special stack one be one addresses of all argunents and
inserts theminto the list instead of addr's. Finally, invoke3
termnates the Ilist where needed. The last step i nvol ves
evaluating the list using eval, which in fact invokes the required
lisp function wth the specified argunents. The result of the
i nvocation (a flonum and so double in C) is returned to i nvoke3.

Wen a lisp functionis to be invoked from a C function, the
address of that function and its arguments are pushed on the
special stack, and invoke3(f_ 3) is called, invoke3 in turns

i nvokes the required lisp function (as described above) and passes
the value returned by the lisp function into the C function

Third, the explanation conponent of MESE i nference engine
required to obtain in the formof a Cstring the lisp print form
of objects used for the particular inference (see [FB], [FB1]).
i nvoke7 provides the service. Wien MESE systemis |oaded into the
lisp systema global synbol f 7 is bound to the |ist
(get _pnane (nmaknam (expl ode (fake addr)))))), invoke7(f__7) pops
the address of the object froma special stack, then using eva
evaluates f__7 which returns the desired string.

Any other communication between |isp and MESE prograns,
e.g. as in nctese:open function where the |lisp code provides to the
C code addresses of required cvpf's and predicate service
procedures, is facilitate be list created and interned in the |isp
system passed to the C coded, and either used or nodified by the
C code and then passed back to the lisp system This kind of
conmuni cation allows the full range necessary and does not intrude
upon lisp at all. Gven the fact that FranzLISP's kernel is
witten in C, had nore technical and inplenmentational details of
FranzLl SP been available, we could have nodified our C code to
extend the original kernel directly. This approach did not seem
appropriate for the actual different inplenentations on different
machines may differ, and for to much of intrusion to the system
The nmeans we opted for instead do slow the execution a bit (which
is not of such a crucial inmportance given the slow execution of
[isp in general) but allow for extension of |isp independent from
the inplenmentational details of FranzLISP' s kernel

(3) HOWTO MAKE McESE COWVPlI LED KNOW.EDGE BASES PART CF FranzLl SP.

When MESE conpil er parses and conpiles a RSET (see [FB],
[FB1]), it all takes place within a single call of the C function

Page 4

tr_lisp.asc Page 5

conpiler. Thus all space required is "malloced" in the C program
and the whol e know edge tree built there. Wen finish, compiler
records the know edge tree in a disk file. The space wused is
"freed" and control returned back to the Iisp system This poses
no problens as far as nenory nmanagenent. A nore conplicated
situation arises when this conpiled know edge tree is to be | oaded
to main nenmory fromdisk. It must stay in the lisp systemas |ong
as the wuser desires while sone other Cand |isp functions are
executed. Since the garbage collector of FranzLISP is invoked
automatical ly when the system has not enough nenory avail able, the
know edge tree nust be protected against it. It nust also be
protected against intrusion by any other function of the system
On top of it, when the user does not need the know edge tree any
longer, the nenory it takes must be nmade available to the system
agai n. These requirenents were satisfied by "storing" t he
know edge tree within a lisp data structure, so-called inmediate
vector. The C code for |oader had to be altered slightly and

partitioned into two separate functions. The first one,
getsi zekbtree, returns to the lisp system the size of the
know edge tree to be |loaded (this information is stored in the
disk file containing the know edge tree). Then the |lisp system

creates an inmmedi ate vector of the required size and binds it to
rsetid (rset id). The address of the imrediate vector is then
passed to the C programwhich |oads the knowl edge tree there
absolutizing all address links in the tree (see [FB], [FB1]).
Since immediate vectors carry binary data, there is no problem
with the "contents" being the know edge tree. As long as this
i medi ate vector is bound to the rsetid, the systenms considers it
active and hence it is protected fromthe garbage collector as

well as all lisp functions. Since the rsetid synbolic nane is of
the form f__ RSETID# (# stands for a nunber), and synbols
beginning with f __ are not available to the user, the 1likelihood

of the user intruding upon the know edge tree is rather slim as
he has no know edge of the address of the i mediate vector. On the
other hand, when the know edge tree is unloaded, the rsetid is
unbound (and renoved fromoblist), and so the inmediate vector
storing the know edge tree is not considered active by the system
and hence it is for grabs by garbage collector. Fromthe point of
view of the inference engine and other conponents of MESE
accessing the know edge tree, all they need to know is the
beginning of the tree and correct address links within the tree.
Thus the fact that the know edge tree is inside a I|isp object
matters not to them

(4) MESE-FranzLl SP SYSTEM BEHAVI OUR

To invoke ntese system first invoke FranzLISP from UN X
level by typing lisp'. Wen in the FranzLlI SP system load in the
ntese system by typing (load 'ntese). 1In a few seconds the system
is | oaded and ntese pronpt ntese>> wll occur

maccs 1 > lisp

Franz Lisp, Opus 38.92

-> (load 'ntese)

[load /usr/lib/lisp/ntese]

[load /uO/rsch/ ntese/lisp/ ntese.]

