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ABSTRACT

McESE is an expert systemenvironnent (a software
tool) designed to help create problemspecific
shells wth inconplete and uncertain know edge,
fast and conpact expert systemapplications in a
particul ar programm ng | anguage. Speci al i zed
software of MESE is witten in Cand facilitates
handling of all aspects of dealing with rule-based
know edge bases. Practical and theoretical aspects
of MESE are discussed.

(1) | NTRODUCTI ON.

McESE (McMaster Expert System Environnment) is a software tool
to build problemspecific shells and create expert system
applications. It is designed to satisfy the goals listed bel ow (not
in the order of their significance):

(1.1) allow the wuser to deal wth inprecise and i nconpl ete
know edge in MESE know edge bases with a declarative
formali smthat has a satisfactory degree of expressive power;

(1.2) allow the wuser to customize the shell as so it handles
uncertainty in the way of his preference;

(1.3) allow the wuser to create expert system applications in a
particul ar programm ng | anguage (C, FranzLlSP, and SCHEME are
avai l abl e at the nonent), with a point of reference being the
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(1. 4)

(1.5)
(1.6)
(2)

(2.1)

application rather than the know edge base (so the creation
of such an application resenbles ordinary progranm ng as mnmuch
as possible);

allow the wuser a natural (hierarchical) connection of
di fferent know edge bases in an application

all ow rapi d prototyping
all ow fast inferring.
HOW THE GOALS OF McESE PROJECT ARE ATTAI NED.

In McESE the user can encode the domain know edge in rul es of
the following form

TERML & TERM & ... & TERVh ==CVPF==> TERM

(cvpf abbreviate "certainty val ue propagati on function".)

The "neaning" of a sinple rule "TERML & TERM2 ==F==> TERMB"
is: if we are certain with value vl that TERML is true, and
if we are certain with value v2 that TERM is true, then we
are certain with value F(vl,v2) that the |eft hand side (LHS
for short) holds, and so we are certain with that val ue that
TERM3 hol ds.

An (neani ngl ess) exanpl e of a MESE rul e:
RL: .8*P1l(x,y)[>=.3] & -P2(z) ==F2==> P3(Xx,Y,z)[<.5]

where R1 is the rule's id, Pl, P2, and P3 are predicates, F2

is acvpf, x,y, and z are predicate variables, "-" stands for
negation, .8 preceding Pl is the weight of the first term
(must be a real nunber between 0 and 1 inclusive; if omtted

it is assumed to be 1), [>=.3], [<.5] are threshold

directives ( >=and >in [ ] are threshold operators, and .3
and .5 in [ ] are threshold values, nust be real values
between 0 and 1 inclusive).

A predicate, possibly preceded by a weight, possibly
preceded by "-" or "~" (denoting negation), and possibly
followed by a threshold directive, is called a term

The "firing" of the above nentioned rule consists of:
first, for the rule to be "fired", all predicate variables in
the rule nust be bound to sone data structures, called
objects. Let x be bound to the object X, let y be bound to
the object Y and let z be bound to the object Z  Second, the
certainty values (real values between 0 and 1 inclusive) of
all LHS terms nust be known. Then the certainty value of the
ri ght hand side (RHS for short) predicate can be conputed as:
Let vl be the value of the first termof the LHS of the rule
RL (i.e. the term.8*P1(X, Y)[>=.3]), let v2 be the val ue of
the second LHS termof the rule RL (i.e. the term ~P2(Z2)).
Then the value of the LHSis F2(vl,v2). (F2 nust be a
function of two real arguments returning a real value between
0O and 1 inclusive, or -1.) Fromthis the value of the RHS
predicate P3(X,Y,2Z) is determ ned by the threshold directive.
In this case, if the value of the LHSis strictly Iless than
.5, the wvalue of P3(X Y,Z) will be set to 1, otherwise it
will be set to O.

The value of a LHS termis conputed fromthe value of
the termis predicate according to the weight and t he
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(2.2)

(2.3)

threshold directive. E. g. the value of P1(X Y)[>=.3] will be
1 if the wvalue of PL(XY) is greater or equal to .3
otherwise it will be 0. If the weight is not specified, it is
assumed to be 1, and so the final value of the term is
conpleted at this point. On the other hand when the weight is
specified, as in this case, the final value of the term is
obtai ned by multiplying by the weight.

The value of ~P2(Z) will be (1-value of P2(2)).

If the cvpf F2 returns -1, then the rule is considered
not "fired".

Rules in this formallow to capture an inprecise,
uncertain and inconplete know edge, since the rules are
guaranteed to "fire" for any values of LHS terns (except sone
situations when the firing is prevented by the cvpf), and
only the resulting value of the RHS predicate is affected by
the values of LHS terns. Thus, we can fornulate our rules in
vague ternms, as in this exanple froman expert systemto play
a card gane Canasta

"opponent _col l ect(x) & used_stck _high =F=> ~di scard(x)"
where we can never be sure if the opponent really collects x,
and when the used stack is high. But we can build into the
know edge base enough information to estimate these facts
nunmerically (based on current input data) and these nunbers
project via cvpf F into the value of discard(x). Even in the
case of conplete lack of information, say if the value of
opponent _collect(x) is O we may want to associate the value
of .25 with discard(x) (since there are 4 possible types the
opponent may be collecting and so in the absence of any
rel evant information a good guess is that there is .25 chance
of the opponent collecting x) and that's what cvpf F can do.

The predicates serve as sinple statenments about entities
the know edge is "tal king" about. For exanple "ontop(X Y)"
is neant to indicate that the object Xis on top of the
object Y, or "allyounger(10)" is nmeant to indicate that al
i nvol ved were younger than 10. How well they really reflex
the reality is a different matter.

