
1

Chapter 7

Network Flow

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

3

Maximum Flow and Minimum Cut

Max flow and min cut.
■  Two very rich algorithmic problems.
■  Cornerstone problems in combinatorial optimization.
■  Beautiful mathematical duality.

Nontrivial applications / reductions.

■  Data mining.
■  Open-pit mining.
■  Project selection.
■  Airline scheduling.
■  Bipartite matching.
■  Baseball elimination.
■  Image segmentation.
■  Network connectivity.

■  Network reliability.
■  Distributed computing.
■  Egalitarian stable matching.
■  Security of statistical data.
■  Network intrusion detection.
■  Multi-camera scene reconstruction.
■  Many many more . . .

4

Flow network.
■  Abstraction for material flowing through the edges.
■  G = (V, E) = directed graph, no parallel edges.
■  Two distinguished nodes: s = source, t = sink.
■  c(e) = capacity of edge e.

Minimum Cut Problem

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4
capacity

source sink

5

Def. An s-t cut is a partition (A, B) of V with s ∈ A and t ∈ B.

Def. The capacity of a cut (A, B) is:

Cuts

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

 Capacity = 10 + 5 + 15
 = 30

 A

€

cap(A, B) = c(e)
e out of A
∑

6

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4
 A

Cuts

Def. An s-t cut is a partition (A, B) of V with s ∈ A and t ∈ B.

Def. The capacity of a cut (A, B) is:

€

cap(A, B) = c(e)
e out of A
∑

 Capacity = 9 + 15 + 8 + 30
 = 62

7

Min s-t cut problem. Find an s-t cut of minimum capacity.

Minimum Cut Problem

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 A

 Capacity = 10 + 8 + 10
 = 28

8

Def. An s-t flow is a function that satisfies:
■  For each e ∈ E: (capacity)
■  For each v ∈ V – {s, t}: (conservation)

Def. The value of a flow f is:

Flows

4

0

0

0

0 0

0 4 4

0
0

0

Value = 4 0

€

f (e)
e in to v
∑ = f (e)

e out of v
∑

€

0 ≤ f (e) ≤ c(e)

capacity
flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

€

v(f) = f (e)
e out of s
∑ .

4

9

Def. An s-t flow is a function that satisfies:
■  For each e ∈ E: (capacity)
■  For each v ∈ V – {s, t}: (conservation)

Def. The value of a flow f is:

Flows

10

6

6

11

1 10

3 8 8

0
0

0

11

capacity
flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 24

€

f (e)
e in to v
∑ = f (e)

e out of v
∑

€

0 ≤ f (e) ≤ c(e)

€

v(f) = f (e)
e out of s
∑ .

4

10

Max flow problem. Find s-t flow of maximum value.

Maximum Flow Problem

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity
flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 28

11

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 24

€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

4

A

12

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

 Value = 6 + 0 + 8 - 1 + 11
 = 24

4

11

A

13

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

 Value = 10 - 4 + 8 - 0 + 10
 = 24

4

A

14

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

Pf.

€

f (e)
e out of A
∑ − f (e) = v(f)

e in to A
∑ .

€

v(f) = f (e)
e out of s
∑

=
v ∈A
∑ f (e)

e out of v
∑ − f (e)

e in to v
∑

⎛

⎝
⎜

⎞

⎠
⎟

= f (e)
e out of A
∑ − f (e).

e in to A
∑

by flow conservation, all terms
except v = s are 0

15

Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the
value of the flow is at most the capacity of the cut.

Cut capacity = 30 ⇒ Flow value ≤ 30

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

Capacity = 30

A

16

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have
v(f) ≤ cap(A, B).

Pf.

 ▪

Flows and Cuts

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≤ f (e)
e out of A
∑

≤ c(e)
e out of A
∑

= cap(A,B)
s

t

A B

 7

6

 8
4

17

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

 Value of flow = 28
Cut capacity = 28 ⇒ Flow value ≤ 28

10

9

9

14

4 10

4 8 9

1

0 0

0

14

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0 A

18

Towards a Max Flow Algorithm

Greedy algorithm.
■  Start with f(e) = 0 for all edge e ∈ E.
■  Find an s-t path P where each edge has f(e) < c(e).
■  Augment flow along path P.
■  Repeat until you get stuck.

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0

19

Towards a Max Flow Algorithm

Greedy algorithm.
■  Start with f(e) = 0 for all edge e ∈ E.
■  Find an s-t path P where each edge has f(e) < c(e).
■  Augment flow along path P.
■  Repeat until you get stuck.

s

1

2

t

20

Flow value = 20

10

10 20

30

0 0

0 0

0

X

X

X

20

20

20

20

Towards a Max Flow Algorithm

Greedy algorithm.
■  Start with f(e) = 0 for all edge e ∈ E.
■  Find an s-t path P where each edge has f(e) < c(e).
■  Augment flow along path P.
■  Repeat until you get stuck.

greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20

opt = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

locally optimality ⇒ global optimality

21

Residual Graph

Original edge: e = (u, v) ∈ E.
■  Flow f(e), capacity c(e).