[fasl /uO/rsch/ ntese/lisp/ ntesel. 0]

[fasl /uO/rsch/ ntese/lisp/ ntese2. 0]

fusr/lib/lisp/nld -N -x -A /usr/ucb/lisp -T b3a00 /u0O/rsch/ ntese/
|isp/nteses.o -e _conpiler -o /tnp/Li27513.0 -lc

[MCESE- FranzLi sp version 1.3 - 1988 | oaded]

*** nrese: please, do not use synbols containing f__
(such nanmes are reserved for ntese system

tr_lisp.asc

*** nrese: please, do not put files with nanes ntese, ntese.
and ntese.o in your directory (these are load files
for ntese system

ncese>>

To nake the |oading of MCESE as sinple as possible, the
default directory /usr/lib/lisp is used: the file ntese consists
of a single load instruction specifying what should be | oaded and
where it is. Thus the file /uO/rsch/ntese/lisp/ntese.l is |oaded.
It contains definition of the newtop Ievel and so is not conpiled
(when conpiled it caused sone erratic troubles). It also contains
| oad instructions for /uO/rsch/ntese/lisp/ntesel.o file, whichis
file with all lisp functions of the MCESE system (they nainly
consi sts of |isp code surrounding C functions checking correctness
of argunents and interpreting the results). For faster execution
these are compiled. It is followed by load instructions for
/u0/ rsch/ncese/lisp/ncese2.0 file, which contains all instruction
for | oading MCESE C software into the system

At this monent both, FranzLISP and MESE functions are
fully accessible at all levels of the system Thus:

ncese>> (plus 2 3)
ncese>>

Since all data structures and functions of MESE have nanes
starting with f__, synbols (or strings) containing f__ are not
avail able to the user:

ncese>> f__ 1

*** nrese error: using forbidden synbol f_
f_ 1
ncese>> (print "abc f__wt")

*** nrese error: using forbidden synbol f_
(print "abcf _wt")

There are, of course, ways how to fool the systemand get an
access to f__ objects, but it is hard to do so accidentally. This
all is achieved by redefining the top level of the lisp system
The new top level includes the checking for f__ synbols. The
system returns automatically back to this top level even from
| ower | evels when (reset) is used.

ntese>> (nctese: conp 'nedrset 'nmedrset. comp)
t

The above function ntese:conp successfully conpiled (t was
returned) rset called nmedrset and the conpiled know edge tree was
stored in a disk file called nedrset.conp . An input tracing as
wel | as supression of error recovery may be specified.

ntese>> (nctese: | oad 'nedrset. conp)
f _RSETIDO

The above function ntese:load successfully | oaded the know edge
tree from 'nedrset.conmp file to the lisp system The rset id
f RSETIDO was returned.

ntese>> (setq x (ntese:last-|oad))

Page 6

tr_lisp.asc
f __ RSETI DO

The above function ntese:last-load returns rset id of the rset
nost recently loaded into the lisp system

ncese>> (nctese:rsetidp x)
t

The above function ntese:rsetidp tests if its arguments is a rset
id of an active know edge tree.

The following function ntese:disconp disconpiles the | oaded
know edge tree, displays it on screen, plus sone vital statistics
about the know edge tree:

ncese>> (nctese: di sconp x)

*** di sconp: DI SCOWPI LE of COWPI LED RSET

rule medl:
pain_in_throat &

.9 * hardship_to swallow &
.4 * noisy_and mouth_breathing &
.6 * headache &
.3 * fever &
.3 * cough

==>
sore_t hroat

rule med2:
.8 * fever &
.6 * headache &
pain_in_throat &
.7 * hardship_to swallow &
.6 * spotted throat &
.2 * vomiting &
rash

-- nmore --

==>
strep_throat _wash

rule med3:
.8 * fever &
.6 * headache &
pain_in_throat &
.7 * hardship_to swallow &
.6 * spotted throat &
.2 * vomiting &
.3 * abdominal _pain &
.8 * ~rash

==>
strep_throat worash

rule med4:
noi sy_and_nouth_breathing &
pain_in_throat &
fever &
.8 * hardship_to swallow &
~sore_throat &
~strep_throat_wash &
~strep_t hroat _worash

-- nmore --

==>

tonsillitis

Page 7

tr_lisp.asc

rule ned5:

strep_throat_wash &
strep_throat worash

== max ==>

strep_throat

rule ned6:
tonsillitis
sore_t hroat

strep_throat

== max ==>

&
&

throat _trouble [>= .6]

rule ned7:

~t hroat _troubl e

ot her _di seases

rule ned8:
vomting &
-- nore --

abdomi nal _pai n

headache
== ff1l1 ==>

ot her _di seases

&

*** di sconp: RSET statistics foll ows:

[evel 0 chain:

next pred on |evel
next pred on |evel
next pred on |evel
next pred on |evel
next pred on |evel
next pred on |evel
next pred on |evel
next pred on |evel
next pred on |evel
next pred on |evel

[evel 1 chain:
next pred on |evel
next pred on |evel
next pred on |evel
-- nmore --

[evel 2 chain:
next pred on |evel
next pred on |evel

l evel 3 chain:
next pred on |evel

| evel 4 chain:
next pred on |evel

pred abdomi nal _pai
occurs in LHS
occurs in LHS

pred cough:
occurs in LHS

eeeeeeeeee

o el

4:

n:
of
of

of

pain_in_throat (address not know yet)

hardshi p_to_swal | ow (address not know yet)

noi sy_and_nout h_breat hi ng (address not know yet)
headache (address not know yet)

fever (address not know yet)
cough (address not know yet)

spotted throat (address not know yet)
vom ting (address not know yet)

rash (address not know yet)

abdom nal _pain (address not know yet)

sore_t hroat
strep_throat _wash
strep_throat worash

tonsillitis
strep_throat

throat trouble

ot her _di seases

rule med3
rule nmed8

rul e medl

Page 8

tr_lisp.asc Page 9

pred fever:
occurs in LHS of rule nedl
occurs in LHS of rule ned2
occurs in LHS of rule ned3
-- nore --
occurs in LHS of rule ned4

pred hardship_to_swal | ow
occurs in LHS of rule nedl
occurs in LHS of rule ned2
occurs in LHS of rule ned3
occurs in LHS of rule ned4

pred headache:
occurs in LHS of rule nedl
occurs in LHS of rule ned2
occurs in LHS of rule ned3
occurs in LHS of rule ned8

pred noi sy _and_nout h_breat hi ng:
occurs in LHS of rule nedl
occurs in LHS of rule ned4

pred ot her di seases:
occurs in RHS of rule ned7
occurs in RHS of rule ned8

pred pain_in_throat:

-- nore --
occurs in LHS of rule nedl
occurs in LHS of rule ned2
occurs in LHS of rule ned3
occurs in LHS of rule ned4

pred rash:
occurs in LHS of rule ned2
occurs in LHS of rule ned3

pred sore_throat:
occurs in LHS of rule ned4
occurs in LHS of rule ned6
occurs in RHS of rule nedl

pred spotted throat:
occurs in LHS of rule ned2
occurs in LHS of rule ned3

pred strep_throat:
occurs in LHS of rule ned6
occurs in RHS of rule nedb

pred strep_throat_ worash:

-- nore --
occurs in LHS of rule ned4
occurs in LHS of rule neds
occurs in RHS of rule ned3

pred strep_throat w ash:
occurs in LHS of rule ned4
occurs in LHS of rule neds
occurs in RHS of rule ned2

pred throat trouble:

tr_lisp.asc

occurs in LHS of rule nmed7
occurs in RHS of rule ned6

pred tonsillitis:
occurs in LHS of rule ned6
occurs in RHS of rule ned4

pred vom ting:
occurs in LHS of rule ned2
occurs in LHS of rule ned3
occurs in LHS of rule ned8

rule nedl uses built-in CVPF weighted cumnul ati ve evi dence
-- nore --

rule med2 uses built-
rule med3 uses built-
rule med4 uses built-
rule med5 uses built-
rule med6 uses built-
rule med7 uses built-
rule med8 uses CVPF ff1l

CVPF wei ghted curul ati ve evi dence
CVPF wei ghted curul ati ve evi dence
CVPF wei ghted curul ati ve evi dence
CVPF max
CVPF max
CVPF wei ghted curul ati ve evi dence

5 33353335

function ffl has 3 argunments (address not known yet)
t

Since the above "di sconpil ed" code can be stored in a disk
file instead of being displayed on the screen, ntese:disconp
provides a convenient neans to reconstruct a RSET from the
conpil ed version of it if need be.

The following function ntese:unl oad rel eases the space taken
by the conpiled RSET, note that after unloading ntese:last-I|oad
i ndicate that there are no nore | oaded conpiled RSET's in the |isp
system

ntese>> (nctese: unl oad Xx)
t
nctese>> (nctese: | ast-| oad)
ni

The foll owing function ntese: open | oads a conpiled RSET from
the specified disk file to the lisp system(or if an rsetid is
used instead it knows not to load it), then it loads the (user
speci fi ed) correspondi ng FSET, and provides all addr esses
necessary for the conplete know edge tree. |If all proceeded
correctly, a kbid (know edge base id) of the form f_KBID# is
ret ur ned:

ntese>> (setq x (ntese:open 'nedrset.conp 'nmedfset))
[1 oad nedfset]
f__KBI DO

The follow ng function ntese:last-open returns kbid of the
know edge tree opened nost recently:

nctese>> (nctese: | ast-open)
f__KBI DO

The foll owi ng function ntese: kbidp checks if its argunent is
a kbid of an active know edge tree:

nctese>> (nctese: kbi dp x)
t

Page 10

tr_lisp.asc

The function ntese:display is |like ntese:disconmp, only it
shows the addresses in the vital statistics part:

nctese>> (nctese: display x)
*** di sconp: DI SCOWPI LE of COWPI LED RSET

rule medl:
pain_in_throat &

*** di sconp: RSET statistics foll ows:

| evel 0 chain:
next pred on level 0: pain_in_throat (address: 667356)
next pred on level 0: hardship to swallow (address: 667416)

rul e med8 uses CVPF ffl

function ffl has 3 argunments (address: 666944)
t

The following functions ncese: show i nc (nctese:set-inc
respectively) returns the inconsistency |level tolerance (sets the
i nconsi stency level tolerance to the given value respectively) of
the specified know edge base:

nctese>> (nctese: showinc x)
1.0

ntese>> (nctese:set-inc x .7)
t

nctese>> (nctese: showinc x)
0.7

The followi ng functions ntese:show alarm (ntese:set-alarm
respectively) returns the synbolic nane of the alarm function
(sets the synbolic nane of the alarmfunction to the given nane
respectively) of the specified know edge base:

ntese>> (nctese: show al arm x)
ni
ntese>> (nctese:set-alarmx 'foo)

*** nrese:set-alarm synbol >>foo<< not bound to a function
ni

ncese>> (defun foo ())

foo

ntese>> (nctese:set-alarmx 'foo)
t

nctese>> (nctese: show al arm x)

foo

nctese>> (nctese: set-al arm x)

t

nctese>> (nctese: show al arm x)

ni

The following function ntese:nmaxinfer-trace evaluates in
backward chai ni ng node the predicate other _diseases. The inference
is executed in tracing node and hence displayed on the screen step

Page 11

tr_lisp.asc
by step:
ntese>> (nctese: maxi nfer-trace x 'other_di seases)

is the child s breathing noisy, or does he breath through nmouth? .3
*** jnfer: level O predicate >>noi sy_and_nouth_breat hi ng<< evaluated to .3

does the child have sore throat? 1
*** jnfer: level O predicate >>pain_in _throat<< evaluated to 1

does the child have a fever? 1
*** jnfer: level O predicate >>fever<< evaluated to 1

does the child has troubles to swallow? .7

*** jnfer: level O predicate >>hardship to swallow< evaluated to .7

nfer: value of predicate >>pain_in_throat<< used as has been

nfer: value of predicate >>hardship to swall ow< used as has been

nfer: value of predicate >>noi sy _and_nout h_breat hi ng<< used as has been

* k%
* k%

* k%

does the child have a headache? 1
*** jnfer: level O predicate >>headache<< evaluated to 1
nfer: value of predicate >>fever<< used as has been

* k%

does the child have a cough? .7
*** jnfer: level O predicate >>cough<< evaluated to .7
nfer: predicate >>sore_throat<< evaluated via rule >>nmedl<< to
mn = .81714, nmax = .81714
nfer: predicate >>sore_t hroat << eval uation
mn = .81714 via rule >>nmedl<<
max = .81714 via rule >>nmedl<<
nfer: value of predicate >>fever<< used as has been
nfer: value of predicate >>headache<< used as has been
nfer: value of predicate >>pain_in_throat<< used as has been
nfer: value of predicate >>hardship to swall ow< used as has been

* k%

* k%

* k% |
* k% |
* k% |
* k% |
does the child have spots in his throat? .5

*** jnfer: level O predicate >>spotted throat<< evaluated to .5

has the child vonited? O
*** jnfer: level O predicate >>voniting<< evaluated to O

does the child have a rash? 0
*** jnfer: level O predicate >>rash<< evaluated to O
*** jnfer: predicate >>strep_throat_wash<< evaluated via rule >>ned2<< to
-- nmore --
mn = .65102, max = .65102

*** jnfer: predicate >>strep_throat_wash<< eval uation

mn = .65102 via rule >>ned2<<

max = . 65102 via rule >>ned2<<
nfer: value of predicate >>fever<< used as has been
nfer: value of predicate >>headache<< used as has been
nfer: value of predicate >>pain_in_throat<< used as has been

* k% |
i
i
*** jnfer: value of predicate >>hardship_to _swal |l owk< used as has been
i
i

*k *
*k *

*** jnfer: value of predicate >>spotted throat<< used as has been
*** jnfer: value of predicate >>voniting<< used as has been
does the child have an abdom nal pain? .2
*** jnfer: level O predicate >>abdoni nal pai n<< evaluated to .2
nfer: value of predicate >>rash<< used as has been
nfer: predicate >>strep_throat_worash<< evaluated via rule >>med3<< to
mn=.81 max = .81
nfer: predicate >>strep_throat worash<< eval uation
m n .81 via rule >>nmed3<<
max .81 via rule >>nmed3<<

