Chapter 13

Randomized
Algorithms

PEARSON Slides by Kevin Wayne.
\ ’XEJI:O“\ Copyright @ 2005 Pearson-Addison Wesley.
Wesley All rights reserved.

Randomization

Algorithmic design patterns.

« Greed.

. Divide-and-conquer.
Dynamic programming.
Network flow.
Randomization.

in practice, access to a pseudo-random number generator

~
Randomization. Allow fair coin flip in unit fime.

Why randomize? Can lead to simplest, fastest, or only known algorithm
for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing,
load balancing, Monte Carlo integration, cryptography.

13.1 Contention Resolution

Contention Resolution in a Distributed System

Contention resolution. Given n processes Py, ..., P,, each competing for
access to a shared database. If two or more processes access the

database simultaneously, all processes are locked out. Devise protocol
to ensure all processes get through on a reqular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.

Contention Resolution: Randomized Protocol

Protocol. Each process requests access to the database at time 1 with
probability p = 1/n.

Claim. Let S[i, t] = event that process i succeeds in accessing the
database at time t. Then 1/(e-n) < Pr[S(i, t)] < 1/(2n).

Pf. By independence, Pr[S(i,1)] = p (1-p)™L.

process i requests access none of remaining n-1 processes request access

. Setting p = 1/n, we have Pr[S(i, 1)] = 1/n(1-1/n)"L .

value that maximizes Pr[S(i, 1)] between 1/e and 1/2

Useful facts from calculus. As n increases from 2, the function:
« (1-1/n)* converges monotonically from 1/4 up to 1/e
« (1-1/n)*! converges monotonically from 1/2 down to 1/e.

Contention Resolution: Randomized Protocol

Claim. The probability that process i fails to access the database in
en rounds is at most 1/e. After e:n(c In n) rounds, the probability is at

most n-,
Pf. Let F[i, t] = event that process i fails to access database in rounds
1 through t. By independence and previous claim, we have
Pr[F(i,1)] = (1-1/(en))".
. Choose t = [e-n: PriFG,0)] = (1-)" = (1-1)" = !

. Chooset=[e-n][cInn]: PrlFG,)]< (1™ = n

Contention Resolution: Randomized Protocol

Claim. The probability that all processes succeed within 2e -nInn
rounds is at least 1 - 1/n.

Pf. Let F[t] = event that at least one of the n processes fails to access
database in any of the rounds 1 through .

Pl [0 - PRy [<SP L= (1-0)
21 : -1 T

union bound previous slide

« Choosing t = 2 [en] [c In n]yields Pr[F[t]]<h-n2=1/n.

Union bound. Given events Ey, ..., E,, Pr[CJ1 E,-] = 21 Pr(£;]

13.2 Global Minimum Cut

Global Minimum Cut

Global min cut. Given a connected, undirected graph 6 = (V, E) find a
cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of
related documents, network reliability, network design, circuit design,
TSP solvers.

Network flow solution.
« Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
« Pick some vertex s and compute min s-v cut separating s from each
other vertexv eV,

False intuition. Global min-cut is harder than min s-t cut.

Contraction Algorithm

Contraction algorithm. [Karger 1995]
« Pick an edge e = (u, v) uniformly at random.
« Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of uand v tow
- keep parallel edges, but delete self-loops
« Repeat until graph has just two nodes v, and v,.
« Return the cut (all nodes that were contracted to form v,).

NN W
oo .= 0
O

f

o

10

Contraction Algorithm

Claim. The contraction algorithm returns a min cut with prob = 2/n?.

Pf. Consider a global min-cut (A*, B*) of G. Let F* be edges with one
endpoint in A* and the other in B*. Let k = |F*| = size of min cut.
- Infirst step, algorithm contracts an edge in F* probability k / |E]|.
« Every node has degree = k since otherwise (A*, B*) would not be
min-cut. = |E| = 3kn.
« Thus, algorithm contracts an edge in F* with probability < 2/n.

A B*

><

F*

1

Contraction Algorithm

Claim. The contraction algorithm returns a min cut with prob = 2/n?.

Pf. Consider a global min-cut (A*, B*) of 6. Let F* be edges with one
endpoint in A* and the other in B*. Let k = |F*| = size of min cuft.

Let G' be graph after j iterations. There are n' = n-j supernodes.
Suppose no edge in F* has been contracted. The min-cut in G' is still k.
Since value of min-cut is k, |E'| = zkn'.

Thus, algorithm contracts an edge in F* with probability < 2/n".

