
Web supplement containing detail proofs for paper:
Sorting suffixes of two-pattern strings

by F. Franek & W.F. Smyth

First, for completeness, we present the actual paper:

Abstract

Recently, several authors presented linear recursive algorithms for

sorting suffixes of a string. All these algorithms employ a similar

three-step approach, based on an initial division of the suffixes of x

into two sets: in step 1 sort the first set using recursive reduction

of the problem, in step 2 determine the order of the suffixes in the

second set based on the order of the suffixes in the first set, and in

step 3 merge the two sets together. To optimize such an algorithm

either for space or time, it may not be sufficient to optimize one of

the three steps, since in doing so, one might increase the resources

required for the others to an unacceptable extent.

Franek, Lu, and Smyth introduced two-pattern strings as a gen-

eralization of Sturmian strings. Like Sturmian strings, two-pattern

strings are generated by iterated morphisms, but they exhibit a much

richer structure.

In this paper we show that the suffixes of two-pattern strings can

be sorted in linear time using a variant of the three step approach

outlined above. It turns out that, given the order of the suffixes in a

two-pattern string, one can almost directly list in linear time all the

suffixes of its expansion under a two-pattern morphism. suffixes

keywords: two-pattern string, suffix, suffix tree, suffix array, sorted

1 Introduction

Ever since Manber and Myers in [8] introduced suffix arrays as data struc-
tures comparable to suffix trees for most pattern matching tasks in strings,
yet requiring significantly less memory, the search was on for a linear time
algorithm for their construction. Such an algorithm for suffix tree construc-
tion had been known since 1997 [1]. In 2003 to our knowledge three different
groups of researchers independently proposed linear recursive algorithms to
sort string suffixes: [5, 6, 7]. Though different, all three algorithms employ

1

three steps, based on a separation of the suffixes into two sets. In step 1 the
first set is ordered using recursive reduction of the problem, in step 2 the
suffixes of the second set are sorted based on the order of the suffixes in the
first set, and in step 3 both ordered sets are merged together. The fact that
all three algorithms follow this basic approach, yet use a completely different
separation into sets, a different way of ordering the second set based on the
first set, and a different merge technique, points to some common funda-
mental aspect of these algorithms. To optimize such an algorithm either for
space or time, it may not be sufficient to optimize one of the three steps,
since in doing so, one might increase the resources required for the others to
an unacceptable extent.

Two-pattern strings were introduced in [2] as a generalization of Sturmian
strings. Like Sturmian strings, two-pattern strings are generated by iterated
morphisms, but they exhibit a much richer structure. It was shown in [3]
that the iterated construction of these strings could be used to compute all
the repetitions and near-repetitions in time linear in string length.

This paper was motivated by our investigation of the three different linear
suffix sorting algorithms discussed above and our desire to fully understand
the underlying phenomena. Thus, we investigated whether the recursive
nature of two-pattern strings could be used in sorting of the suffixes in the
approach of the three algorithms mentioned. As it turned out, the “natural”
recursive reduction of two-pattern strings can be used for step 1, and then
steps 2 and 3 can be simplified into a single step: from having the suffixes
of the reduced string ordered, one can almost directly list the suffixes of the
two-pattern string in the right order.

For the sake of completeness, let us recall the definition of a two-pattern
string (see [2]), including all supporting definitions. Throughout this paper,
a binary string means a string over the alphabet {a, b}.

Definition 1 A binary string q is said to be p-regular if and only if q =
upvu for some choice of (possibly empty) substrings u and v.

Definition 2 An ordered pair (p, q) of nonempty binary strings is said to
be suitable if and only if

• p is primitive (that is, p has no nonempty border);

• p is not a suffix of q;

• q is neither a prefix nor a suffix of p;

2

• q is not p-regular.

Note: Since a two-pattern string is a concatenation of blocks piq and pjq,
the above two definitions make sure that p and q are dissimilar enough to be
recognized efficiently.

Definition 3 σ = [p, q, i, j]λ is an expansion of scope λ, if (p, q) is
suitable, |p| ≤ λ, |q| ≤ λ, 1 ≤ i, j, i 6= j are integers, and λ is an integer
≥ 1.

Note: An expansion σ = [p, q, i, j] is applied to a binary string x in the
following fashion: each occurrence of a in x is replaced by piq and each
occurrence of b by pjq. The resulting string is denoted as σ(x). We define
σ(ε) = ε. The composition of two expansions σ1 and σ2, (σ1◦σ2)(x) is
defined by (σ1◦σ2)(x) = σ1(σ2(x)). The role of the scope λ is to limit the
size of p and q that can be used in the following definition.

Definition 4 A binary string x is a two-pattern string of scope λ if
there exists a sequence {σ1, σ2, . . . , σm} of expansions of scope λ so that x =
σ1 ◦ · · · ◦ σm(a).

It was mentioned at the end of [2] that if the definition of p-regularity were
made more restrictive, a larger class of complete two-pattern strings could
be obtained. The more restrictive definition, sufficient to give two-pattern
strings all their desired properties, contained a few typographical errors as it
was given in [2], and so we provide a corrected definition here:

Definition 5 A binary string q is said to be p-regular (p a binary string) if
and only if there exist (possibly empty) strings u, v together with nonnegative
integers n1, n2, . . . , nk, k ≥ 1, r ≥ 0, such that

• the integers ni assume at most two distinct values — that is,

∣

∣{ni : i ∈ 1..k}
∣

∣ ≤ 2;

• q = (uprvpn1)(uprvpn2) · · · (uprvpnk)u for some u, v, r ≥ 0, where
v = ε if r = 0.

Note: the definition 5 can be used to replace the definition 1. In fact, all
the proofs accompanying this paper are compliant with the more restrictive
definition 5.

3

Certain finite fragments of the well-known Fibonacci string and the
equally well-known Sturmian strings are in fact two-pattern strings of scope
λ = 1 (see [2]).

Here are a few simple examples of two-pattern strings:

1. a, now apply σ2 = [ab, ba, 2, 3] to it, we get

2. σ2(a) = ababba, now apply σ1 = [abb, aa, 1, 4] to it, we get

3. σ1(σ2(ababba)) = abbaa(abb)4aaabbaa(abb)4aa(abb)4aaabbaa.

Strings 1, 2, and 3 are all two-pattern strings of scope 3 (string 2 is in fact
of scope 2, and string 1 is in fact of scope 1).

