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Chapter 7 
 
Network Flow 

Slides by Kevin Wayne. 
Copyright © 2005 Pearson-Addison Wesley. 
All rights reserved. 
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Soviet Rail Network, 1955 

Reference:  On the history of the transportation and maximum flow problems. 
Alexander Schrijver in Math Programming, 91: 3, 2002. 
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Maximum Flow and Minimum Cut 

Max flow and min cut. 
■  Two very rich algorithmic problems. 
■  Cornerstone problems in combinatorial optimization. 
■  Beautiful mathematical duality. 

 
 
Nontrivial applications / reductions. 

■  Data mining. 
■  Open-pit mining.  
■  Project selection. 
■  Airline scheduling. 
■  Bipartite matching. 
■  Baseball elimination. 
■  Image segmentation. 
■  Network connectivity. 

■  Network reliability. 
■  Distributed computing. 
■  Egalitarian stable matching. 
■  Security of statistical data. 
■  Network intrusion detection. 
■  Multi-camera scene reconstruction. 
■  Many many more . . . 
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Flow network. 
■  Abstraction for material flowing through the edges. 
■  G = (V, E) = directed graph, no parallel edges. 
■  Two distinguished nodes:  s = source, t = sink. 
■  c(e) = capacity of edge e. 
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Def.  An s-t cut is a partition (A, B) of V with s ∈ A and t ∈ B. 
 
Def. The capacity of a cut (A, B) is: 
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Def.  An s-t cut is a partition (A, B) of V with s ∈ A and t ∈ B. 
 

Def. The capacity of a cut (A, B) is: 
 

 
 
 
 

  

€ 

cap( A, B)  =  c(e)
e out of A
∑

 Capacity = 9 + 15 + 8 + 30 
              = 62 



7 

Min s-t cut problem.  Find an s-t cut of minimum capacity. 

Minimum Cut Problem 
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Def.  An s-t flow is a function that satisfies: 
■  For each e ∈ E:      (capacity) 
■  For each v ∈ V – {s, t}:    (conservation) 

Def.  The value of a flow f is:        
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Def.  An s-t flow is a function that satisfies: 
■  For each e ∈ E:      (capacity) 
■  For each v ∈ V – {s, t}:    (conservation) 

Def.  The value of a flow f is:        

 

Flows 

10 

6 

6 

11 

1 10 

3 8 8 

0 
0 

0 

11 

capacity 
flow 

s 

2 

3 

4 

5 

6 

7 

t 

 15 

 5 

 30 

 15 

   10 

 8 

 15 

 9 

 6  10 

 10 

   10  15  4 

 4 0 

Value = 24 

  

€ 

f (e)
e in to v
∑ = f (e)

e out of v
∑

  

€ 

0 ≤ f (e) ≤ c(e)

  

€ 

v( f )  =  f (e)  
e out of s
∑ .

4 



10 

Max flow problem.  Find s-t flow of maximum value. 

Maximum Flow Problem 

10 

9 

9 

14 

4 10 

4 8 9 

1 

0 0 

0 

14 

capacity 
flow 

s 

2 

3 

4 

5 

6 

7 

t 

 15 

 5 

 30 

 15 

   10 

 8 

 15 

 9 

 6  10 

 10 

   10  15  4 

 4 0 

Value = 28 



11 

Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  
Then, the net flow sent across the cut is equal to the amount leaving s. 

Flows and Cuts 
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  
Then, the net flow sent across the cut is equal to the amount leaving s. 

Flows and Cuts 
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  
Then, the net flow sent across the cut is equal to the amount leaving s. 

Flows and Cuts 
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Flows and Cuts 

Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  Then 
 
 
 
 
Pf.    
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Flows and Cuts 

Weak duality.  Let f be any flow, and let (A, B) be any s-t cut.  Then the 
value of the flow is at most the capacity of the cut. 
 

