Chapter 5

Divide and Conquer

lmm

PEARSON Slides by Kevin Wayne.

e — ©

TV f\”py E]ntn‘ 2005dP arson-Addison Wesley.
Wesley rignts res

\
r\ JON KlEINBERG EVA TARDOS
\

Divide-and-Conquer

Divide-and-conquer.
« Break up problem into several parts.
« Solve each part recursively.
« Combine solutions to sub-problems into overall solution.

Most common usage.
- Break up problem of size n into two equal parts of size 3n.
« Solve two parts recursively.
« Combine two solutions into overall solution in linear time.

Consequence.
. Brute force: n2.
. Divide-and-conquer: n log n. Divide et impera.
Veni, vidi, vici.
- Julius Caesar

5.1 Mergesort

Sorting

Sorting. Given n elements, rearrange in ascending order.

Obvious sorting Non-obvious sorting
applications. applications.
List files in a Data compression.
directory. Computer graphics.
Organize an MP3 Interval scheduling.
library. Computational biology.
List names in a phone Minimum spanning tree.
book. Supply chain
Display Google management.
PageRank results. Simulate a system of
particles.
Problems become easier Book recommendations
once sorted. on Amazon.

Find the median. Load balancing on a

Mergesort

Mergesort.
. Divide array into two halves.
« Recursively sort each half.
« Merge two halves o make sorted whole.

Jon von Neumann (1945)

A L G O R I T H M S divide O(1)
A G L O R H I M S T sort 2T(n/2)

A G H I L M O R S T merge O(n)

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? >
. Linear number of comparisons.
« Use temporary array.

e 2 Bl - -
A G H I-

Challenge for the bored. In-place merge. [Kronrud, 1969]
T

using only a constant amount of extra storage

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

0 if n=1
Th) = T([n/2]) + T(|n/2|) + n otherwis
“solvelefthalf solve right half Merging

Solution. T(n) = O(n log, n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace < with =.

Proof by Recursion Tree

0 if n=1
T@)= 2T(n/2) + n otherwis

ﬁ_/ hy—t'_
sorting both halve&ierging

T(n)

f////////////*

T(n/2) T(n/2)

N N

T(n/4) T(n/4) T(n/4) T(n/4)

T2) T2 T@) T@ T@ T@) T2 T@)

log,n

2(n/2)
4(n/4)
2k(n/ 2¥)

n/2(2)

nlog,n

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.
t
assumes n is a power of 2
0 if n=1
T@)= 2T(n/2) + n otherwis

N ——
sorting both halve®erging

Pf. Forn»> 1. T(n) 2T (n/2)

n n

T(n/2)
n/2

T(n/4)

= + 1+ 1

n/4

= T{n/n) + 1+ + 1
n/n —

logy n
= logn

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.
t

assumes n is a power of 2

0 if n=1
T@)= 2T(n/2) + n otherwis
— ——
sorting both halve®erging

Pf. (by induction on n)

= Base case: n=1.

« Inductive hypothesis: T(n) = nlog, n.
« Goal: show that T(2n) = 2n log, (2n).

T(2n) = 2T(m) + 2n
= Znlogn + 2n
= 2(log(2n)-1) + 2n
= 2nlogy(2n)

10

Claim. If T(n) satisfies the following recurrence, then T(n) <n{[lgn].

Twh) = \T([n/2]) + \T(|n/2|) + n

Analysis of Mergesort Recurrence

0

solve left half solve right hal

Pf. (by induction on n)
« Base case: n=1
« Definen;=[n/2], n,=[n/2].
« Induction step: assume true forl,?2, .., n-1.

T(n)

IA

IA

IA

T(n1)+

”1[gn, |

”1[lgn,
7 [lgn,]

n([lgn]
n| lgn]

T(n,) + n

+ ny lgn,| + n
+ ny[lgn,| + n
+ n

1)+ n

——
f merging

f
if n=1 log"
otherwis

n, = [n/2
- [2“@1/2]
= 2l /2

= Ign, = [lgn] -1

1

5.3 Counting Inversions

Counting Inversions

Music site tries fo match your song preferences with others.
= You rank n songs.

« Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
« Myrank: 1,2, .., n.
« Your rank: ay, a,, ..., Q.
» Songs iand jinverted if i< j, but ;> a;.

Songs
A8 c D E
e 1 2 3 4 5

B : 3 2 2 5
e

Inversions
3-2,4-2

M

Brute force: check all ®(n?) pairs i and j.

13

Applications

Applications.
- Voting theory.
« Collaborative filtering.
« Measuring the "sortedness" of an array.
. Sensitivity analysis of Google's ranking function.
« Rank aggregation for meta-searching on the Web.

« Nonparametric statistics (e.g., Kendall's Tau distance).