* k%

* k%

* k%

Page 12

tr_lisp.asc Page 13

*** jnfer: predicate >>tonsillitis<< evaluated via rule >>nmed4<< to
mn = .52674, max = .52674

*** infer: predicate >>tonsillitis<< evaluation
mn = .52674 via rule >>ned4<<
max = .52674 via rule >>ned4<<

*** jnfer: value of predicate >>sore_throat<< used as has been

-- nore --

* k%

nfer: value of predicate >>strep _throat _wash<< used as has been
nfer: value of predicate >>strep_throat worash<< used as has been
nfer: predicate >>strep_throat<< evaluated via rule >>nmedb<< to

* k%

* k%

mn=.81 max = .81

*** jnfer: predicate >>strep_throat<< eval uation
mn = .81 via rul e >>nmedb<<
max = .81 via rule >>nmedb<<

* k%

nfer: predicate >>throat_troubl e<< evaluated via rule >>nmed6<< to
mn=1 mx =1
nfer: predicate >>throat_troubl e<< eval uation
mn =1 via rule >>nmed6<<
max = 1 via rule >>med6<<
nfer: predicate >>ot her_di seases<< evaluated via rule >>nmed7<< to
mn=20, mx =0
nfer: value of predicate >>vomting<< used as has been
nfer: value of predicate >>abdom nal pai n<< used as has been
nfer: value of predicate >>headache<< used as has been
nfer: predicate >>ot her_di seases<< evaluated via rule >>nmed8<< to
mn=.4, mx = .4
nfer: predicate >>ot her_di seases<< eval uation
mn 0 via rule >>nmed7<<
max .4 via rule >>med8<<

* k%

* k%

* k%
* k *
* k%

* k%

* k%

0.4
The foll owi ng function ntese: explain displays the informtion
how the max (or min) evaluation of the given predicate was
obtai ned during the last inference cycle.
ntese>> (nctese:explain 'sore throat 'max)
max val ue .81714 for predicate >>sore_throat<< was obtained via rule >>nmedl<<

rule medl:
pain_in_throat &
*

.9 hardship_to _swallow &

.4 * noisy_and mouth_breathing &
.6 * headache &

.3 * fever &

.3 * cough

sore_t hroat

max value 1 of LHS predicate >>pain_in_throat<< used
1 is the value of the corresponding LHS term
max value .7 of LHS predicate >>hardship to swall ow<< used
.63 is the value of the corresponding LHS term
max val ue .3 of LHS predicate >>noi sy_and_nout h_breat hi ng<< used
.12 is the value of the corresponding LHS term
max value 1 of LHS predicate >>headache<< used
.6 is the value of the corresponding LHS term
max value 1 of LHS predicate >>fever<< used
-- nmore --
.3 is the value of the corresponding LHS term
max value .7 of LHS predicate >>cough<< used
.21 is the value of the corresponding LHS term
certainty value of LHS

tr_lisp.asc

(as the weighted curul ative evidence of the LHS values) is .81714
RHS predicate >>sore_throat<< was evaluated to .81714

ni

The follow ng function nctese:eval returns (sorted) list of
certainty values obtained in the last inference cycle for the
specified list of predicates:

ntese>> (ntese:eval '(sore_throat strep throat tonsillitis) 'max)

((sore_throat 0.81714) (strep_throat 0.81) (tonsillitis 0.52674))

The on-line help is facilitated by the function ntese: help
which allows to brows through the help file and/or copy the whole
help file to the users home directory:

ntese>> (nctese: hel p)

*** nrese:help (1) enter 'v' to viewthe help file
(2) enter '"c' to copy the help file to your directory
(3) enter '"b' to view and copy
(4) enter '"q to quit

—+ O

The followi ng functions ntese:close closes the specified
know edge base, unloading its conpiled RSET fromthe |lisp system
The functions fromFSET remains in the system They could be
renoved fromoblist one by one, but it is a rather slow process,
so we opted for leaving themthere. The future use of MESE-
FranzLI SP wi Il deci de whether we have to add the renoval of FSET
to the capabilities of ntese:cl ose:

nctese>> (nctese: cl ose x)

t

ncese>> x

f__KBI DO

nctese>> (nctese: kbi dp x)
ni

ncese>> (nctese: | ast-open)
ni

To | eave the McESE system just use lisp function (exit):

nctese>> (exit)
maccs 2 >

(5) CONCLUSI ON

The MESE-FranzLISP is the FranzLl SP extension by the MESE
system It provides alnost full range of McESE capabilities as
described in [FB], [FBl1l] (the forward chai ning and the editor for
simultaneous editing of a rule and its cvpf are not inplenented
yet, but will be very soon). Mdreover, MESE-FranzLIlSP provides
three built-in cvptf; the weighted cumulative evidence (which
returns the sumof all certainty values of the LHS divided by the
sum of all weights (see [FB], [FBl]), the max (which returns the
maxi mal of all certainty values of the LHS terns), and the nin
(which returns the mininmumof all certainty values of the LHS
terns). The systemis being currently used in the fourth year CS
course at McMaster University Architecture of Expert Systens, and
its graduate version. The systemsatisfies its goals well and can