It was shown in [2] that complete two-pattern strings can be recognized in
linear time: the recognition algorithm outputs an essentially unique sequence
of expansions to construct the string from a. So in the following we can
assume that not only do we have a complete two-pattern string, but also the
sequence of expansions that iteratively generates the string.

In the next section we describe the principles underlying the algorithm for
sorting suffixes of a two-pattern string. In Section 3 we provide an overview
of the algorithm itself, while Section 5 we list some of the main lemmas on
which the algorithm is based. We conclude with Section 6.

2 The Principles Underlying the Algorithm

For the sake of clarity and brevity, we introduce several symbols: we use the
symbol u < v for strings u, v to express that u is lexicographically smaller
than v. We use the symbol ≺ in u ≺ v (or � in u � v) to express the fact
that u < v yet u is not a prefix of v (or v < u yet v is not a prefix of u).
Note that u < v iff (u ≺ v or u is a prefix of v). We use the symbol u �≺ v

to indicate that either u ≺ v or u � v.
For a binary string u, we will use u to denote its ones-complement; that

is, the string formed by interchanging a’s and b’s in u.
In accordance with [2], if x, y are complete two-pattern strings, σ an

expansion, and y = σ(x), then the occurrences of copies of p and copies of
q in the concatenation of blocks piq and pjq as defined by σ(x) are called
restrained copies. Any other occurrence of p or q is referred to as free.
A consecutive sequence of restrained copies of p’s and/or q’s will also be

4

referred to as a restrained configuration or a restrained substring of
y.

Throughout the following discussion we assume that the scope λ is fixed
and that y = σ(x), where x is a complete two-pattern string of scope λ and
σ = [p, q, i, j]λ an expansion of scope λ. Moreover we assume that all suffixes
of x are lexicographically sorted: ρ1 < · · · < ρ|x|. We then describe how to
order the suffixes of y. We may assume further that q < p. If it were not the
case, according to Lemma 2 (see section 5 below), q < p, we sort all of the
suffixes of y = σ(x), where σ = [p, q, i, j]λ, and then we can list all suffixes
of y in proper order efficiently in linear time.

Since we are assuming q < p, according to Lemma 1 (see section 5 below),
for any suffixes ρ1, ρ2 of x, if ρ1 < ρ2, then σ(ρ1) < σ(ρ2). In simple terms,
the assumption q < p makes all expansions to preserve the order of suffixes.

We put all the suffixes of y into disjoint buckets of five types A–E. Their
definitions follow (note that the expansion σ = [p, q, i, j]λ is fixed):

• For every nontrivial suffix δ of p and for every integer k, 0 < k < i,
Aδ,k

= {δpkqσ(ρ) :}ρ is a proper suffix of x or ρ = ε};

• for every nontrivial suffix δ of p that is also a suffix of q,
Aδ,i

= {δpiqσ(ρ) : ρ is a proper suffix of x or ρ = ε};

• for every nontrivial suffix δ of p that is not a suffix of q,
Aδ,i

= {δpiqσ(ρ) : bρ is a proper suffix of x, ρ can be empty};

• for every nontrivial suffix δ of p and for every integer k, i < k < j,
Aδ,k

= {δpkqσ(ρ) : bρ is a proper suffix of x, ρ can be empty}.

• for every nontrivial suffix δ of p,
Bδ = {δqσ(ρ) : ρ is a proper nontrivial suffix of x};

• for every nontrivial suffix δ of q that is not a suffix of p,
Cδ = {δpiqσ(ρ) : aρ is a proper suffix of x, ρ can be empty};

• for every nontrivial suffix δ of q,
Dδ = {δpjqσ(ρ) : bρ is a proper suffix of x, ρ can be empty};

• E = {δq : δ is a nontrivial suffix of p} ∪ {δ : δ is a nontrivial suffix
of q}.

5

(where the term proper suffix refers to a suffix that is not equal to the whole
string and the term trivial suffix refers to the empty suffix).
It is straightforward to check that any suffix of y belongs to one of the
buckets A–E (for proof see either Appendix of this supplement or [4]). We
are going to order the suffixes in buckets A–D based on the ordering of the
suffixes for x (Step 1), then merge in the suffixes from E (Steps 2 & 3); since
|E| ≤ 2λ, this will not destroy the linearity of the algorithm. Note that the
order within each bucket is determined by the order of suffixes of x:

in the bucket Aδ,k
: δpkqσ(ρ1) < δpkqσ(ρ2) if ρ1 < ρ2;

in the bucket Bδ: δqσ(ρ1) < δqσ(ρ2) if ρ1 < ρ2;
in the bucket Cδ: δpiqσ(ρ1) < δpiqσ(ρ2) if ρ1 < ρ2;
and in the bucket Dδ: δpjqσ(ρ1) < δpjqσ(ρ2) if ρ1 < ρ2.

Thus, it is straightforward to list the suffixes in each bucket in the correct
order, given the order of the suffixes of x.

We make use of the following notation: if X, Y are sets of suffixes of y,
we write X � Y iff (∀x ∈ X)(∀y ∈ Y)(x < y). The major observation our
algorithm is based on is that the buckets are linearly ordered by �; that is,
pairwise orderings can be made between bucket pairs of types

AA, AB, AC, AD, BB, BC, BD, CC, CD, DD, (1)

based on five mutually exclusive (and exhaustive) conditions on any pair δ1,
δ2 of suffixes of p and/or q:

(C1) δ1 ≺ δ2;

(C2) δ1 � δ2;

(C3) δ1 is a proper prefix of δ2;

(C4) δ2 is a proper prefix of δ1;

(C5) δ1 = δ2 = δ.

Observe that, given δ1 and δ2, to determine which of these conditions holds
requires at most λ letter comparisons (since |δ1| ≤ λ, |δ2| ≤ λ).

Thus, for example, two A buckets can be compared as follows:

(C1) Aδ1,k1

� Aδ2,k2

.

(C2) Aδ2,k2

� Aδ1,k1

.

6

(C3) Let δ2 = δ1δ
′
1 for some nonempty δ′

1:

(a) if δ′
1 ≺ p, then Aδ2,k2

� Aδ1,k1

;

(b) otherwise, Aδ1,k1

� Aδ2,k2

.