Cut capacity = 30   ⇒    Flow value ≤ 30  
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Weak duality.  Let f be any flow.  Then, for any s-t cut (A, B) we have 
v(f) ≤ cap(A, B). 
 
Pf. 

   ▪ 
 
 
 

Flows and Cuts 
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Certificate of Optimality 

Corollary.  Let f be any flow, and let (A, B) be any cut. 
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut. 

 Value of flow = 28 
Cut capacity  = 28   ⇒    Flow value ≤ 28 
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Towards a Max Flow Algorithm 

Greedy algorithm. 
■  Start with f(e) = 0 for all edge e ∈ E. 
■  Find an s-t path P where each edge has f(e) < c(e). 
■  Augment flow along path P. 
■  Repeat until you get stuck. 
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Towards a Max Flow Algorithm 

Greedy algorithm. 
■  Start with f(e) = 0 for all edge e ∈ E. 
■  Find an s-t path P where each edge has f(e) < c(e). 
■  Augment flow along path P. 
■  Repeat until you get stuck. 
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Towards a Max Flow Algorithm 

Greedy algorithm. 
■  Start with f(e) = 0 for all edge e ∈ E. 
■  Find an s-t path P where each edge has f(e) < c(e). 
■  Augment flow along path P. 
■  Repeat until you get stuck. 
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Residual Graph 

Original edge:  e = (u, v)  ∈ E. 
■  Flow f(e), capacity c(e). 

 
 
 
Residual edge. 
■  "Undo" flow sent. 
■  e = (u, v) and eR = (v, u). 
■  Residual capacity: 

 
Residual graph:  Gf = (V, Ef ). 
■  Residual edges with positive residual capacity. 
■  Ef = {e : f(e) < c(e)}  ∪  {eR : c(e) > 0}. 
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Residual graphs 
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Ford-Fulkerson Algorithm 
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Ford-Fulkerson Algorithm (cont’d) 
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Ford-Fulkerson Algorithm 
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Augmenting Path Algorithm 

Augment(f, c, P) { 
   b ← bottleneck(P)  
   foreach e ∈ P { 
      if (e ∈ E) f(e) ← f(e) + b 
      else       f(eR) ← f(e) - b 
   } 
   return f 
} 

Ford-Fulkerson(G, s, t, c) { 
   foreach e ∈ E  f(e) ← 0 
   Gf ← residual graph 
 
   while (there exists augmenting path P) { 
      f ← Augment(f, c, P) 
      update Gf 
   } 
   return f 
} 

forward edge 
reverse edge 
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Max-Flow Min-Cut Theorem 

Augmenting path theorem.  Flow f is a max flow iff there are no 
augmenting paths.  
 
Max-flow min-cut theorem.  [Ford-Fulkerson 1956]  The value of the 
max flow is equal to the value of the min cut. 
 
Proof strategy.  We prove both simultaneously by showing the TFAE: 
    (i)  There exists a cut (A, B) such that v(f) = cap(A, B). 
   (ii)  Flow f is a max flow. 
  (iii)  There is no augmenting path relative to f. 
 

(i)  ⇒ (ii)  This was the corollary to weak duality lemma.  
 
(ii)  ⇒ (iii)  We show contrapositive. 
■  Let f be a flow. If there exists an augmenting path, then we can 

improve f by sending flow along path. 
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Proof of Max-Flow Min-Cut Theorem 

(iii)  ⇒ (i) 
■  Let f be a flow with no augmenting paths. 
■  Let A be set of vertices reachable from s in residual graph. 
■  By definition of A, s ∈ A. 
■  By definition of f, t ∉ A. 
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Running Time 

Assumption.  All capacities are integers between 1 and C. 
 
Invariant.  Every flow value f(e) and every residual capacities cf (e) 
remains an integer throughout the algorithm. 
 
Theorem.  The algorithm terminates in at most v(f*) ≤ nC iterations. 
Pf.  Each augmentation increase value by at least 1.   ▪ 
 
Corollary.  If C = 1, Ford-Fulkerson runs in O(mn) time. 
 