Let E; = event that an edge in F* is not contracted in iteration j.

Pr[_Im Zm _2] = Pr[-I]X Pr[2 | -I] X e X Pr[_2 | 1ﬂ Zﬂ _3]

v

(1-2) (1-2) - (1-3) (-3
) (2) = (3) (1)

= 2

- (D
2

2

v

12

Contraction Algorithm

Amplification. To amplify the probability of success, run the
contraction algorithm many times.

Claim. If we repeat the contraction algorithm n? In n times with
independent random choices, the probability of failing to find the
global min-cut is at most 1/n.

Pf. By independence, the probability of failure is at most

-2) -2 -

>12In

IA

(1-1/x*<1/e

13

Global Min Cut: Context

Remark. Overall running time is slow since we perform ©(n? log n)
iterations and each takes Q(m) time.

Improvement. [Karger-Stein 1996] O(n? log3n).
« Early iterations are less risky than later ones: probability of
contracting an edge in min cut hits 50% when n / /2 nodes remain.
« Run contraction algorithm until n / /2 nodes remain.
» Run contraction algorithm twice on resulting graph, and return best of
two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] O(m log3n).

N faster than best known max flow algorithm or
deterministic global min cut algorithm

14

13.3 Linearity of Expectation

Expectation

Expectation. Given a discrete random variables X, its expectation E[X]
is defined by: 0
[1=3 Pl =]

Waiting for a first success. Coin is heads with probability p and tails
with probability 1-p. How many independent flips X until first heads?

[1=5 Pl =1-5 0-)" =3 - -1, -
=0 =0 - =0 -

oo

j-1tails 1 head

16

Expectation: Two Properties

Useful property. If X is a 0/1 random variable, E[X] = Pr[X = 1].

Pf. []=§.pr[=]=2-Pr[=]=Pr[=1]

=0 =0

not necessarily independent
Linearity of expectation. Given two random variables X/and\Y defined
over the same probability space, E[X + Y] = E[X] + E[Y].

Decouples a complex calculation into simpler pieces.

17

Guessing Cards

Game. Shuffle a deck of n cards; furn them over one at a time; try to
guess each card.

Memoryless guessing. No psychic abilities; can't even remember what's
been turned over already. Guess a card from full deck uniformly at
random.

Claim. The expected number of correct guesses is 1.
Pf. (surprisingly effortless using linearity of expectation)
. Let X;=1if ith prediction is correct and O otherwise.
« Let X = number of correct guesses = X; + ... + X,.
« E[X]= Pr[X;=1] = 1/n.
« E[X] T E[X;] + .. + E[X,] = V/n+..+1/n =1 .

linearity of expectation

18

Guessing Cards

Game. Shuffle a deck of n cards; furn them over one at a time; try to
guess each card.

Guessing with memory. Guess a card uniformly at random from cards
not yet seen.

Claim. The expected number of correct guesses is ©(log n).
Pf.
. Let X; = 1if ith prediction is correct and O otherwise.
« Let X = number of correct guesses = X; + ... + X,,.
« E[X]=Pr[X.;=11 =1/(n-i-1).
« E[X] =E[X;] + .. + E[X,] = V/n+..+1/2+1/1=H(n). =
T T

linearity of expectation In(n+1)<H(n) <1+Inn

19

Coupon Collector

Coupon collector. Each box of cereal contains a coupon. There are n
different types of coupons. Assuming all boxes are equally likely to

contain each coupon, how many boxes before you have = 1 coupon of
each type?

Claim. The expected number of steps is @(n log n).
Pf.
» Phase j = time between j and j+1 distinct coupons.
- Let X, = number of steps you spend in phase .
« Let X = number of steps in fotal = Xy + X; + .. + X, ;.

-1 -1 1

()

prob of success = (n-j)/n
= expected waiting time = n/(n-j)

20

13.4 MAX 3-SAT

Maximum 3-Satisfiability

exactly 3 distinct literals per clause

<
MAX-3SAT. Given 3-SAT formula, find a truth assignment that

satisfies as many clauses as possible.

1 = 2V 3V 4
2 = 2V 3V g4
3 = 1V 2V g4
4 = 1V 2V 3
5 = 1V 2V 4

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability 3,
independently for each variable.

22

Maximum 3-Satisfiability: Analysis

Claim. Given a 3-SAT formula with k clauses, the expected number of
clauses satisfied by a random assignment is 7k/8.

1 if clause is satisfie

Pf. Consider random variable = .
O otherwise.

- Let Z = weight of clauses satisfied by assignment Z..