Page 14

tr_lisp.asc

be a valuable addition to the repertoire of know edge engineers,
mainly for the ability to nake fast prototypes in MESE-FranzLI SP
with a |ow overhead costs before the expert systemis built in a
faster and nore conpact |anguage (as in McESE-C) utilizing the
same McESE knowl edge bases as the prototype i n MCESE-FranzLl SP

APPENDI X
| ndex of MESE- FanzL| SP functions

(ntese: cl ose ' _kbid)

(ntese:conp ' _rset [' _conp] ['_intrace] [' _errorec])
(ntese: disconp ' _rset [' _out])
(ntese:display ' kb [' _out])
(nctese:eval [' _kbid] ' _predlist ' _type)
(ntese:explain [' _kbid] ' _pred ' _type)
(ntese: hel p)

(ncese: kbidp ' _kbid)

(ntese: | ast -1 oad)

(nctese: | ast-open)

(ntese:load ' _rset)

(ntese: maxinfer [' _kbid] ' _pred ' _objectl ' _objectn)
(ntese: maxinfer-trace [' _kbid] ' _pred ' _objectl ' _objectn)
(ncese:mninfer [' _kbid] ' _pred ' _objectl ' _objectn)
(nctese:mninfer-trace [_kbid] ' _pred ' _objectl ' _objectn)

(ntese:open ' rset [' fset])
(ntese:rsetidp ' _rsetid)

(ntese: showal arm ' _kbi d)

(ntese: showinc ' _kbid)
(ntese: show i nconsi stency ' _kbi d)

(ntese:set-alarm' _kbid ' _func)

(ncese:set-inc' _kbid '_inc)

(ntese: set-inconsistency ' _kbid ' _inc)

(ncese: sufmaxi nfer [' _kbid] ' _cutoff ' _pred ' _objectl ' objectn)
(ntese: suf maxi nfer-trace [' _kbid] ' _cutoff ' pred ' _objectl ' _objectn)
(ncese:sufmninfer [' _kbid] ' _cutoff ' _pred ' _objectl ' objectn)
(ntese:sufmninfer-trace ['_kbid] ' _cutoff ' pred ' _objectl ' _objectn)
(readf)

(readi)

(reads)

(ntese: unload ' _rsetid)
Description of individual functions
(ntese: cl ose ' _kbid)

returns: nil and displays error nmessages if errors have occurred, otherw se
t is returned.

side effects: none.
action: the argunment nust evaluate to a valid kbid. The know edge base
_kbid is closed (i.e. _kbid is not a valid kbid any nore), its rule set

is "unl oaded" from nmenory. The know edge base cannot be used agai n unl ess
opened anew.

(nctese:conp ' _rset [' _conp] ['_intrace] [' _errorec])

returns: nil and displays error nmessages if errors have occurred. O herw se
t is returned.

Page 15

tr_lisp.asc

side effects: none.

action: the first argunent (supplied for _rset) nust evaluate to a nane. The
second argunent nust evaluate to a nane (and it is supplied for _conmp), or the
second argument nust evaluate to either 0 or 1 (and then it is supplied for
_intrace). The third argument nust evaluate to either 0 or 1; if the second
argunent was _conp, the third argunment is supplied for _intrace; if the second
argunent was _intrace, the third argunent is supplied for _errorec. The fourth
argunent nust evaluate to either 0 or 1 and is supplied for _errorec.

rset is the nanme of a source rule set file

I'f specified, _comp is the name of a file the conpiled _rset should be put in

If specified, _intrace is the input trace indicator. If 1, ncese: conp

will display the input from _rset on the screen as the parsing and conpiling
of _rset progresses, if 0, the display of the input from rset is suppressed.
Default value is O.

If specified, _errerec is the error recovery indicator. If 1, ntese:sonp

wi Il continue conpiling even after an error was found, if 0, after the first
error ntese: conp stops. Default value is 1

(ntese: disconp ' _rset [' _out])

returns: returns nil and displays error nessages if errors have occurred;
i f successful ntese: di sconp returns t.

side effects: none.

action: the value of the first argunent nust be a valid rsetid . The

val ue of the second (optional) argunment nmust be a nane of a file. If only
one argument is specified, ntese: di sconp prints on the screen the
contents and statistics of rset. |In case the second argurment is specified,
the contents and the statistics of rset is printed into the output file
specified by the value of the second argunent.