14

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

1 5 4 8 10 2 6 9 12 11 3 7

15

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into two pieces.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

HEIRIEIEE BEEEER

16

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into two pieces.
« Conquer: recursively count inversions in each half.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).
DOODDE OOOEEE o oo
5 blue-blue inversions 8 green-green inversions

5-4,5-2,4-2,8-2,10-2 6-3,9-3,9-7,12-3,12-7,12-11, 11-3, 11-7

17

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into two pieces.
« Conquer: recursively count inversions in each half.
« Combine: count inversions where a; and g; are in different halves,
and return sum of three quantities.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1)
DODNON DOBEABE o o/

5 blue-blue inversions 8 green-green inversions

9 blue-green inversions Combine: 227

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total =5+8+9 =22,

18

Counting Inversions: Combine

Combine: count blue-green inversions
« Assume each half is sorted. D
. Count inversions where a; and g; are in different halves.
« Merge two sorted halves into sorted whole.

to maintain sorted invariant

BEODDE BNnEns
6 3 2 2 0 O
13 blue-green inversions: 6 +3+2+2+0+0 Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25 Merge: O(nh)

T(n) < T(|_n J)+T([n])+O(n) = T(n)= O(nlogn)

19

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count (L) {
if list L has one element
return 0 and the list L

Divide the list into two halves A and B
(r,, A) < Sort-and-Count (A7)

(rz, B) < Sort-and-Count (B)

(r , L) < Merge-and-Count (A, B)

return r = r, + r; + r and the sorted list L

20

5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
« Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.
. Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and g with ©(h?) comparisons.
1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

T

to make presentation cleaner

22

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

23

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

..
L
.t e,
:. . .. (]
(] (] ®
(] .. e o
(]
(] PP . (]
(]
... (] ..
(]
. .. (] ® (]
(]

24

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly n points on each side.

25

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly 3n points on each side.

» Conquer: find closest pair in each side recursively.

26

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly n points on each side.
« Conquer: find closest pair in each side recursively.
« Combine: find closest pair with one point in each side. «— seemslike (n?)
« Return best of 3 solutions.

° L o . °
° ° °
° ° ® °
°
) 80/. /21
° ® °
°
1.2/0 ® ° ° ° o
° ° ® o
® °

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 6.

d = min(12, 21)

28

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < d.
« Observation: only need to consider points within d of line L.

° 5 = min(12, 21)

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < d.
« Observation: only need to consider points within d of line L.

« Sort points in 28-strip by their y coordinate.

5 = min(12, 21)

30

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < d.
« Observation: only need to consider points within d of line L.

« Sort points in 28-strip by their y coordinate.

« Only check distances of those within 11 positions in sorted list!

5 = min(12, 21)

31

Closest Pair of Points

Def. Let s; be the point in the 25-strip, with
the ith smallest y-coordinate.

00
Claim. If |i-j| =12, then the distance between | ©—j
s;and s; is at least o. o
Pf. |
- No two points lie in same 38-by-38 box.
« Two points at least 2 rows apart
have distance = 2(%6). = 2 rows | o
K
o . — @ @
Fact. Still true if we replace 12 with 7.
2,
(25)
00
) 0

(N[(N[
o% o%

(N[
7]

32

Closest Pair Algorithm

Closest-Pair(p;, .., P,) {
Compute separation line L such that half the points
are on one side and half on the other side.

d; = Closest-Pair(left half)
9, Closest-Pair (right half)
0 = min(j,, 9,)

Delete all points further than 0 from separation line L
Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these

distances is less than §, update 0.

return 0.

O(n log n)

2T(n/ 2)

O(n)

O(n log n)

O(n)

33

Closest Pair of Points: Analysis
Running time.

T(n) = 2T(n/2) + O(nlogn) = T(n) = O(n logf)

Q. Can we achieve O(n log n)?
A. Yes. Don't sort points in strip from scratch each time.
« Each recursive returns two lists: all points sorted by y coordinate,

and all points sorted by x coordinate.
« Sort by merging two pre-sorted lists.

T(n) = 2T(n/2) + O(n) = T(n) = O(nlogn)

34

5.5 Integer Multiplication

Integer Arithmetic

Add. Given two n-digit integers a and b, compute a + b.
« O(n) bit operations.

Multiply. Given two n-digit integers a and b, compute a x b.

. Brute force solution: ®(nh?) bit operations.

11010101
*01111101
110101010
Multiply 0000000O0O
110101010
110101010
1 1 1 1 1 1 O 1 110101010
1 1 0 1 O 1 O 1 110101010
+ O0 1 1 1 1 1 O 1 110101010
1 o0 1 o0 1 O O 1 O 000000000
Add 01101000000000010

36

Divide-and-Conquer Multiplication: Warmup

To multiply two n-digit integers:
- Multiply four n-digit integers.
. Add two 3n-digit integers, and shift to obtain result.

n /2

y o= 2%+ y
Xy (2”/2-x1+ xo) (2”/2-3/1 +yo) = 2" x + 2”/2-(x1y0+x0y1) + XoVo

Tw) = 41(n/2) + () = T@)=0(x2)

H_.J
recursive calls add, shift

T

assumes n is a power of 2

37

Karatsuba Multiplication

To multiply two n-digit integers:
. Add two zn digit integers.
« Multiply three 3n-digit integers.
. Add, subtract, and shift $n-digit integers to obtain result.