[1 =3 []
A =1
linearity of expectation — _ E Pr[clause is satisfid
=1
7
8

23

The Probabilistic Method

Corollary. For any instance of 3-SAT, there exists a truth assignment
that satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time.

Probabilistic method. We showed the existence of a non-obvious
property of 3-SAT by showing that a random construction produces it
with positive probability!

24

Maximum 3-Satisfiability: Analysis

Q. Can we turn this idea into a 7/8-approximation algorithm? In
general, a random variable can almost always be below its mean.

Lemma. The probability that a random assignment satisfies = 7k/8
clauses is at least 1/(8k).

Pf. Let p; be probability that exactly j clauses are satisfied:; let p be
probability that = 7k/8 clauses are satisfied.

po- L1 -

Rearranging terms yields p=1/(8k).

25

Maximum 3-Satisfiability: Analysis

Johnson's algorithm. Repeatedly generate random truth assignments
until one of them satisfies = 7k/8 clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.
Pf. By previous lemma, each iteration succeeds with probability at least

1/(8k). By the waiting-time bound, the expected number of trials to
find the satisfying assignment is at most 8k. =«

26

Maximum Satisfiability

Extensions.
. Allow one, two, or more literals per clause.

« Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-
approximation algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a
7/8-approximation algorithm for version of MAX-3SAT where each
clause has at most 3 literals.

Theorem. [Hastad 1997] Unless P = NP, no p-approximation algorithm
for MAX-3SAT (and hence MAX-SAT) for any p > 7/8.

very unlikely to improve over simple randomized
algorithm for MAX-3SAT

27

Monte Carlo vs. Las Vegas Algorithms

Monte Carlo algorithm. Guaranteed to run in poly-time, likely to find
correct answer.

Ex: Contraction algorithm for global min cut.

Las Vegas algorithm. Guaranteed to find correct answer, likely to run
in poly-time.
Ex: Randomized quicksort, Johnson's MAX-3SAT algorithm.

stop algorithm after a certain point

l

Remark. Can always convert a Las Vegas algorithm into Monte Carlo,
but no known method to convert the other way.

28

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in
poly-time.
Can decrease probability of false negative
One-sided error. to 2190 by 100 independent repetitions
« If the correct answer is no, always return no. |
. If the correct answer is yes, return yes with probability = 3.

ZPP. [Las Vegas] Decision problems solvable in expected poly-time.

T

running tfime can be unbounded, but
on average it is fast

Theorem. P C ZPP C RP C NP,

Fundamental open questions. To what extent does randomization help?
Does P = ZPP? Does ZPP = RP? Does RP = NP?

29

13.6 Universal Hashing

Dictionary Data Type

Dictionary. Given a universe U of possible elements, maintain a subset
S C U so that inserting, deleting, and searching in S is efficient.

Dictionary interface.

. Create(): Initialize a dictionary with S = ¢.

. Insert(u): Addelementu&eU toS.

. Delete(u): Deleteufrom S, if uis currentlyinS.
. Lookup(u): Determine whether uisin S.

Challenge. Universe U can be extremely large so defining an array of
size |U| is infeasible.

Applications. File systems, databases, Google, compilers, checksums
P2P networks, associative arrays, cryptography, web caching, etc.

31

Hashing

Hash function. h: U —={0,1, .., n-1}.

Hashing. Create an array H of size n. When processing element u,
access array element H[h(u)].

Collision. When h(u) = h(v) but u = v.
« A collision is expected after ©(Vn) random insertions. This
phenomenon is known as the "birthday paradox."
« Separate chaining: H[i] stores linked list of elements u with h(u) = i.

H[1] jocularly —> seriously
H[2] null

H[3] suburban — untravelled — considerating

H[n] browsing

32

Ad Hoc Hash Function

Ad hoc hash function.

int h(String s, int n) {
int hash = 0;
for (int i = 0; i < s.length(); i++)
hash = (31 * hash) + s[i];
return hash % n;
} hash function ala Java string library

Deterministic hashing. If |U| = n?, then for any fixed hash function h,
there is a subset S C U of n elements that all hash to same slot. Thus,
O(n) time per search in worst-case.

Q. But isn't ad hoc hash function good enough in practice?

33

Algorithmic Complexity Attacks

When can't we live with ad hoc hash function?
= Obvious situations: aircraft control, nuclear reactors.