(C4) Let δ1 = δ2δ
′
2 for some nonempty δ′

2:

(a) If δ′
2 ≺ p, then Aδ1,k1

� Aδ2,k2

;

(b) otherwise, Aδ2,k2

� Aδ1,k1

.

(C5) (a) If k1 < k2, then Aδ,k1

� Aδ,k2

;

(b) if k1 = k2, then Aδ,k1

= Aδ,k2

;

(c) if k1 > k2, then Aδ,k2

� Aδ,k1

.

It is not very hard to prove that this ordering is correct. The demonstra-
tion for cases (C1), (C2) and (C5) is straightforward. For (C3), observe that
we are comparing δ1p

k1q· · · with δ2p
k2q· · ·, hence pk1q· · · with δ′

1p
k2q· · ·.

Since δ′
1 is a suffix of δ2, it is also a suffix of p and so cannot be a prefix of

p. It follows that either δ′
1 ≺ p or δ′

1 � p, and the result follows. The proof
for (C4) is exactly analogous.

Furthermore the AA ordering is efficient, since the cases (a) and (b) in
(C3) and (C4) can be processed in at most λ constant-time steps in addition
to the λ steps that may be required to identify which condition holds: thus
a total of at most 2λ steps altogether.

The results for the other pairs listed in (1) are similar: the details vary
slightly from one case to another. The main result is that any of the pairs
can be processed in at most 3λ steps, a constant. To avoid distracting the
reader with unnecessary and uninteresting detail, we do not include the other
cases here. For those details, please see either Appendix of this supplement
or [4].

3 The High-Level Logic of the Algorithm

We describe only the recursive step (Step 1) that takes us from x and its
sorted suffixes to the corresponding sorted suffixes of y = σ(x), where σ =
[p, q, i, j]λ. Recall that we assume q < p.

7

1. Create names (A, δ) for every suffix δ of p. (This requires at most λ

steps. Each name will be eventually replaced by a sequence of buckets,
see below.)

2. Sort the names according to the order described in the previous section
for mutual comparison of the four A buckets (of course, according to
(C1)-(C4) only). (This requires at most 2λ3 steps as we are sorting λ

names and each comparison requires ≤ 2λ steps.)

3. Replace every name (A, δ) by a sequence of names (A, δ, k), 1 ≤ k < j.
Let us call the resulting sequence BUCKETS. (Now we have the names
of A buckets in the proper order. This requires at most |y| steps as
the size of BUCKETS is ≤ |y|. Each name (A, δ, k) will eventually be
replaced by a corresponding bucket Aδ,k, see below.)

4. Create names (B, δ) for every suffix δ of p. (This requires at most λ

steps. Each name (B, δ) will eventually be replaced by a corresponding
bucket Bδ, see below.)

5. Merge into BUCKETS all names (B, δ) according to comparisons as
described in comparing A buckets to B buckets. (This requires at
most |BUCKETS|3λ2 steps, as we are merging in λ names and each
comparison requires ≤ 3λ steps, hence at most |y|3λ2 steps.)

6. Create names (C, δ) for every suffix δ of q that is not a suffix of p.
(This requires at most λ2 steps. Each name (C, δ) will eventually be
replaced by a bucket Cδ, see below.)

7. Merge into BUCKETS all names (C, δ) according to comparisons as
described in comparing A buckets to C buckets and B buckets to C

buckets. (This requires at most |BUCKETS|3λ2 steps, hence at most
|y|3λ2 steps.)

8. Create names (D, δ) for every suffix δ of q. (This requires at most λ

steps. Each name (D, δ) will eventually be replaced by a bucket Dδ,
see below.)

9. Merge into BUCKETS all names (D, δ) according to comparisons as
described in comparing A buckets to D buckets, B buckets to D buck-
ets, C buckets to D buckets. (Now we have all required bucket names,

8

except E, in proper order. This requires at most |BUCKETS|3λ2 steps,
hence at most |y|3λ2 steps.)

10. Traverse BUCKETS and replace each name by a sequence of suffixes
according to the sequence of suffixes of x. Let us call this sequence SUF-
FIXES. (We turned the names into proper buckets and merged them all
together in a single list. Now we have all suffixes from buckets A–D in
proper order. This requires at most |y| steps as the size of SUFFIXES
is ≤ |y|.)

11. Merge into SUFFIXES the suffixes from the bucket E. (This requires
at most |SUFFIXES|4λ2 steps, as we are merging in 2λ suffixes, each
of length ≤ 2λ, hence at most |y|4λ2 steps.)

SUFFIXES is now a sorted list of all suffixes of y and it took less than
α|y| steps, where we set α = 2λ3 + 14λ2 + 3λ + 2. Since every reduction
of a complete two-pattern string at least halves its length, altogether the
algorithm with all iterative steps included took less than αn+αn

2
+αn

4
+· · · <

2αn steps, where n is the size of the input string.

4 An example

Let x = aab$, and let σ = [ba, ab, 1, 2]. (Thus q = ab < p = ba.) Hence
y = σ(x) = baabbaabbabaab$.
All nontrivial suffixes of x are (listed in the lexicographic order) a, aa, and
aab. All nontrivial suffixes of p are ba and a, and all nontrivial suffixes of q

are ab and b. Let us list the buckets:
Aba,1 = {babaabσ(ρ) : bρ is a proper suffix of x, ρ can be ε} = {babaab} =
{y[9..14]}.
Aa,1 = {abaabσ(ρ) : bρ is a proper suffix of x, ρ can be ε} = {abaab} =
{y[10..14]}.
Bba = {baabσ(ρ) : ρ is a proper suffix of x} = {baabσ(ab), baabσ(b)} =
{baabbaabbabaab, baabbabaab} = {y[1..14], y[5..14]}.
Ba = {aabσ(ρ) : ρ is a proper suffix of x} = {aabσ(ab), aabσ(b)} =
{aabbaabbabaab, aabbabaab} = {y[2..14], y[6..14]}.
Cab = {abbaabσ(ρ) : aρ is a proper suffix of x} = {abbaabσ(b)} =
{abbaabbabaab} = {y[3..14]}.
Cb = {bbaabσ(ρ) : bρ is a proper suffix of x} = {bbaabσ(b)} =

9

{bbaabbabaab} = {y[4..14]}.
Dab = {abbabaabσ(ρ) : bρ is a proper suffix of x, ρ can be ε} = {abbabaab} =
{y[7..14]}.
Db = {bbabaabσ(ρ) : bρ is a proper suffix of sx, ρ can be ε} = {bbabaab} =
{y[8..14]}.
E = {baab, aab, ab, b} = {y[11..14], y[12..14], y[13..14], y[14..14]}.