If no cvp function in a rule is stipulated, the default one
is used. |If unchanged by the user, it is so-called weighted
cunul ative evi dence conputed according the follow ng fornul a:
let w=wl +wW2 +w3 +.. + wn, where wl is the weight of
ternl, w2 the weight of tern2, ... , wnis the of termm. Let
vl be the value of LHS TERML, v2 the value of LHS TERM, ...
vn the value of LHS TERWh. Then (vl + v2 + ... + vn)/wis the
val ue of the LHS

As any cvpf can be defined as the default choice, one
can pre-determine that all rules in the know edge base w |
be handl ed uniformy, in essence fixing a particular nethod
of the treatment of uncertainty in the whole know edge base.

Most of expert systens shells are either presented with the
know edge representation | anguage as the nain | anguage of the
application, and hence the application is "centered" around
the "nodel" (know edge base), and the procedural parts are
connected to it by different means (in the case of OPS
| anguages and PROLOG it is the only |anguage), or they
thenselves are witten in the |anguage of application (for
exanple KEE in LISP). W tried to give the user a possibility
to wite an application in the usual way, at Ileast the
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(2. 4)

(2.5)

procedural parts, and in the programing |anguage of his
choice, but still preserve the possibility of having access
to a declarative know edge base when needed. This is achieved
by "extending" a particular progranm ng | anguage by MESE
conmands to facilitate all required conmunication between the
application and the know edge bases. The software to
performer the conmunication is witten in C, but is
transparent to the user. Thus, a particular application is
conpletely built using a single progranm ng | anguage and the
| anguage of McESE rules. At this point, MESE extensions of
C, FranzLISP, and SCHEME are available. Note that this shift
in enmphasis changes the focal point fromknow edge base to
t he application in an effort to allow for ordi nary
progranmm ng techniques, nmet hods, and experience to be
utilized.

Predi cat es which never occur on RHS of any rule correspond to
facts and observations; we shall call themlevel O predicates
for they will be on level 0 of the know edge tree (see 4.2).
They represent data input nodes of the know edge tree. Their
val ues are not derived (inferred) using rules, they nust be
obt ai ned from so-called predicate service procedures. These
nmay be ordinary procedures to supply the facts and/or
observations, or they may in fact be other expert systens.
This nechanism allows for convenient partitioning of the
donmai n know edge into a hierarchy of know edge bases (or nore
preci sely expert systens), see Fig. 1.

Fig 1

On the other hand, predicates on higher I|evels represent
concl usi ons based on facts and/or other conclusions. Their
val ue nmust be obtained by inferring.

Since MESE built-in inference engine automatically pronpts
the wuser for the result of the invocation of a predicate
service procedure in the case that the predicate service
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procedure is not available to the system (and simlarly for
cvpf's), one can just test and nodify rules in the know edge
base wi t hout the overhead of building t he conpl ete
application. Mreover since MESE interactions and inferences
are identical in MESE-C, MESE-FranzLI SP, and MESE- SCHEME

one can quickly build a prototype in McESE- Fr anzLI| SP
(utilizing versatility and flexibility of FranzLISP) to
verify the nethods and approaches, and when satisfied, the
know edge bases can be used as they are for the MESE-C
application.

(2.6) McESE know edge bases are first conpil ed before they can be
used in an application. The conpiled know edge base (for
short called know edge tree) allows for direct 1linking of
rel evant predicates, so only relevant rules are in fact
consi dered when a predicate nmust be evaluated. Thus inferring
with such a knowl edge tree anobunts to a "wal k" through the
tree, and hence the speed of inferring depends entirely on
the depth of the know edge tree rather than on its size. The
result is a fast performance, know edge base queries are
qui ckly eval uated and returned to the application program

(3) SYNTACTI CAL DESCRI PTI ON OF RULES | N RSET.

List of all tokens and there definitions follows. As usual, a
space represents any nunber (none included) of so-called white
spaces (bl ank, carriage return, newine, and comment). { } indicate
an optional part.

conment <conment> is any text enclosed between conment brackets -
left bracket /* - and - right bracket */ - it is treated as a white
space McESE conpiler, and hence not part of conpil ed RSET.

rule <rule> is a block <rul ei d> <l hs> <arrow> <rhs>
rule identifier <ruleid> is a block <rul enane> { <tdir>}
rul ename <rul enanme> is a block of characters beginning with a

letter, can contain | ower and upper case letters, digits, or
threshold directive <tdir> is a block [ <top> <tval >]

threshol d operator <top> is a block of 1 to 2 characters, either
L} >I Or L} >:I

threshold value <tval> is a decinal constant val ue between 0 and 1
i ncl usi ve

| eft hand side <lhs> is a block <ternr & <ternp ... & <terne

term <term> is a block { <weight> * } { <sin>} <pred> { <tdir>}

wei ght <wei ght > is a decimal constant value between 0 and 1
i ncl usi ve

sign <sign> is a block of one character, either '-', or '~
predicate <pred> is a block <prednane> { ( <varlist>) }

predi cate name <prednane> is a block of characters beginning
with a letter, can contain | ower and upper case letters, digits, or

list of wvariables <varlist> is a block <varnane> , ... |,
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<var nane>

variabl e nane <varnane> is a block of characters beginning with a
letter, can contain | ower and upper case letters, digits, or '_'

arrow <arrow> is a block { <larrow> <cvpf>} <rarrow>

left arrow <larrow> is a block of one or nore '=

right arrow <rarrow> is a block of one or more '=" followed by
I>I

certainty value propagation function <cvpf> is a block of
characters beginning with a letter, can contain |lower and upper
case letters, digits, or '

right hand side <rhs> is a block { <sign>} <pred> { <tdir>}
(4) McESE COMPONENTS.
(4.1) MESE source know edge base:

McESE source know edge base consists of two separate sets:
the set (RSET) of McESE rules (in descriptive forn), and the set
(FSET) of corresponding cvpf's (in procedural form. In addition to
the above nentioned syntax of MESE rules, each rule has to satisfy
the condition that all predicate variables occurring in predicates
of the LHS, nust be variables of the RHS predicate, and vice versa,
all RHS predicate variables rmust occur as predicate variables of
some predicate of the LHS. There also are restrictions on the whole
RSET, nanely that

(a) There should be no subset of rules formng a close cycle,
e.g. subset like this: A&B=>C C&D=>E E&F=>A since
the inferring mght be going oninthis cycle wthout getting
anywhere. Besides, cycles like this are cousins of tautologies like
"Ainmplies A", which cannot carry any relevant information and thus
are usel ess as a know edge representation vehicle; and

(b) The same predicate can occur in nmore than one rule as the
RHS or the LHS predicate. But each occurrence of the predicate nust
have the sanme nunber of variables (though the variables can have
di fferent nanes).

Way no rules with disjunctive LHS were consi dered?

Di sjunction on the LHS of rules can be easily enmulated by a
sinmple set of McESE rules ("A v B => C' can be enulated by a set of
two MESE rules, "A =>C' and "B =>C"') with no loss of the
processing speed and/or expressiveness of the formalism On the
ot her hand, a McESE set of rules with the same RHS predicate shoul d
be viewed as a case of a disjunction. The price to pay for this
approach is the need for rule resolution with all inplications it
has for the certainty value of the predicate being eval uated.

The main reason to use rules with purely conjunctive LHS was
psychol ogi cal . We have found that people prefer to list
eventualities one by one, rather than in a disjunction. It seens
nore natural and easier to conprehend. Thus, we have deci ded to pay
the price (rule resolution in the formof inferring nobdes) and
accommodat e our human user preferences.

FSET is a set of prograns in the |anguage of the chosen
extension, the only requirenent being that they had as nmany
argunents as the rule they are referred to in has LHS terns, and
that their argunents were real values between 0 and 1 inclusive,
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and that they returned real values between O and 1 inclusive, or
-1. Fromthe logical point of view, they nust be non-decreasing,
i.e. when a certainty value of a termincreases, the certainty for
the whole LHS (as represented by the cvpf) nust not decrease.

Clearly, the cvpf 1is an inportant part of the heuristics
captured in a rule. Thus, we cannot claimthat the domai n know edge
stored in a know edge base is purely declarative. The rules
thensel ves are declarative, but the cvpf's are procedural, even
though their purpose is not really procedural

Al'though RSET and FSET are naintained in separate files,
McESE built-in editor allows the user to edit both parts together
in two windows on the screen. This sinplifies the task of know edge
and software engi neering with MESE

(4.2) MESE conpil ed know edge base:

The McESE source know edge base as a set of rules (RSET) and
a set of cvpf's (FSET) is a structure well suited to store the

desired know edge in its declarative and procedur al form
respectively, suitable for hunmans to understand, nodify and
mani pul ate easily. But for many reasons it is not a well suited

structure for a conmputer programto access and "infer" wth it.
Thus, MESE first "conpiles" the knowl edge base into a data
structure which may be visualized as a tree capturing the essentia
rel ations between predicates. Let us illustrate this on a snal
exanpl e.

Assune that RSET contains four hypothetical rules (for
sinplicity with no "nmeaning"):

RL: P1(x,y)[>=.3] & ~P2(x,z)[<.1]&P3(y)=F1=>P6(x,y, z)[>=.7]
R2: P2(x,y)&P4(y)=F2=>~P7(X,y)

R3: ~P7(x,y) &5(2z) [ <=.67] =F3=>P8(x, vy, z) [ >=. 2]

R4: P8( a, b, c) &P9( b) =F4=>P6( a, b, c)

The conpiled version of it can be pictured as the follow ng
know edge tree (see Fig. 2):
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Fig. 2

The predicates are sorted into levels; the level O predicates
are those which occur only in LHS terns of some rules (as
P1, P2, P3, P4, P5, P9). Predicates which occur in RHS terns of some
rules are assigned their levels according to this forrmula: find the
LHS predicate with the highest level in the rule the predicate in
guestion is in the RHS term Than the level of the RHS predicate
will be one higher. |If the predicate occurs in nore rules as the
RHS predicate, its level is the maximl one assigned to according
to each individual rule. Thus P7 has level 1 as all LHS predicates
of rule R2 have level 0. On the other hand, P8 has level 2 as the
LHS predicate of rule R3 with the highest level is P7, thus |eve
of P8 is (level of P7 + 1), i.e. 2. Fromrule RL follows that |eve
of P6 is 1, since all LHS predicates of RL have level 0. On the
other hand, fromrule R4 follows that level of P6 is 3, as P8 as
the LHS with the highest level, i.e. 2. Therefore, level of P6 is
3.

Since a McESE source know edge base must be cycle-free, al
predicates can be sorted into levels (as wth any acyclic
undi rected graph). In fact, the procedure for sorting the
predicates into levels is wused by the conpiler to check for
possible cycles. See the appendix for conplete description of
conponents of know edge tree.

McESE conpiler parses source RSET providing syntactica
checking of rules, providing as well other checking as described
above, and builds the know edge tree in main nmenory with address
links relative to the beginning of the know edge tree. After
successful conpilation the resulting data structure is recorded in
a disk file.