(ntese:display ' kb [' _out])

returns: returns nil and displays error nessages if errors have occurred;
i f successful ntese: di spl ay returns t.

side effects: none.

action: the value of the first argunent nmust be a valid kbid. The val ue

of the second (optional) argunment nust be a nane of a file. If only one
argunent is specified, ntese: di spl ay prints on the screen the contents
and statistics of the know edge base kbid. In case the second argunent

is specified, the contents and the statistics of the know edge base _kbid
is printed into the output file specified by the value of the second

ar gurent .

(nctese:eval ['_kbid] ' _predlist ' _type)

returns: nil and displays error nmessages if errors have occurred. A sorted
list of predicates and their values if successful.

side effects: none.

action: the first argunent nust evaluate to a valid kbid (and then it is
supplied for _kbid), or to a list (and then the | ast opened know edge base

Page 16

tr_lisp.asc

is supplied for _kbid and the first argunment is supplied for _predlist).

If the first argunment was _kbid, the second argunment nust evaluate to a

list and is supplied for _predlist. The |last argunent nust evaluate either

to max or mn, and is supplied for _type. The _predlist nust be a list

of predicate nanes. The list of lists (_predicate value) {where value is
the max (or min respectively) value of predicate as inferred during the |ast
i nference with the know edge base _kbid} is then returned, sorted according
the values (in a descending order).

(ntese:explain [' _kbid] ' _pred ' _type)

returns: nil and displays error nmessages if errors have occurred, otherw se
t is returned.

side effects: none.

action: if only two argunments are specified, it is assumed that the |ast
opened know edge base is used (and supplied for _kbid); the first argunent
(supplied for _pred) mnmust then evaluate to a name (synbol), the second
argunent (supplied for _type) nust evaluate to max or mnmin. If three
argunents are specified, the first one (supplied for _kbid) must eval uate
to a valid kbid, the second (supplied for pred) to a synbol, the third
(supplied for _type) to max or mnmin. The explanation how the nax (or mn

respectively) value of the predicate pred was obtained during the | ast
i nference with the know edge base _kbid is then displayed on the screen

(ntese: hel p)

returns: nil and displays error nmessages if errors have occurred, otherw se
t is returned.

side effects: none.

action: a nmenu of options is displayed, and the help file is either viewed,
copi ed, or both.

(ntese: kbidp ' _kbid)

returns: t if the value of the argunent is a valid kbid, otherwise nil is
ret ur ned.

side effects: none.

action: none.

(ntese: | ast -1 oad)

returns: rsetid of the nost recent rule set |oaded, or nil (if none |oaded).
side effects: none.

action: none.

(nctese: | ast - open)

Page 17

tr_lisp.asc

returns: kbid of the nobst recent know edge base opened, or nil (if none
opened) .

side effects: none.

acti on: none.

(ntese:load ' _rset)

returns: returns nil and displays error nessages if errors have occurred;
i f successful ntese:load returns an rsetid.

side effects: none.

action: nctese:load opens a file whose nanme is the value of the argunent, it
is assuned to contain a conpiled ntese rule set (as produced by ntese: conp).
This compiled rule set is then | oaded into menory and a valid rsetid
identifying it is returned.

(ntese: maxinfer [' _kbid] ' _pred ' _objectl ' _objectn)

i ke ntese: maxi nfer-trace w thout tracing.

(ntese: maxi nfer-trace [' _kbid] ' _pred ' _objectl ' _objectn)
returns: nil and displays error nmessages if errors have occurred. O herw se

a flonum between 0 and 1 (inclusive) or -1.0 is returned.
side effects: none.

action: the first argunent nust evaluate either to a valid kbid (and then it
is supplied for _kbid), or to a nanme (and the it is supplied for _pred).

In case the first argunent is pred, the |ast opened know edge base is
supplied for _kbid. Argunents following pred are assuned to be |isp objects
to be bound to variables of the predicate pred. Backward chai ni ng eval uation
of the predicate pred with given bindings is performed in nmaxi mum node. The
inference is traced on the screen. The result of the inference is returned.

If ALARMis detected, the corresponding alarmfunction is invoked. If -1.0

is returned, the predicate pred could not be eval uated.

(ncese:mninfer [' _kbid] ' _pred ' _objectl ' _objectn)
i ke ntese: maxi nfer but in mninum node.
(ntese:mninfer-trace [' _kbid] ' _pred ' _objectl ' _objectn)

| i ke ntese: maxi nfer-trace but in m ni mum node.