First note that we really listed all nontrivial suffixes of y: y[1..14], y[2..14], ...,
y[14..14]. Also note that the suffixes in the buckets are listed in lexicographic
order. Let us list the pairwise relationships of all buckets: Aba,1 � Aa,1 (by
C2), Aba,1 � Bba (by C5), Aba,1 � Ba (by C2), Aba,1 � Cab (by C2),
Aba,1 � Cb (by C4a), Bba � Ba (by C2), Bba � Cab (by C2), Bba � Cb

(by C4a), Bba � Dab (by C2), Bba � Db (by C4a), Ba � Cab (by C3b),
Ba � Cb (by C1), Ba � Dab (by C3b), Ba � Db (by C1), Aba,1 � Dab

(by C2), Aba,1 � Db (by C4a), Aa,1 � Bba (by C1), Aa,1 � Ba (by
C5), Aa,1 � Cab (by C3b), Aa,1 � Cb (by C1), Aa,1 � Dab (by C3b),
Aa,1 � Db (by C1), Cab � Cb (by C1), Cab � Dab (by C5), Cab � Db (by
C1), Cb � Dab (by C1), Cb � Db (by C5), Dab � Db (by C1).

Now follow the 11 steps.

1. create names (A, ba), (A, a)

2. sort them: (A, a), (A, ba) (according to (C2))

3. ”refine” the names to BUCKETS=(A, a, 1), (A, ba, 1)

4. create names to (B, ba), (B, a)

5. merge them into BUCKETS=(B, a), (A, a, 1), (B, ba), (A, ba, 1)

6. create names to (C, ab), (C, b)

7. merge them into BUCKETS=(B, a), (A, a, 1), (C, ab), (B, ba),
(A, ba, 1), (C, b)

8. create names to (D, ba), (D, a)

9. merge them into BUCKETS=(B, a), (A, a, 1), (C, ab), (D, ab), (B, ba),
(A, ba, 1), (C, b), (D, b)

10. replace the names by buckets: SUFFIXES= y[2..14], y[6..14], y[10..14],
y[3..14], y[7..14], y[1..14], y[5..14], y[9..14], y[4..14], y[8..14].

10

11. merge in E bucket: SUFFIXES= y[12..14], y[2..14], y[6..14], y[13..14],
y[10..14], y[3..14], y[7..14], y[14..14], y[11..14], y[1..14], y[5..14],
y[9..14], y[4..14], y[8..14].

5 The Supporting Lemmas

For the proofs, as mentioned above, see either Appendix of this supplement
or [4].

The first lemma establishes that the ordering of suffixes is invariant under
an expansion with q < p.

Lemma 1 Let σ = [p, q, i, j]λ be an expansion and q < p. Let x and y be
two-pattern strings of scope λ and let y = σ(x). Let ρ1, ρ2 be suffixes of x

so that ρ1 < ρ2.
Then σ(ρ1) < σ(ρ2).

The next lemma tells us that after interchanging a and b in a binary
string, we can efficiently list the suffixes of the complement in lexicographic
order knowing the order of suffixes in the original string.

Lemma 2 Let ρ1 < · · · < ρn be the sequence of all suffixes of a binary
string u in ascending lexicographic order. Then there is an efficient linear-
time procedure to list all suffixes of u in ascending lexicographic order.

The next three lemmas are technical lemmas required for some of the
proofs (see website referenced above) that the pairs (1) can be processed
correctly in O(3λ) time. Essentially these lemmas tell us that the ordering
of restrained suffixes of y can be accomplished in at most 2λ constant-time
algorithmic steps.

Lemma 3 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an
expansion, and y = σ(x). Let u be a non-empty binary string and let uqp

be a suffix of a restrained configuration pqp of y and let qp be a restrained
configuration of y. Then uqp �≺ qp and whether uqp≺qp or uqp�qp can
be determined in ≤ 2λ steps.

Lemma 4 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an
expansion, and y = σ(x). Let u be a non-empty binary string and let up

11

be a suffix of a restrained configuration qp of y. Let 1 ≤ k, and let pkq be
a restrained configuration of y. Then up �≺ pkq and whether up≺pkq or
up�pkq can be determined in ≤ 2λ steps.

Lemma 5 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an
expansion, and y = σ(x). Let u be a non-empty binary string and let upkq,
1 ≤ k, be a suffix of a restrained configuration pk+1q or qpkq of y. Let qp

be a restrained configuration of y. Then upkq �≺ qp and whether upkq≺qp

or upkq�qp can be determined in ≤ 2λ steps.

6 Conclusion

Even though it is known that suffixes for all strings can be sorted in lin-
ear time using recursive algorithms, our research verified that for the class of
complete two-pattern strings the sorting can be done iteratively, also in linear
time. The analysis shows that the approach presented here is rather straight-
forward, thus providing additional evidence of how two-pattern strings are
well-suited for computational processing, the main goal of this effort.

Acknowledgements

The first author would like to acknowledge the support and hospitality of
the School of Computing, Curtin University, Perth, Australia during the
research for this paper. The research of both authors was supported in part
by their respective research grants from the Natural Sciences and Engineering
Research Council of Canada.

References

[1] M. Farach, “Optimal suffix tree construction with large alphabets”, in
Proc. 38th Annual Symposium on Foundations of Computer Science,
IEEE (1997) 137–143.

[2] F. Franek, W. Lu, and W. F. Smyth, “Two-pattern strings I — a recog-
nition algorithm”, J. Discrete Algorithms, 1 (2003) 445–460.

12

[3] F. Franek, W. Lu, and W. F. Smyth, “Two-pattern strings II — comput-
ing all repetitions and near-repetitions”, submitted to J. Discrete Algo-
rithms.

[4] F. Franek and W. F. Smyth, “Sorting suffixes of two-pattern strings”,
Technical Report CAS-04-09-FF, Dept. of Comp. & Soft., McMaster
University, October 2004.

[5] P. Ko and S. Aluru, “Space efficient linear time construction of suffix
arrays”, Proceedings of the 14th Annual Symposium CPM, LNCS 2676,
Springer (2003) 200–210.