When a know edge base is open in an application, MESE | oader
loads from disk into main nenmory the know edge tree wile
absol utizing address links. MESE-FranzLlI SP and McESE- SCHEME can
al so | oad corresponding FSET dynami cally. MESE-C does not have an
on-line dynamc |oader for conpiled C code available yet, so for
the tinme being all FSET's required by an application nust be Iinked
to it during conpilation.

(4.3) MESE inference engine and inferring:

McESE i nference engi ne provi des t he nmechani sm for
"inferring". It can work in two basic nodes, forward chaining and
backwar d chai ni ng.

Backward chaining froma given predicate (node) wth given
bi ndings for its variables is perforned as depth-first walk down to
level 0 nodes (wth sinultaneous propagation of bindings for
predi cate variables), "selecting" the appropriate subtree |[eading
to the node being evaluated (there may be nore than one such
subtree). Only the required O | evel nodes are activated (and so
appropriate known facts are fetched and/ or appropriate observations
are mmde) and then the resulting certainty values are propagated
(and recorded in the know edge tree, too) back through the sel ected
subtree to the required node. The backward chai ni ng node has four
subnmodes which anmount to rule conflict resolution: max node,
sufficient max node, nin node, and sufficient mn node. Sufficient
max (mn) node searches for a subtree which evaluates the required
node to a certainty value bigger (less) or equal to the specified
val ue, then the chaining stops and this value is returned, or if
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such a subtree is not found, "failure" is returned. The nmax (m n)
node eval uates all possible subtrees and returns the max, i.e. the
hi ghest value (the min, i.e. the | owest val ue respectively).

Forward chaining is inplenented only fromO level up, to a
specified level. Specified nodes fromlevel 0 and their ascendants
up to the specified I evel are evaluated and their values recorded
in the know edge tree.

The inference engine can work in two nodes as far as

explaining what it is doing: the silent node when all inferring is
transparent to the user and only the resulting value is avail able,
or in trace node when all inferring is done on the screen, rule by

rule, predicate by predicate, wth all relevant information being
di spl ayed, too. The trace node is useful mainly for testing and
debuggi ng of know edge bases.

A run tine consistency checking takes place: only the mnina
and mexi mal values for a predicate are recorded. The difference

between these two is the inconsistency level. MESE allows to
preset for the know edge base what inconsistency Ilevel can be
tolerated. |If the inconsistency |level tolerance is exceeded, ALARM

is issued and the inferred value is returned to the application

Also, a run tine conpletness checking takes place: in the
case a predicate cannot be evaluated, ALARMis also issued and -1
is returned by the inference engine.

For each MESE know edge base the user can specify ALARM
procedure which is automatically invoked by McESE when ALARM is
issued. In this procedure the user can define what shoul d be done.

An invocation of the inference engine from the application
constitutes one inference cycle. Any of the values recorded in the
know edge tree as results of backward or forward chaining wthin
the last inference cycle can be fetched to the application

Let us illustrate sone inferring with the srmall exanple of a
know edge base from4.2 (see Fig. 2):

Let us ask for the "max" evaluation of P6(X Y,2Z). First the
variabl es of P6 are bound to X, Y, and Z Then these bindings are
passed to R4&. Fromthere the variable of P9 is bound to Y and the
variables of P8 are bound to X, Y, and Z. From P8 the bindings are
passed to R3. Fromthere the variables of P7 are bound to X, and
Y, and the variable of P5 is bound to Z. From P7 the bindings are
passed to R2 and fromthere the variable of P2 is bound to X and
t he variable of P4 is bound to Y. By now the proper subtree for
eval uati on has been selected and the bindings were passed to the
predi cates of level 0 (P9, P2, P4, and P5). Now these (observable)
facts are evaluated (by the predicate service procedures) and the
nunbers (i.e. certainty values) are returned (for exanple 0.9,
0.8, 0.6, 0.6 respectively). P7 is evaluated to c7 =1 - F2(0.8,1-

0.6) =1- F2(0.8,0.4), say ¢c7 =0.3 . In order to evaluate P8,
first all left hand side terms of R3 are evaluated, i.e. 1 -0.3,
0.6 [<=0.67], i.e. 0.7 and 1. Hence the value of the right hand

side termis F3(0.7,1), say 0.12. Thus ¢8 = 0.12 [>= 0.2] = 0. Now
P6 is evaluated via R4 to c6 = F4(0,0.9), say 0.75. That was the
first evaluation (via the subtree deternmned by the rules R4, R3,
and R2). But P6 can be evaluated via the the subtree deternined by
the rule RL as well. Thus, the bindings of the variables of P6 are
passed to Rl, fromthere the variables of Pl are bound to X, and
Y, and the variables of P2 are bound to X, and Z, and the variable
of P3 is bound to Y. Now these (observable) facts (Pl, P2, and P3)
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are evaluated (by the predicate service procedures), and their
certainty values (for exanple 0.3, 0.8, and 0.5) returned. (Note,
that P2 was used in both evaluations.) Now the LHS terns of Rl are
eval uat ed: 0.3 [>=10.3], (1-0.8) [<0.1], 0.5, hence 1, 0, 0.5
and so the RHS termis evaluated to F3(1,0,0.5), say 0.6. Then the
value of P8 is 0.6 [>=0.2], i.e. the value of P6 is 1. Since we
asked for the "max" evaluation, the value returned to t he
application programw || be 1.

(4.4) Explanation conponent:

As a sinple explanation nechanismthe inference engine keeps
track of the subtree used for the nmax eval uation for each predicate
evaluated during the last inference cycle (and simlarly for the
m n eval uation), and displays it when asked for, together with the
i nput data which affected the particul ar values of facts on level 0
at the tinme of the evaluation. Thus, the user can trace back any
inference to the facts and observations of level O (nore on
expl anati ons see [NSH|).