Integrality theorem.  If all capacities are integers, then there exists a 
max flow f for which every flow value f(e) is an integer. 
Pf.  Since algorithm terminates, theorem follows from invariant.   ▪ 



7.3  Choosing Good Augmenting Paths 
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Ford-Fulkerson:  Exponential Number of Augmentations 

Q.   Is generic Ford-Fulkerson algorithm polynomial in input size? 
 
 
A.   No.  If max capacity is C, then algorithm can take C iterations.   
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Choosing Good Augmenting Paths 

Use care when selecting augmenting paths. 
■  Some choices lead to exponential algorithms. 
■  Clever choices lead to polynomial algorithms. 
■  If capacities are irrational, algorithm not guaranteed to terminate! 

 
Goal:  choose augmenting paths so that: 
■  Can find augmenting paths efficiently. 
■  Few iterations. 

 
Choose augmenting paths with:  [Edmonds-Karp 1972, Dinitz 1970] 
■  Max bottleneck capacity. 
■  Sufficiently large bottleneck capacity. 
■  Fewest number of edges. 
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Capacity Scaling 

Intuition.  Choosing path with highest bottleneck capacity increases 
flow by max possible amount. 
■  Don't worry about finding exact highest bottleneck path. 
■  Maintain scaling parameter Δ. 
■  Let Gf (Δ) be the subgraph of the residual graph consisting of only 

arcs with capacity at least Δ. 
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Capacity Scaling 

Scaling-Max-Flow(G, s, t, c) { 
   foreach e ∈ E  f(e) ← 0 
   Δ ← smallest power of 2 greater than or equal to C 
   Gf ← residual graph 
 
   while (Δ ≥ 1) { 
      Gf(Δ) ← Δ-residual graph 
      while (there exists augmenting path P in Gf(Δ)) { 
         f ← augment(f, c, P) 
         update Gf(Δ) 
      } 
      Δ ← Δ / 2  
   } 
   return f 
} 
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Capacity Scaling:  Correctness 

Assumption.  All edge capacities are integers between 1 and C.  
 
Integrality invariant.  All flow and residual capacity values are integral. 
 
Correctness.  If the algorithm terminates, then f is a max flow. 
Pf. 
■  By integrality invariant, when Δ = 1  ⇒  Gf(Δ)  = Gf. 
■  Upon termination of Δ = 1 phase, there are no augmenting paths.  ▪ 
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Capacity Scaling:  Running Time 

Lemma 1.  The outer while loop repeats 1 + ⎡log2 C⎤ times. 
Pf.  Initially C ≤ Δ < 2C.  Δ decreases by a factor of 2 each iteration. ▪ 

Lemma 2.  Let f be the flow at the end of a Δ-scaling phase. Then the 
value of the maximum flow is at most v(f) + m Δ. 

Lemma 3.  There are at most 2m augmentations per scaling phase. 
■  Let f be the flow at the end of the previous scaling phase. 
■  L2  ⇒   v(f*)  ≤  v(f) + m (2Δ). 
■  Each augmentation in a Δ-phase increases v(f) by at least Δ.  ▪ 

Theorem.  The scaling max-flow algorithm finds a max flow in O(m log C) 
augmentations.  It can be implemented to run in O(m2 log C) time.  ▪ 

proof on next slide 
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Capacity Scaling:  Running Time 

Lemma 2.  Let f be the flow at the end of a Δ-scaling phase. Then value 
of the maximum flow is at most v(f) + m Δ. 
Pf.   (almost identical to proof of max-flow min-cut theorem) 
■  We show that at the end of a Δ-phase, there exists a cut (A, B) 

such that cap(A, B)  ≤  v(f) + m Δ. 
■  Choose A to be the set of nodes reachable from s in Gf(Δ). 
■  By definition of A, s ∈ A. 
■  By definition of f, t ∉ A. 
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