[6] D. K. Kim, J. S. Sim, H. Park, and K. Park, “Linear-time construction of
suffix arrays”, Proceedings of the 14th Annual Symposium CPM, LNCS
2676, Springer (2003) 186–199.

[7] J. Kärkkäinen and P. Sanders, “Simple linear work suffix array construc-
tion”, Proceedings of the 30th International Colloquium on Automata,
Languages and Programming, LNCS 2719, Springer (2003) 943–955.

[8] U. Manber and G. Myers, “Suffix arrays: a new method for on-line string
searches”, SIAM Journal on Computing 22 (1993) 935–948.

The Appendix starts on next page.

13

Appendix

The notions and notations defined in the paper are not repeated here. The
reader must consult the paper to understand the proofs in this supplement.

Proof of Lemma 1 of the paper.
There are two cases.

1. ρ1 is a prefix of ρ2. Then σ(ρ1) is a prefix of σ(ρ2), and so σ(ρ1) < σ(ρ2).

2. Let k be the first position where ρ1 and ρ2 differ. Then ρ1[k] = a and
ρ2[k] = b as ρ1 < ρ2. Thus σ(ρ1[k]) = piq and σ(ρ2[k]) = pjq. Since
q < p, piq < pjq as i < j. It follows that σ(ρ1) < σ(ρ2).

2

Proof of Lemma 2 of the paper.
Let x be a string (not necessarily binary) of length n. Border array βx of x

is defined by

βx[i] = length of maximal border ofx[1..i].

It can be computed efficiently in linear time (see for instance Computing
Patterns in Strings by B. Smyth, Pearson-Addison Wesley, 2003). Let us
call it prefix border array. We can define suffix border array of x, β̃x,
as

β̃x[i] = length of maximal border ofx[i..n].

It can also be computed efficiently in linear time by observing that
β̃x[i] = βxr [n−i+1], where xr is the reversed string x, i.e. xr[1..n] =
x[n]x[n−1] · · · x[1].
Let us define πx[i] = j, where j is either a maximal suffix x[j..n] that is a
prefix (and hence the maximal border as well) of x[i..n], or j = 0.
Now we can describe our procedure for a binary string u of length n by in-
duction:
Let u[i1..n] < u[i2..n] < · · · < u[in..n] be the ordered suffixes of u.
By induction assume that we have the suffixes u[i1..n], u[i2..n], ..., u[ik−1..n]
properly ordered. We need to know where to insert the suffix u[ik..n]. We
know that all suffixes u[i1..n], u[i2..n], ..., u[ik−1..n] are lexicographically
smaller than u[ik..n]. Consider m < k. If u[im..n] is a prefix of u[ik..n], then

14

u[im..n] is a prefix of u[ik..n] and so u[im..n] < u[ik..n] and im ≤ πu[ik].
Every suffix of u that is a prefix of u[ik..n] is lexicographically smaller
than u[ik..n] and hence must have occurred among u[i1..n], u[i2..n], ...,
u[ik−1..n]. Therefore u[ik..n] must be inserted somewhere after the suffix
u[πu[ik]..n]. On the other hand, if u[im..n] is not a prefix of u[ik..n], then
u[im..n] > u[ik..n]. Therefore the proper place to insert u[ik..n] is right af-
ter the suffix u[πu[ik]..n]. After the insertion, we have the suffixes u[i1..n],
u[i2..n], ..., u[ik..n] properly ordered and the induction can continue. 2

Proof of Lemma 3 of the paper.
Arguing by contradiction, we are assuming that uqp �≺ qp does not hold.
Since u is non-empty, it follows that qp must be a prefix of uqp. Since u is
a prefix of p, the last p of qp and the last p of uqp intersect, contradicting
the primitiveness of p. The second part of the claim follows from the fact
that |qp| ≤ 2λ. 2

Proof of Lemma 4 of the paper.
Arguing by contradiction, we are assuming that up �≺ pkq does not hold. It
follows that up is a prefix of pkq as u is a suffix of q and hence |u| < |q|
and |u| + |p| < k|p| + |q|.

1. if |u| < |p|r, 1 ≤ r ≤ k, r maximal such, then up and the r-th copy of
p from pkq have a non-empty intersection, which contradicts that fact
that p is primitive.

2. if |u| = |p|r, 1 ≤ r ≤ k, r maximal such, then p is a suffix of q, a
contradiction.

3. Thus |u| > |p|k. Since u is a suffix of a restrained q, q = (vpk)tw for
some t ≥ 1 and w being a prefix of vpk.

(a) w = ε. Then p is a suffix of q, a contradiction.

(b) w is a proper prefix of v. Then v = ww′. Then wp is a
prefix of vpkw, hence wp is a prefix of ww′pkw, hence p is a
prefix of w′pkw. If w′ were a prefix of p, it would contradict
the primitiveness of p, and so p must be a prefix of w′. Thus
w′ = pw′′ and v = ww′ = wpw′′. It follows that q = (vpk)tw =
q = (wpw′′pk)tw, contradicting the fact that q is not p-regular.

15

(c) w = v makes q = (wpk)tw contradicting the fact that q is not
p-regular.

(d) w = vprp1 for 0 ≤ r < k, p1 a prefix of p. If p1 = ε, then p is a
suffix of q, a contradiction. Thus p1 6= ε. Thus vprp1p is a prefix
of vpkw. Since r < k, we have p a prefix of p1p, contradicting
the primitiveness of p.

Our assumption lead to a contradiction, and so the first part of the statement
of the lemma holds. The second part of the statement follows from the fact
that |up| < 2λ. 2

Proof of Lemma 5 of the paper.
If u is suffix of p and if |u| > |q|, then |upk| > |qp|. It follows that up �≺ qp:
otherwise qp is a prefix of up making the last p of qp intersect with the last
p of up, contradicting the primitiveness of p.

If u is suffix of p and if |u| = |q|, then |upk| = |qp|. It follows that
up �≺ qp: otherwise qp = up making u = q and so q is a suffix of p, a
contradiction. the last p of up, contradicting the primitiveness of p.

Of course, since up �≺ qp implies that upkq �≺ qp and the proof of the
first part of the statement is completed.

Thus either u is a suffix of p and |u| < |q|, or u is a suffix of q (and so
|u| < |q|). Arguing by contradiction, we are assuming that upkq �≺ qp does
not hold. It follows that u is a prefix of q as |u| < |q|.