(5) SEMANTI CS OF McESE COVIVANDS

conpile a source RSET : parses the RSET to provide syntactica
check, perforns other checks on rules, builds know edge tree in
mai n nenory and stores the final data structure in a disk file.

| oad | oads a conpiled RSET fromdisk to main menory, if successful,
arsetid (rset id) is returned.

di sconpil e recovers textual formof rules froma know edge tree in
mai n nenory, displays it with sonme vital statistics.

open opens a know edge, i.e. loads a conpiled RSET fromdisk to
mai n nenory, |oads conpiled FSET, and checks the conpatibility of
the RSET with the FSET. |f successful, a kbid (know edge base id)
i s returned.

di splay displays an open know edge base, i.e. it is like
"di sconpile" except the statistics includes information from and
about FSET.

| ast-open returns the kbid of the nost recently opened know edge.
last-load returns the rsetid of the nost recently | oaded RSET.

cl ose closes the specified know edge base, i.e. conpiled RSET is
unl oaded from main menory, FSET is going to be ignored.

unl oad unl oads a | oaded RSET from rmai n nenory.

showi nc returns the inconsistency level tolerance for t he
speci fi ed open know edge base.

set-inc re-sets the inconsistency |level tolerance for the specified
open know edge base.

showal arm returns the name of ALARM procedure for the specified
open know edge base.

set-alarm re-sets the name of ALARM procedure for the specified
open know edge base.

maxi nfer performs backward chaining in the nax node on the given
open know edge base for the specified predicate and its argunents.
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The max val ue is returned.

maxi nfer-trace is as "maxinfer" except that t he recursive
eval uation is continuously displayed on screen

suf maxi nfer perforns backward chaining in sufficient nax node wth
the specified cutoff value on the given open know edge base for the
specified predicate and its argunents . The max val ue is returned.

sufmaxi nfer-trace is as "sufnmaxinfer" except that the recursive
eval uation is continuously displayed on screen

m ni nfer perfornms backward chaining in the min node on the given
open know edge base for the specified predicate and its argunents.
The nmin value is returned.

m ni nfer-trace is as "mninfer" except that t he recursive
eval uation is continuously displayed on screen

suf m ni nfer perforns backward chaining in sufficient min node wth
the specified cutoff value on the given open know edge base for the
specified predicate and its argunents. The nin value is returned.

sufmninfer-trace is as "sufnmninfer" except that the recursive
eval uation is continuously displayed on screen

eval returns the value of the given predicate inferred during the
| ast inference cycle.

forward perfornms forward chaining for the specified group of |eve
0 predicates to the specified |evel.

(6) COVPLETENESS OF McESE KNOW.EDGE BASES.

At this point, for the sake of clarity of the follow ng
di scussion, we'd like to nake a few definitions.

By a domain we nean a "piece" of an abstract wor | d
corresponding to a "piece" of real world, which we will <call the
donai n realization

By know edge we nmean the "know how' to solve "problens" in
the chosen domain, very often we refer to it as the "donain
know edge". By domain information we mean the information about
the state of the current realization of the domain the domain
know edge is supposed to deal with. To illustrate this on an
exanmple, recall the rule (fromthe domain of the card gane

Canast a) we have discussed before:
"opponent _col |l ect(x) & used_stck high =F=> ~di scard(x)"

This is a piece of the donmain know edge. To use this piece of
know edge, we need sone donmain information, nanmely what is the
state of affairs in the domain of the current gane of Canasta
(which is the Canasta domain realization), i.e. what does the
opponent collect and how high is the used stack

There are three different aspects of know edge bases
referred to as "conpl et eness”.

e really nmeans "conpleteness of donmai n i nformation
avail able" and is intimately tied to the issue of rule firing with
mat chi ng of their LHS s. This type of inconpl et eness is
accommodated in inferring with MESE know edge bases by the
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nmechani sm of uncertainty (cvpf's and threshold directives). Every
matching of a left hand side is "conplete"” in this sense, but
varies in degree (reflecting the degree of available domain
i nformati on about the current state of the domain realization),
this projects into the degree (certainty value) of the RHS side
term

Anot her "conpl eteness" refers to "conpl eteness of the domain
know edge" and may be expressed as "is the know edge represent ed

in the know edge base conplete for the task?". There are no
nmet hods short of evaluating all possible problenms in the donmain to
verify this kind of conpleteness (though its negation, i.e.
i nconpl eteness, may be verified by a problemnot solvable by the
represented know edge). McESE does not address this issue and

leaves it to the user to make sure his know edge base is
"adequate" to the task.

Since sonme people like to view know edge bases as sets of
logic formul ae (see e.g. [LMP]), a term"conpl eteness" rmay be then
used in the logic sense, neaning that either every forrmula or its
negation nay be deduced fromit. These types of know edge bases
are considered nost often in the context of |ogic progranm ng
McESE know edge bases cannot be viewed as sets of logic formulae.
The issue is not the strength of expressibility of MESE rules
and how they reflect to logical formulae, but the fact that no

deduction wth the rules is done at all. 1In the logic sense one
may deduce thinks which are not explicitly contained in the
know edge base itself, i.e. they are inplicit with respect to the
know edge base (or better yet, they followinplicitly by deduction
from the assertions in the know edge base). In MESE we can
"reason"” only about things which are explicitly asserted and
cont ai ned in the know edge base. Wth respect to this

explicitness, there is no point to talk about |ogical conpleteness
of McESE know edge bases. On the other hand, MESE know edge base
should be able to evaluate any predicate. Since the evaluation
depends on input data, static check is practically inpossible. Thus
we opted for a sinple run time check (see (4.3)).