Residual edge.
■  "Undo" flow sent.
■  e = (u, v) and eR = (v, u).
■  Residual capacity:

Residual graph: Gf = (V, Ef).
■  Residual edges with positive residual capacity.
■  Ef = {e : f(e) < c(e)} ∪ {eR : c(e) > 0}.

u v 17

6

capacity

u v 11

residual capacity

 6
residual capacity

flow

€

c f (e) =
c(e)− f (e) if e ∈ E
f (e) if eR ∈ E

⎧
⎨
⎩

Residual graphs

22

Ford-Fulkerson Algorithm

23

Ford-Fulkerson Algorithm (cont’d)

24

25

Ford-Fulkerson Algorithm

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2

 G:
capacity

26

Augmenting Path Algorithm

Augment(f, c, P) {
 b ← bottleneck(P)
 foreach e ∈ P {
 if (e ∈ E) f(e) ← f(e) + b
 else f(eR) ← f(e) - b
 }
 return f
}

Ford-Fulkerson(G, s, t, c) {
 foreach e ∈ E f(e) ← 0
 Gf ← residual graph

 while (there exists augmenting path P) {
 f ← Augment(f, c, P)
 update Gf
 }
 return f
}

forward edge
reverse edge

27

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the
max flow is equal to the value of the min cut.

Proof strategy. We prove both simultaneously by showing the TFAE:
 (i) There exists a cut (A, B) such that v(f) = cap(A, B).
 (ii) Flow f is a max flow.
 (iii) There is no augmenting path relative to f.

(i) ⇒ (ii) This was the corollary to weak duality lemma.

(ii) ⇒ (iii) We show contrapositive.
■  Let f be a flow. If there exists an augmenting path, then we can

improve f by sending flow along path.

28

Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i)
■  Let f be a flow with no augmenting paths.
■  Let A be set of vertices reachable from s in residual graph.
■  By definition of A, s ∈ A.
■  By definition of f, t ∉ A.

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

= c(e)
e out of A
∑

= cap(A,B)

original network

s

t

A B

29

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities cf (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) ≤ nC iterations.
Pf. Each augmentation increase value by at least 1. ▪

Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there exists a
max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. ▪

7.3 Choosing Good Augmenting Paths

31

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

s

1

2

t

C

C

0 0

0 0

0

C

C

1 s

1

2

t

C

C

1

0 0

0 0

0 X 1

C

C

X

X

X

1

1

1

X

X

1

1 X

X

X

1

0

1

m, n, and log C

32

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
■  Some choices lead to exponential algorithms.
■  Clever choices lead to polynomial algorithms.
■  If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:
■  Can find augmenting paths efficiently.
■  Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
■  Max bottleneck capacity.
■  Sufficiently large bottleneck capacity.
■  Fewest number of edges.

33

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases
flow by max possible amount.
■  Don't worry about finding exact highest bottleneck path.
■  Maintain scaling parameter Δ.
■  Let Gf (Δ) be the subgraph of the residual graph consisting of only

arcs with capacity at least Δ.

110

s

4

2

t 1

170

102

122

Gf

110

s

4

2

t

170

102

122

Gf (100)

34

Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
 foreach e ∈ E f(e) ← 0
 Δ ← smallest power of 2 greater than or equal to C
 Gf ← residual graph

 while (Δ ≥ 1) {
 Gf(Δ) ← Δ-residual graph
 while (there exists augmenting path P in Gf(Δ)) {
 f ← augment(f, c, P)
 update Gf(Δ)
 }
 Δ ← Δ / 2
 }
 return f
}

35

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.
Pf.
■  By integrality invariant, when Δ = 1 ⇒ Gf(Δ) = Gf.
■  Upon termination of Δ = 1 phase, there are no augmenting paths. ▪

36

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 + ⎡log2 C⎤ times.
Pf. Initially C ≤ Δ < 2C. Δ decreases by a factor of 2 each iteration. ▪

Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then the
value of the maximum flow is at most v(f) + m Δ.

Lemma 3. There are at most 2m augmentations per scaling phase.
■  Let f be the flow at the end of the previous scaling phase.
■  L2 ⇒ v(f*) ≤ v(f) + m (2Δ).
■  Each augmentation in a Δ-phase increases v(f) by at least Δ. ▪

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)
augmentations. It can be implemented to run in O(m2 log C) time. ▪

proof on next slide

37

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then value
of the maximum flow is at most v(f) + m Δ.
Pf. (almost identical to proof of max-flow min-cut theorem)
■  We show that at the end of a Δ-phase, there exists a cut (A, B)

such that cap(A, B) ≤ v(f) + m Δ.
■  Choose A to be the set of nodes reachable from s in Gf(Δ).
■  By definition of A, s ∈ A.
■  By definition of f, t ∉ A.

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≥ (c(e)
e out of A
∑ −Δ) − Δ

e in to A
∑

= c(e)
e out of A
∑ − Δ

e out of A
∑ − Δ

e in to A
∑

≥ cap(A, B) - mΔ

original network

s

t

A B