1. if |q| < |u|+|p|r, 1 ≤ r ≤ k, then qp and the r-th copy of p in upkq

have a non-empty intersection, which contradicts that fact that p is
primitive.

2. if |q| = |u|+|p|r, 1 ≤ r ≤ k, then p is a suffix of q, a contradiction.

3. Thus |q| > |p|k and so q = (upk)tv for some t ≥ 1 and v being a prefix
of vuk.

(a) v = ε. Then p is a suffix of q, a contradiction.

(b) v is a proper prefix of u. Then u = vv′. Then vp is a prefix
of upkv, hence vp is a prefix of vv′pkv. If v′ were a prefix of
p, it would contradict the primitiveness of p, and so p must be a
prefix of v′. Thus v′ = pv′′ and u = vv′ = vpv′′. It follows that

16

q = (upk)tv = q = (vpv′′pk)tv, contradicting the fact that q is
not p-regular.

(c) v = u makes q = (vpk)tv contradicting the fact that q is not
p-regular.

(d) v = uprp1 for 0 ≤ r < k, p1 a prefix of p. If p1 = ε, then p

is a suffix of q, a contradiction. Thus p1 6= ε. Thus uprp1p is a
prefix of upkuprp1p, and so p1p is a prefix of pk−ruprp1. Since
r < k, k−r ≥ 1 and so we have p prefix of p1p, contradicting the
primitiveness of p.

Our assumption lead to a contradiction, and so the first part of the
statement of the lemma holds. The second part of the statement follows
from the fact that |qp| ≤ 2λ.

2

The major aspect of the algorithm is based on the fact that the buckets
are linearly ordered by �. In the paper only comparisons of two A buckets
is presented. Here we present the complete set of all possible comparisons as
listed in (1) in the paper.

Comparing two A buckets (see Lemma 6 below):

(C1) Aδ1,k1

� Aδ2,k2

.

(C2) Aδ2,k2

� Aδ1,k1

.

(C3) Let δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1 ≺ p, then Aδ2,k2

� Aδ1,k1

;

(b) otherwise, Aδ1,k1

� Aδ2,k2

.

(C4) Let δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2 ≺ p, then Aδ1,k1

� Aδ2,k2

;

(b) otherwise, Aδ2,k2

� Aδ1,k1

.

(C5) (a) If k1 < k2, then Aδ,k1

� Aδ,k2

;

17

(b) if k1 = k2, then Aδ,k1

= Aδ,k2

;

(c) if k1 > k2, then Aδ,k2

� Aδ,k1

.

Note that computing which case it is takes at most 2λ steps.

Comparing an A bucket and a B bucket (see Lemma 7 below):

(C1) Aδ1,k
� Bδ2

.

(C2) Bδ2

� Aδ1,k
.

(C3) Let δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1 ≺ p, then Bδ2

� Aδ1,k
;

(b) otherwise, Aδ1,k
� Bδ2

.

(C4) Let δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2p

kq ≺ qp, then Aδ1,k
� Bδ2

;

(b) otherwise, Bδ2

� Aδ1

.

(C5) Bδ � Aδ,k
.

Note that computing which case it is takes at most 3λ steps.

Comparing an A bucket and a C bucket (see Lemma 8 below):

(C1) Aδ1,k
� Cδ2

.

(C2) Cδ2

� Aδ1,k
.

(C3) Let δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1p ≺ pkq, then Cδ2

� Aδ1,k
;

(b) otherwise, Aδ1,k
� Cδ2

.

(C4) Let δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2 ≺ p, then Aδ1,k

� Cδ2

;

(b) otherwise, Cδ2

� Aδ1,k
.

18

(C5) Either Aδ,k
is not defined, or Cδ is not defined.

Note that computing which case it is takes at most 3λ steps.

Comparing an A bucket and a D bucket (see Lemma 9 below):

(C1) Aδ1,k
� Dδ2

.

(C2) Dδ2

� Aδ1,k
.

(C3) Let δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1p ≺ pkq, then Dδ2

� Aδ1,k
;

(b) otherwise, Aδ1,k
� Dδ2

.

(C4) Let δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2 ≺ p, then Aδ1,k

� Dδ2

;

(b) otherwise, Dδ2

� Aδ1,k
.

(C5) Aδ,k
� Dδ.

Note that computing which case it is takes at most 3λ steps.

Comparing two B buckets (see Lemma 10 below):

(C1) Bδ1

� Bδ2

.

(C2) Bδ2

� Bδ1

.

(C3) Let δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1qp ≺ qp, then Bδ2

� Bδ1

;

(b) otherwise, Bδ1

� Bδ2

.

(C4) Let δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2qp ≺ qp, then Bδ1

� Bδ2

;

(b) otherwise, Bδ2

� Bδ1

.

(C5) Bδ1

= Bδ2

.

19

Note that computing which case it is takes at most 3λ steps.

Comparing a B bucket and a C bucket (see Lemma 11 below):

(C1) Bδ1

� Cδ2

.

(C2) Cδ2

� Bδ1

.

(C3) Let δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1p

iq ≺ qp, then Cδ2

� Bδ1

;

(b) otherwise, Bδ1

� Cδ2

.

(C4) Let δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2 ≺ p, then Bδ1

� Cδ2

;

(b) otherwise, Cδ2

� Bδ1

.

(C5) Bδ � Cδ.

Note that computing which case it is takes at most 3λ steps.

Comparing a B bucket and a D bucket (see Lemma 12 below):

(C1) Bδ1

� Dδ2

.

(C2) Dδ2

� Bδ1

.

(C3) Let δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1p

iq ≺ qp, then Dδ2

� Bδ1

;

(b) otherwise, Bδ1

� Dδ2

.

(C4) Let δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2 ≺ p, then Bδ1

� Dδ2

;

(b) otherwise, Dδ2

� Bδ1

.

(C5) Bδ � Dδ.

20

Note that computing which case it is takes at most 3λ steps.

Comparing two C buckets (see Lemma 13 below):

(C1) Cδ1

� Cδ2

.

(C2) Cδ2

� Cδ1

.

(C3) Let δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1p ≺ piq, then Cδ2

� Cδ1

;

(b) otherwise, Cδ1

� Cδ2

.

(C4) Let δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2p ≺ piq, then Cδ1

� Cδ2

;

(b) otherwise, Cδ2

� Cδ1

.