(7) CONSI STENCY OF McESE KNOW.EDGE BASES.

The term "consistency" is also used with different rmeanings,
though they are nmuch closer. Mst often it neans that given the
knowl edge base and the input data, one cannot "arrive" to a
contradiction. This is a weaker form than the |ogic consistency,
nmeani ng that one cannot deduce a formula and its negation fromthe
gi ven set of formul ae. As di scussed before, wth respect to the
explicitness of McESE know edge bases, there is no point to
consider the 1ogic conpleteness of these. But in any case, static
check for consistency is hard and conputationally expensive. To
check if a propositional formula together with a consistent set of
propositions form a consistent set is NP-conpl ete (see e.g.
[LMJ). The consistency of explicit know edge bases (as in case of
M ESE know edge bases) may not be that expensive to check, for one
does not have to go beyond the terns explicitly in the know edge
base, but it nmay be (and usually is) conplicated by the input data
giving the terns in the know edge base different values. |In MESE
know edge bases, thanks to their stratification into levels and
their explicitness, the only source of a possible (explicit)
contradiction may be an occurrence of a set of rules with the sane
predicate on the right hand side. The static check (i.e. in
conpilation tinme), which is nore or |ess syntactical, cannot
detect the possibility of a predicate being evaluated differently
by different rules as these evaluations depend on input data.
Thus, we opted for a run tinme check, when the user may specify how
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"inconsistent"” the knowl edge base can be and in case t he
"inconsi st ency" level is crossed, an alarm is triggered (see
(4.3)).

(8) " DEEP KNOW.EDGE" VERSUS " SHALLOW KNOW.EDGE" .

Expert systens of the so-called first generation deal wth
what is called "shall ow know edge”, i.e. the know edge being just
a set of heuristics, wthout any "deep" understanding of the
donmain, where all concepts are treated wuniformy in a honbgeneous
way. On the other hand, so-called "deep know edge" <calls for
explicit nodels of the domai n  enbodyi ng "understandi ng" of
di fferent concepts wthin the donain. There have been quite strong
clains wth regard to expert systems of the second generation
usi ng this "deep know edge" (see e.g. [NSM), but we tend to
agree with [S] that these are nostly unsupported by substantia
practical denonstrations vyet. Being guided by our pragmatica
goals, MESE belongs anpong first generation expert systems, wth
all the consequences for explanations and know edge acquisition

(9) EXPLANATI ONS | N McESE

McESE addresses this issue only superficially as nost of the
first generation expert systens do, i.e. the explanation consists
of the trace of which rules have been "fired" to arrive to the
conclusion together with the input data responsible for the
particul ar evaluation. There have been numerous di scussions about
the fact that explanations of this nature are not very convincing
(see e.Jg. [9], but the fact 1is that wi t hout "deeper
under st andi ng" bei ng sonehow enbodi ed i n the know edge base, the
expl anati ons cannot really go beyond this. One may, though, treat
the explanations as a domain of its owmn and try to formalize the
know edge needed to do so nore convincingly for a know edge base
acconpanying the one wused for solving problenms. This is the
current interest in our research and we do plan to enhance MESE
in this fashion.

(10) KNOW.EDGE ACQUI SI TION I N McESE.

As stated many many tinmes, know edge acquisition is the rea
bottl eneck of expert systens developnent. It is very hard to get
and fornalize domai n know edge, and the task is time consuning and
seemingly endless. Besides that, the domin know edge may (and
will) differ fromone hunan expert to another. There are hopes
(and clains) that the use of "deep know edge" expert systens wll
alleviate this problem and will help facilitate in sonme way
"learning" (see [S]). Gven the current state of the research into
these problens, MESE does not address it in any way and | eaves it
to the poor user (i.e. know edge engineer) to deal with it in the
ol d fashion way. There are, though, sonme interesting possibilities
for "learning by observation" the cvpf's, gi ven the concepts and
their relations. This is in the plans for future research
concer ni ng McESE

(11) DI SCUSSI ON OF THE TREATMENT OF UNCERTAINTY I N McESE

Presently there are two basic approaches to wuncertainty in
expert systens.

The first, Ilinguistic approach, is what one may describe as
"reasoni ng about uncertainty", where linguistic ternms are used to
deal with uncertain aspects of the know edge (as we humans do),
and their interpretation and verification is handled according to
the "context" in which they were posed, i.e. close to have
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di fferent "scal es" depending on what we talk about. Thus one nay
be close to sonmething if it is just fewcentineters afar, or the
Earth may be <close to the Sun, wth respect to the size of our
gal axy. The argunent of people following this Iine of thought is a
pl ausi ble one, nanely that the know edge representation we use
ought to reflect the way we conmuni cate our ideas as much as
possible. But, fromthe pragmatical (conputational) point of view
this is not (at least at this stage) a very practical approach due
to the need of a very sophisticated nmechanism to handle this
interpretation and verification of i nguistic terns of
uncertainty. W suspect that this approach may be feasible when
systens for representati on and reasoning with conmon sense are
devel oped. For exanple see [C for a heuristic treatnment of this
type. There are other schenes in this category, like default
reasoni ng, but we think they address nore the problem of reasoning
with inconplete and/or unreliable know edge.

The second approach is a nunerical one, where nunbers are
enpl oyed to indicate the degree of certainty, or uncertainty, or
what ever other term may be used. This seens to be nore natural (at
| east at this stage) and the field is richer in different schenes
howto do it. W are inclined to view the problemof uncertainty

inthis Iight, given the fact that even we, humans, very often
have to use nunerical specifications to clear sone aspects of our
transm ssion of ideas (e.g. the Earth is close to the Sun, Wth

respect to our gal axy, where we give the frane of reference and/or
scale, which is always nunmerical inits principle). Wen we were
deciding how to deal with wuncertainty in McESE, we were mainly
guided by admittedly pragmatical aspects of the proposed system
Thus the question was which of many schemes to enploy. For an
excel l ent overview of the field, see [§. Briefly, there are about
four main ways to deal with uncertainty nunerically.