= 2n/2')’1 +)o
7 n /2
xy = 2'x;y + 2 -(x1yo+x0y1) T XoVo

= 2" xy + 272 (05 +x0) 0+ 70) = x¥y1 = Xqvo) + XaVo
A B A Cc C

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers
in O(n!8%) bit operations.

T@) s\T(|n72]) + T([n/Z]) + T(1+[n/2]) + 0Oh)

S
recursivecalls add,subtracshifi

= T@) = 0(™°%°) = 0(™*)

38

Karatsuba: Recursion Tree

T(n)={ 3T((r)z/2)+ n gtﬁ;rlvis T(")=IO§) (3 - (3)1;(1921”_1 - 32
T(n) n
/ \
T(n/2) T(n/2) T(n/2) 3(n/2)
SN NN
T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) 9(n/4)
T(n/ 2% 3k(n / 2¥)

T2 T@ TE@) T T@) T@2) T2 T() 39n(2)

39

Matrix Multiplication

Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.

Cii G2 Cr a,;; dy a,, by by, b,

n
— Coi Cop =+ C a a - a b,, b b
¢y = S auby Al I | I Al
k=1 : . .
_Cn1 CnZ e Cnn | _an1 anZ e ann | _brﬂ an e bnn |

Brute force. ©(n3) arithmetic operations.

Fundamental question. Can we improve upon brute force?

41

Matrix Multiplication: Warmup

Divide-and-conquer.

. Divide: partition A and B into 3n-by-3n blocks.

. Conquer: multiply 8 $nh-by-3n recursively.

« Combine: add appropriate products using 4 matrix additions.

[CH C1j _ [AH A1j y [BH B1j Cii = (41xByy) + (42x Byy)
Cy G - Ao 45 B> B> Crz = (d1xByp) + (4i2x Byp)
Coy = (A21><B1 1) + (A22X321)
Cop = (A21><B12) + (Azzx Bzz)

T(n)= 8T(n/2) + \ 0 (n°) = T()=0(>)

%K_J ~ :
recursive calls add, form submatrices

42

Matrix Multiplication: Key Idea

Key idea. multiply 2-by-2 block matrices with only 7 multiplications.

G C1j [AH A1j [BH B1j
- X P = A.x(B;>—-B
[Cm ¢, Ay A4 B,, B, 1 1% (B12— B2p)
PZ = (A11+A12)XB22
P3 = (A2-|+A22)XB-”

Gy = B+F-PB+F Py = Aypx(Byi—Byy)

G, = A+5h P = (dyq+ Ax0)x (Byq+ Byp)
Co1 = B+h P = (4 455)x (By1+ Byy)
G = B+R-B-5 P = (41— A1) (By1+ By o)

- 7 multiplications.
- 18 = 10 + 8 additions (or subtractions).

43

Fast Matrix Multiplication

Fast matrix multiplication. (Strassen, 1969)
. Divide: partition A and B into 3n-by-3n blocks.
. Compute: 14 3n-by-3n matrices via 10 matrix additions.
. Conquer: multiply 7 3n-by-3n matrices recursively.

» Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.
« Assume n is a power of 2.
« T(n) = # arithmetic operations.

T()= 7T(n/2)+ O(rn?) = Th)=0n"%2")=0n*?"

%f_/ %/_J
recursive calls add, subtract

44

Fast Matrix Multiplication in Practice

Implementation issues.

Sparsity.

Caching effects.

Numerical stability.

Odd matrix dimensions.

Crossover to classical algorithm around n = 128,

Common misperception: "Strassen is only a theoretical curiosity."

Advanced Computation Group at Apple Computer reports 8x speedup

on G4 Velocity Engine when n ~ 2,500.

Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax=b, determinant, eigenvalues, and other
matrix ops.

45

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969] 0(n"°%")= 002"

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971] 01 °%5) = 0 (1 259

Q. Two 3-by-3 matrices with only 21 scalar multiplications?
A. Also impossible. 0 (n°%2") = 0(n %'")

Q. Two 70-by-70 matrices with only 143,640 scalar multiplications?
A. Yes! [Pan, 1980] © (110970143649 _), 289

Decimal wars.
. December, 1979: O(n2521813)
. January, 1980: O(n?521801),

46

Fast Matrix Multiplication in Theory

Best known. O(n2376) [Coppersmith-Winograd, 1987.]
Conjecture. O(n%*t) for any ¢ > 0.

Caveat. Theoretical improvements o Strassen are progressively less
practical.

47