(C5) Cδ1

= Cδ2

.

Note that computing which case it is takes at most 3λ steps.

Comparing a C bucket and a D bucket (see Lemma 14 below):

(C1) Cδ1

� Dδ2

.

(C2) Dδ2

� Cδ1

.

(C3) Let δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1p ≺ piq, then Dδ2

� Cδ1

;

(b) otherwise, Cδ1

� Dδ2

.

(C4) Let δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2p ≺ pjq, then Cδ1

� Dδ2

;

(b) otherwise, Dδ2

� Cδ1

.

(C5) Cδ � Dδ.

21

Note that computing which case it is takes at most 3λ steps.

Comparing two D buckets (see Lemma 15 below):

(C1) Dδ1

� Dδ2

.

(C2) Dδ2

� Dδ1

.

(C3) Let δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1p ≺ pjq, then Dδ2

� Dδ1

;

(b) otherwise, Dδ1

� Dδ2

.

(C4) Let δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2p ≺ pjq, then Dδ1

� Dδ2

;

(b) otherwise, Dδ2

� Dδ1

.

(C5) Dδ1

= Dδ2

.

Note that computing which case it is takes at most 3λ steps.

The supporting lemmas and their proofs

Lemma 6 1. If δ1 ≺ δ2, then Aδ1,k1

� Aδ2,k2

.

2. If δ1 � δ2, then Aδ2,k2

� Aδ1,k1

.

3. If δ1 is a proper prefix of δ2, then δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1 ≺ p, then Aδ2,k2

� Aδ1,k1

, otherwise

(b) δ′
1 � p and Aδ1,k1

� Aδ2,k2

.

4. If δ2 is a proper prefix of δ1, then δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2 ≺ p, then Aδ1,k1

� Aδ2,k2

, otherwise

(b) δ′
2 � p and Aδ2,k2

� Aδ1,k1

.

5. If δ1 = δ2 = δ, then

22

(a) If k1 < k2, then Aδ,k1

� Aδ,k2

.

(b) If k1 = k2, then Aδ,k1

= Aδ,k2

.

(c) If k1 > k2, then Aδ,k2

� Aδ,k1

.

Proof The proofs of (1) and (2) are straightforward.
The proof of (3): We are comparing δ1p

k1q· · · with δ2p
k2q· · ·, hence pk1q· · ·

with δ′
1p

k2q· · ·. Since δ′
1 is a suffix of δ2, it is a suffix of p and hence cannot

be a prefix of p. It follows that either δ′
1 ≺ p or δ′

1 � p. The claim follows.
The proof of (4) is identical to the proof of (3).
The proof of (5) is straightforward. 2

Lemma 7 1. If δ1 ≺ δ2, then Aδ1,k
� Bδ2

.

2. If δ1 � δ2, then Bδ2

� Aδ1,k
.

3. If δ1 is a proper prefix of δ2, then δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1 ≺ p, then Bδ2

� Aδ1,k
, otherwise

(b) δ′
1 � p and Aδ1,k

� Bδ2

.

4. If δ2 is a proper prefix of δ1, then δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2p

kq ≺ qp, then Aδ1,k
� Bδ2

, otherwise

(b) δ′
2p

kq � qp and Bδ2

� Aδ1,k
.

5. If δ1 = δ2 = δ, then Bδ � Aδ,k
.

Proof The proofs of (1) and (2) are straightforward.
The proof of (3): We are comparing δ1p

kq· · · with δ2q· · ·, hence pkq· · · with
δ′

1q· · ·. Since δ′
1 is a suffix of δ2, it is a suffix of p and hence cannot be a

prefix of p. It follows that either δ′
1 ≺ p or δ′

1 � p. The claim follows.
The proof of (4): We are comparing δ1p

kq· · · with δ2qp· · ·, hence δ′
2p

kq· · ·
with qp· · ·. According to Lemma 5 from the paper, δ′

2p
kq �≺ qp. The claim

follows.
The proof of (5) follows from the fact that q ≺ p. 2

23

Lemma 8 1. If δ1 ≺ δ2, then Aδ1,k
� Cδ2

.

2. If δ1 � δ2, then Cδ2

� Aδ1,k
.

3. If δ1 is a proper prefix of δ2, then δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1p ≺ pkq, then Cδ2

� Aδ1,k
, otherwise

(b) δ′
1p � pkq and Aδ1,k

� Cδ2

.

4. If δ2 is a proper prefix of δ1, then δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2 ≺ p, then Aδ1,k

� Cδ2

, otherwise

(b) δ′
2 � p and Cδ2

� Aδ1,k
.

5. If δ1 = δ2 = δ, then either Aδ,k
is not defined, or Cδ is not defined.

Proof The proofs of (1) and (2) are straightforward.
The proof of (3): We are comparing δ1p

kq· · · with δ2p
iq· · ·, hence pkq· · ·

with δ′
1p

iq· · ·. Since δ′
1 is a suffix of q, according to Lemma 5 from the

paper, δ′
1p �≺ pkq. The claim follows.

The proof of (4): We are comparing δ1p
kq· · · with δ2p

iq· · ·, hence δ′
2p

kq· · ·
with piq· · ·. Since δ′

2 is a suffix of δ1, and so a suffix of p, it cannot be a
prefix of p and thus δ′

2 �≺ p. The claim follows.
The proof of (5) follows from the definitions of the buckets. 2

Lemma 9 1. If δ1 ≺ δ2, then Aδ1,k
� Dδ2

.

2. If δ1 � δ2, then Dδ2

� Aδ1,k
.

3. If δ1 is a proper prefix of δ2, then δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1p ≺ pkq, then Dδ2

� Aδ1,k
, otherwise

(b) δ′
1p � pkq and Aδ1,k

� Dδ2

.

4. If δ2 is a proper prefix of δ1, then δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2 ≺ p, then Aδ1,k

� Dδ2

, otherwise

(b) δ′
2 � p and Dδ2

� Aδ1,k
.

24

5. If δ1 = δ2 = δ, then Aδ,k
� Dδ.

Proof The proofs of (1)-(4) are identical to the proofs of (1)-(4) of Lemma 3.
The proof of (5): We are comparing δpkq· · · with δpjq· · · and hence q· · ·
with pj−kq· · ·. Since q ≺ p, the claim follows. 2

Lemma 10 1. If δ1 ≺ δ2, then Bδ1

� Bδ2

.