Probabilistic (Bayesian statistics), which has the advantage
of a well devel oped term nology, technology and machi nery, and
also is easily conprehensible to humans as we have incorporated
probability into our everyday lives and |anguage. Some of the
works in this field clearly influenced our thinking, especially

for their clear "theoretical" approach and quite inpressive
theories (see e.g. [DP], [P], [RP]). But given the fact that one
has to establish a host of conditional probabilities in

"background" to facilitate the conplete probability di stribution
and/or assune that nost of "events" are statistically independent,
renders the whol e approach conputationally alnost inpossible, or
one must fit (and that is the nost frequent case) his know edge
representation into a fixed schene satisfying the underlying (and
often inplicit and hence "transparent") restrictions. These
systens have what we call one degree of ad-hocness in that the
conditional probabilities anong the "events" are ad-hoc (i.e.
supplied by the domain expert), their coherent processing is well-
established and well understood process, and so easily interpreted
(some mat hemati ci ans though argue that the coherence is only a
superficial one, that the approach is meaningless as the "events"
in question are not really part of a chance systen.

Evi denti al approach, nostly based on variations of what is
now comonly called Denpster-Shafer theory of belief functi ons,
presupposes that the pieces of evidence are "i ndependent”, so

again one has to nmold his know edge representation into a fixed
schene satisfying some (unfortunately inplicit and not so obvi ous)
under | yi ng restrictions. Simlarly, as with the probabilistic
approach, the penalty to pay is that the system beconmes i ncoherent
(theoretically, it does not have to be visible on the performance
of the systemin question) when these wunderlying restrictions are
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vi ol at ed, with no recourse but re-fitting the know edge
representation into the required franework. Since these schenes are
conputationally even nore taxing than the probabilistic approach

applications in the field tend to sinplify matters by considering
only the sinplest of belief (support) functions. These systens
have what we call two degrees of ad-hocness, for these evidentia

support belief functions mnust be supplied for each piece of
evi dence to be considered in order to get a nmeaningful interaction
anong all "events". They are propagated using some (slightly ad-
hoc) nmachinery of conbining evidence (Denpster's rule), and then
the results nust be interpreted (what they nean). The violation of
under | yi ng constrains is even |ess obvious t han in t he
probabilistic case. On the other hand, there are common gr ounds
bet ween those two, as in the case of causal trees (see [SS]).

The third approach is "fuzzy logic" or "fuzzy set" approach

There every Ilinguistic (uncertain) term is represented by a
nmenbership function and the degree of wuncertainty reflects in the
menbership function of the "conclusion". There are sone conmon

grounds with Denpster-Shafer theory (see [Z],[Z1]), but we have not
seen a practical application yet going beyond the use of max and
m n operators to pr opagat e "certainties" t hr ough rul es
(corresponding to conjunction and disjunction respectively). These
systenms have what we call three degrees of ad-hocness, for one has
to supply conpletely ad-hoc nenbership functions for each
[inguistic term these are processed with an ad-hoc nechanism to
obtain sone results, whose interpretations are again ad-hoc. Mre
than in the previous two approaches, the underlying constrains
(with respect to max and min operators) are so tied, that the
system becones factually incoherent quite fast.

The fourth way to deal with uncertainty nay be called ad-hoc
syst ens. There belong systens with different nmechani sns  of
propagating "certainty factors" (MYCIN - see [BS]), and so. The
list would be quite long. These systenms exhibit three degrees of
ad- hocness (ad-hoc nunbers to start with, ad- hoc propagation
nmechani sm and ad-hoc interpretation). However, they proved
thensel ves quite well fromthe practical point of view

In the light of the above nentioned possibilities, bearing
on our mnd one of our nost inportant goals (speed of execution
and thus a need of a sinple nechanisn) we opted for a "hybrid"
solution exhibiting also three degrees of ad- hocness. The
certainty values coming into the knowl edge trees are ad-hoc in
that that they are results of "conputations" of level 0 predicate
procedures and reflect the user's ideas about how certain he is
about them The cvpf's are ad-hoc, for it is up to the user to
provide them according to his "feelings". And finally the
interpretation of the resulting values is also ad-hoc, for their
is no "theoretical" explanation of what these nunbers rmean. Why
did we opt for a systemwi th three degrees of ad-hocness? Speed
itself would not justify it, as having for exanple one or two
functions to propagate the certainty values would be even faster
and nore convenient for the user. (a) we found systens of al
four nunerical approaches inherently inflexible. In brief, you
have to "nmold" the rules to fit the system you have no freedomto
capture the "structural" relationships of the predicates involved,
and then work on capturing the "certainty value" characteristic
of the rule. OQur approach allows you to do it in two separate

st eps. (b) we found that too often we need different appr oaches
to wuncertainty wthin a single know edge base (and/or contro
nmechani snj . Agai n, cvpf's allow you to "switch" from

"probabilistic" to "evidential" to "fuzzy" to "ad-hoc" on the go.
(c) we have been influenced by (very pointed) argunents by
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proponents of non-numnerical approach, especially "heuristic"
approach. Again, cvpf's allowus to do enulate it to a degree.
They are nothing else, but (procedural) heuri stics about
uncertainty in the particular rule. (d) we found that very often
we were able to fornulate the "structure" of a rule correctly,
while the nunbers needed frequent correction (tuning). The

separation of the structure of the rules (RSET) and t he
interpretation of wuncertainty in the rules (FSET) helped to solve
this. |If the structure of the rules is satisfactory, one need to
fine-tune the cvpf's only. (e) there was an additional bonus in
the possibility to run sone "experinments" with know edge bases
(RSET) under different interpretations of uncertainty (i.e. wth
different FSET's attached). This also is on the priority |Ilist of
our future research topics.