(ntese:open ' _rset [' fset])

returns: nil and displays error nessages if errors have occurred; returns

Page 18

tr_lisp.asc

a valid rsetid and displays error nmessages if _rset was | oaded
successfully but sone other errors occurred; returns a valid kbid if both,
_rset and fset were | oaded successfully and the know edge base was open
successful ly.

side effects: none.

action: the value of the first argunment nmust be either a valid rsetid, or

a nane of a file containing a conpiled rule set. In the latter case, the
conpiled rule set is |loaded into nenory and a valid rsetid is issued for it.
If the second argunent is specified, the file fset is |oaded into nmenory
(it should contain lisp functions - CV/PF's for rset). To conplete open
successfully, all addresses of level O predicate functions, and all CVPF's
nmust be found. If yes, a valid kbid is issued and returned and the

know edge base is ready for use. If not all level O predicate functions

or CVPF' s are found, and error nessage is displayed and only the valid
rsetid is returned.

(ntese:rsetidp ' _rsetid)

returns: t if the value of the argunment is a valid rsetid, otherwise it
returns nil.

side effects: none.

acti on: none.

(ntese: show al arm ' _kbi d)

returns: nil and displays error nmessages if errors have occurred, otherw se
the nane of the alarmfunction for _kbid is returned.

side effects: none.

action: the argunment nust evaluate to a valid kbid.

(ntese: showinc ' _kbid) (ntese:showinconsistency ' kbid)

returns: nil and displays error nmessages if errors have occurred, otherw se
the inconsistency level tolerance for kbid is returned.

side effects: none.
action: the argunment nust evaluate to a valid kbid.
(ntese:set-alarm' _kbid ' _func)

returns: returns nil and displays error nessages if errors have occurred,
otherwise t is returned.

side effects: none.
action: the argument nust evaluate to a valid kbid. Nane of alarm function

for the specified know edge base kbid is set set to the value of the
second argument (nust evaluate to a nane of an existing lisp function).

Page 19

tr_lisp.asc

(ntese:set-inc ' _kbid ' _inc) (ntese:set-inconsistency ' kbid ' _inc)

returns: returns nil and displays error nessages if errors have occurred,
otherwise t is returned.

side effects: none.
action: the argument nust evaluate to a valid kbid. The inconsistency |evel

tol erance for the specified know edge base kbid is set to the value of
the second argurment (nust evaluate to a nunber between 0 and 1 inclusive).

(ncese: sufmaxi nfer [' _kbid] ' _cutoff ' _pred ' _objectl ' objectn)

i ke ntese: suf maxi nfer-trace but without tracing.

(ntese: sufmaxi nfer-trace [' _kbid] ' _cutoff ' pred ' _objectl ' _objectn)

returns: nil and displays error nmessages if errors have occurred. O herw se
a flonum between 0 and 1 (inclusive) or -1.0 is returned.

side effects: none.

action: the first argunent nust evaluate either to a valid kbid (and then it
is supplied for _kbid), or to a nunber between O and 1 inclusive (and then
it is supplied for _cutoff). In case the first argument is _cutoff, the |ast
opened know edge base is supplied for _kbid. The argunment follow ng _cutoff
nmust evaluate to a nane and is supplied for _pred. Argunents follow ng _pred

are assunmed to be lisp objects to be bound to variables of the predicate _pred.

rd chai ning evaluation of the predicate pred with given bindings is
performed in sufficient naxi num node with the cutoff value _cutoff. The
inference is traced on the screen. The result of the inference is returned.
If ALARMis detected, the corresponding alarmfunction is invoked. If -1.0
is returned, the predicate pred could not be eval uated.

(ncese:sufmninfer [' _kbid] ' _cutoff ' _pred ' _objectl ' objectn)
i ke ntese: suf maxi nfer but in sufficient m ni mum node.
(ncese:sufmninfer-trace ['_kbid] ' _cutoff ' pred ' _objectl ' _objectn)

| i ke nctese: suf maxi nfer-trace but in sufficient m ni num node.

returns: nil or a flonum
side effects: none.

action: a flonumis read fromthe keyboard and returned. If error, nil is
ret ur ned.

Page 20

Backwa

tr_lisp.asc

returns: nil or a fixnum
side effects: none.

action: a fixnumis read fromthe keyboard and returned. If error, nil is
ret ur ned.

(reads)
returns: nil or a string.
side effects: none.

action: a string is read fromthe keyboard and returned. If error, nil is
ret ur ned.

(ntese:unload ' _rsetid)

returns: nil and displays error nessages if errors have occurred, otherw se
t is returned.

side effects: none.

action: the argunment nust evaluate to a valid rsetid. The conpiled rule set
_rsetid is "unloaded" fromnenory, rsetidis not a valid rsetid any nore.
The opened knowl edge base (if any) containing this rule set is closed.

REFERENCES

[FB] F. Franek, 1. Bruha, MESE - NcMaster Expert System
Environnent, submitted for publication

[FB1] F. Franek, 1. Bruha, The MESE project, Tech. Rep.
Dept. of Conp. Sci. & Systems, MMaster University,
Ham | ton, Ont., Canada, 1988.

Page 21