2. If δ1 � δ2, then Bδ2

� Bδ1

.

3. If δ1 is a proper prefix of δ2, then δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1qp ≺ qp, then Bδ2

� Bδ1

, otherwise

(b) δ′
1qp � qp and Bδ1

� Bδ2

.

4. If δ2 is a proper prefix of δ1, then δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2qp ≺ qp, then Bδ1

� Bδ2

, otherwise

(b) δ′
2qp � qp and Bδ2

� Bδ1

.

5. If δ1 = δ2, then Bδ1

= Bδ2

.

Proof The proofs of (1) and (2) are straightforward.
The proof of (3): We are comparing δ1qp· · · with δ2qp· · ·, and hence qp· · ·
with δ′

1qp· · ·. Since δ′
1 is a suffix of δ2 and so a suffix of p, according to

Lemma 3 from the paper, δ′
1qp �≺ qp and the claim follows.

The proof of (4) is identical to the proof of (3).
(5) is obvious. 2

Lemma 11 1. If δ1 ≺ δ2, then Bδ1

� Cδ2

.

2. If δ1 � δ2, then Cδ2

� Bδ1

.

3. If δ1 is a proper prefix of δ2, then δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1p

iq ≺ qp, then Cδ2

� Bδ1

, otherwise

(b) δ′
1p

iq � qp and Bδ1

� Cδ2

.

25

4. If δ2 is a proper prefix of δ1, then δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2 ≺ p, then Bδ1

� Cδ2

, otherwise

(b) δ′
2 � p and Cδ2

� Bδ1

.

5. If δ1 = δ2 = δ, then Bδ � Cδ.

Proof The proofs of (1) and (2) are straightforward.
The proof of (3): We are comparing δ1qp· · · with δ2p

iq· · ·, and hence qp· · ·
with δ′

1p
iq· · ·. Since δ′

1 is a suffix of q, according to Lemma 5 from the
paper, δ′

1p
iq �≺ qp and the claim follows.

The proof of (4): We are comparing δ1qp· · · with δ2p
iq· · ·, and hence δ′

2qp· · ·
with piq· · ·. Since δ′

2 is a suffix of δ1 and so a suffix of p, it cannot be a
prefix of p and thus δ′

2 �≺ p and the claim follows.
The proof of (5): We are comparing δqp· · · with δpiq· · ·, and hence qp· · ·
with piq· · ·. Since q ≺ p, the claim follows. 2

Lemma 12 1. If δ1 ≺ δ2, then Bδ1

� Dδ2

.

2. If δ1 � δ2, then Dδ2

� Bδ1

.

3. If δ1 is a proper prefix of δ2, then δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1p

iq ≺ qp, then Dδ2

� Bδ1

, otherwise

(b) δ′
1p

iq � qp and Bδ1

� Dδ2

.

4. If δ2 is a proper prefix of δ1, then δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2 ≺ p, then Bδ1

� Dδ2

, otherwise

(b) δ′
2 � p and Dδ2

� Bδ1

.

5. If δ1 = δ2 = δ, then Bδ � Dδ.

Proof Identical to the proof of Lemma 6. 2

Lemma 13 1. If δ1 ≺ δ2, then Cδ1

� Cδ2

.

2. If δ1 � δ2, then Cδ2

� Cδ1

.

26

3. If δ1 is a proper prefix of δ2, then δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1p ≺ piq, then Cδ2

� Cδ1

, otherwise

(b) δ′
1p � piq and Cδ1

� Cδ2

.

4. If δ2 is a proper prefix of δ1, then δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2p ≺ piq, then Cδ1

� Cδ2

, otherwise

(b) δ′
2p � piq and Cδ2

� Cδ1

.

5. If δ1 = δ2, then Cδ1

= Cδ2

.

Proof The proofs of (1) and (2) are straightforward.
The proof of (3): We are comparing δ1p

iq· · · with δ2p
iq· · ·, and hence piq· · ·

with δ′
1p

iq· · ·. Since δ′
1 is a suffix of q, according to Lemma 4 from the paper,

δ′
1p

i �≺ piq and the claim follows.
The proof of (4) is the same as the proof of (3).
(5) is obvious. 2

Lemma 14 1. If δ1 ≺ δ2, then Cδ1

� Dδ2

.

2. If δ1 � δ2, then Dδ2

� Cδ1

.

3. If δ1 is a proper prefix of δ2, then δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1p ≺ piq, then Dδ2

� Cδ1

, otherwise

(b) δ′
1p � piq and Cδ1

� Dδ2

.

4. If δ2 is a proper prefix of δ1, then δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2p ≺ pjq, then Cδ1

� Dδ2

, otherwise

(b) δ′
2p � pjq and Dδ2

� Cδ1

.

5. If δ1 = δ2 = δ, then Cδ � Dδ.

Proof The proofs of (1)-(4) are identical to the proofs of (1)-(4) of
Lemma 8.
The proof of (5): We are comparing δpiq· · · with δpjq· · ·, and hence q· · ·
with pj−iq· · ·. Since q ≺ p, the claim follows. 2

27

Lemma 15 1. If δ1 ≺ δ2, then Dδ1

� Dδ2

.

2. If δ1 � δ2, then Dδ2

� Dδ1

.

3. If δ1 is a proper prefix of δ2, then δ2 = δ1δ
′
1 for some nonempty δ′

1.

(a) If δ′
1p ≺ pjq, then Dδ2

� Dδ1

, otherwise

(b) δ′
1p � pjq and Dδ1

� Dδ2

.

4. If δ2 is a proper prefix of δ1, then δ1 = δ2δ
′
2 for some nonempty δ′

2.

(a) If δ′
2p ≺ pjq, then Dδ1

� Dδ2

, otherwise

(b) δ′
2p � pjq and Dδ2

� Dδ1

.

5. If δ1 = δ2, then Dδ1

= Dδ2

.

Proof The proofs of (1) and (2) are straightforward.
The proof of (3): We are comparing δ1p

jq· · · with δ2p
jq· · ·, and hence pq· · ·

with δ′
1pq· · ·. Since δ′

1 is a suffix of q, according to Lemma 4 from the paper,
δ′

1p �≺ pq and the claim follows.
The proof of (4) is the same as the proof of (3).
(5) is obvious. 2

28