(12) FUTURE EXTENSI ONS AND RESEARCH CONCERNI NG McESE

Wth respect to our quest for the greatest wutility value
(i.e. practicality of the system, the explanation nmechani sm nust
be i mproved, as we suggested before, via a heuristic approach. If
McESE becones popul ar and highly used, simnlar extensions of other
| anguages nmay be considered. McESE will al so be used as a test-bed
for different interpretations of uncertainty to help with a
devel opnent of the nost suitable know edge representation(s) for
inferring with, wunder and about uncertainty. And, last, but not
least, we hope, is a frequent use of MESE to build actua
expert system applications.

APPENDI X - (comnpiled) know edge tree structure and conponents:

KB_base head of I|eve
| list ~
| head of prednam |
| list ~ |
Voo Rt I EEEEREEEE -] --
| end | infcycle | prednam | | levl | |
|- R R R TR | --
| pointer | long | struct link *|struct lev *
|- |- Rt Rt |-~
head of fcenam
list ~ head of rul nam
| list ~
---------- R R EE
fcenam | | rulnam | |
------------- |-
struct fink *|struct rink *|
------------- AR
pr ednam address of Pl proc.
| "P1" P1 prednode ~
| " " |
Ve B -] ------ R R R EEE |
| name | | node | | addr | | next ----|--> prednam
|- et |- |- | Tist
| char * | pointer | pointer |struct |ink *|
EEREEEES EERPEEEES |- PR |
| s t r u c t I i n kK
L EEEEPEEEEEPEEE |
| evl

| P1 prednode
AN
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| node | | next ---]-->leve
[---------- [------------ | list
| pointer |struct lev *|
R B |
| struct I ev |
e RRRREEEEEEEECERS |
f cenam F1 proc
| IlFlIl /\
| " |
Ve B -] |- |
| nanme | | addr | | noargs | next ----|--> fcenam
[ -----e- et [ --- - |- | list
| char * | pointer | int | struct fink *|
EERREEEES |- EEREEEEE [ - |
| s t r u c t f i n k
| --mmmmmr e |
rul nam R1 rul node
| IlRlll /\
| " |
Ve EIEREES R e EEE |
| name | | node | | next ----|--> rul nam
[-------- [--------- [------------- | list
| char * | pointer |struct link *|
|-------- |--------- |----mmmmm- - |
|s t r u c t ri n Kk
R LR LR |
—===—=—=—===—===—=—=—=—=—=—=—=—=—=—=—=—=== R UL N OD E ======================—====
f cenam
AN
rul nam | i st
" |
R R -] Rt |- - |- | --
| rulnam | | fcenam | | noterms | noslots | rtop | rtval
|---------- |---------- |--------- |--------- |------ |--------- | - -
| pointer | pointer | char | char | char | long
|---------- |---------- |--------- |--------- |------ |--------- | --
| r-i n i t a r e a
| --mmmm e | --
pr ednode
AN
Rt Rttt Rttt -] ------ | ---- - | --
weight | sign | prednode | | top | tval
-------- R R R EEREELY EREEEEY R
| ong | char | pointer | char | Iong
-------- R R EEEEE R EEEEEE] EEEEEEY R
t e r m a r e a |
__________________________________________ | --
(term area repeats for each termin the rule in the natural order

of ternms inthe rule, i.e. the RHStermarea is the |ast one)
Nt h bidp of
prednode 2
Nt h bi dp of A Nt h bi dp of
prednode 1 | prednode m
AN AN
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poi nter | pointer | | pointer |
------------------- R R TR B
Nt h s | ot a r e a

(slot area repeats nunber of slots tinmes, in the order of slots)
(the order of binding pointers within the slot area follows the

natural order of terns inthe rule, i.e. the RHStermis the |ast
one)
—===—=—===—===—=—=—=—=—=——=—=——=——== PR E DN OD E =========================
pr ednode
prednam | i st A
" |
R R R e -] | --
| prednami | | level |nextonlevp | | noslots
IEEEEEEEE R |--------- | ----mmme - |--------- | --
| pointer | char | pointer | char
IEEEEEEEE R | --------- R | --------- | --
| p i n i t a r e a

"object"” for 2nd sl ot
AN

"object"Afor 1st sl ot | "object™ ior | ast sl ot
-------- |- -----;----I---|-- I RRTEEEEIEEEER EEE

bi dp | | bidp | | | bidp | |
Cpeiner | peinter 1 peimer |
BN L R e

(bi ndi ng area has number of slots boxes, in the order of slots)

rul node rul node
AN AN
S S |- R R R -] --
infcycle | maxval | maxvalp | | minval | minvalp |
---------- R e R R R B
| ong | long | pointer | long | pointer
---------- e e R EEE R T REE B
RHS occ |i st
LHS occ Ii st A
" |
---------- B
LHSoccl p | | RHSoccl p |
------------ |-
pointer | pointer |
------------ |-
e e g LHS occ |iSt e g
LHSoccl p
| rul node
| N
Voo [ -] |
| node | | next ---]--> LHS occ
[--=------ [--=--cmnnn-- | list

| pointer |struct occ *|
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[ BS]

[CH

[ OF]

[ D]

[G

[ LMP]

[ NSM

[F]

[ RF]

[S]

[SS]

[Z]

[ Z1]
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