= Surprising situations: denial-of-service attacks.
™

malicious adversary learns your ad hoc hash function
(e.g., by reading Java APT) and causes a big pile-up in
a single slot that grinds performance to a halt

Real world exploits. [Crosby-Wallach 2003]
« Bro server: send carefully chosen packets to DOS the server, using
less bandwidth than a dial-up modem
« Perl 5.8.0: insert carefully chosen strings into associative array.
« Linux 2.4.20 kernel: save files with carefully chosen names.

34

Hashing Performance

Idealistic hash function. Maps m elements uniformly at random to n
hash slots.

« Running time depends on length of chains.

« Average length of chain=a=m/n.

« Choose n=m = on average O(1) per insert, lookup, or delete.

Challenge. Achieve idealized randomized guarantees, but with a hash
function where you can easily find items where you put them.

Approach. Use randomization in the choice of h.

T

adversary knows the randomized algorithm you're using,
but doesn't know random choices that the algorithm makes

35

Universal Hashing

Universal class of hash functions. [Carter-Wegman 1980s]
. For any pair of elementsu,ve U, Pr,c,[#(u)=nr()]= 1/
« Can select random h efficiently. N chosen uniformly at random
« Can compute h(u) efficiently.

Ex. U={a,b,c,d,e,f}, n=2.

OOOBEE - e
10 Py - [h(a) = h(c)]
3P0 0 0 11 1 Prnen [h(a) = h(d)]

11 not universal
0

Prncn[h(a) = h(b)] = 1/2
Pricu th(a) = h(c)] = 1/2 universal

-HHIHHI H={hy, h, hy, ho)
X) 1 010

000111 Prycy [h(a@)=h(d)] = 1/2
0010 11 Prncn[h(a)=h(e)] = 1/2
100 1 10 f)r‘.hEH [h(a)=h(f)] = O

36

Universal Hashing

Universal hashing property. Let H be a universal class of hash
functions; let h € H be chosen uniformly at random from H; and let

u € U. For any subset S C U of size at most n, the expected number of
items in S that collide with u is at most 1.

Pf. For any element s € S, define indicator random variable X, = 1 if
h(s) = h(u) and O otherwise. Let X be a random variable counting the
total number of collisions with u.

el 1= [Zc]TEE[]TEEPF[=1]=3c 1t=111=
T

linearity of expectation X, is a 0-1 random variable universal
(assumes u & S)

37

Designing a Universal Family of Hash Functions

Theorem. [Chebyshev 1850] There exists a prime between n and 2n.
Modulus. Choose a pr-ime number p=n. «—— no need for randomness here

Integer encoding. Identify each element u € U with a base-p integer
of r digits: x = (Xxq, X5, ..., X,.).

Hash function. Let A = set of all r-digit, base-p integers. For each
a = (a4, @y, .., a.) where O < q; < p, define

O- (3| moc

=1

Hash function family. H={ h,:a€ A }.

38

Designing a Universal Class of Hash Functions

Theorem. H={h,:a €& A} is auniversal class of hash functions.

Pf. Let x = (x4, X5, ..., X.) and y = (Y3, Y, ..., ¥,) be two distinct elements of

U.

We need to show that Pr[h (x) = h,(y)] < 1/n.
Since x =y, there exists an integer j such that x; = y;.
We have h,(x) = h,(y) iff

a; (yj_xj) = Eai(xi_yi) modp
— i=]

m

Can assume a was chosen uniformly at random by first selecting all
coordinates a; where i = j, then selecting q; at random. Thus, we can
assume q; is fixed for all coordinates i = j.

Since p is prime, a; z = m mod p has at most one solution among p
possibiliTies. «— see lemma on next slide

Thus Pr[h(x) = h(y)]=1/p<1/n. =«

39

Number Theory Facts

Fact. Let p be prime, and let z = O mod p. Then az = m mod p has at most
one solution 0 < a < p.

Pf.
= Suppose o and f are two different solutions.
« Then (a - B)z = 0 mod p; hence (a -)z is divisible by p.
« Since z = 0 mod p, we know that z is not divisible by p;
it follows that (o - B) is divisible by p.
« Thisimpliesa=f. =

Bonus fact. Can replace "at most one" with "exactly one" in above fact.
Pf idea. Euclid's algorithm.

40

13.9 Chernoff Bounds

Chernoff Bounds (above mean)

Theorem. Suppose X;, ..., X, are independent O-1 random variables. Let
X = X;+ ..+ X,. Then for any u = E[X] and for any 3 > O, we have

e
PrfX >+)] < [W]

sum of independent O-1 random variables
is tightly centered on the mean

Pf. We apply a number of simple transformations.
« Foranyt>0,

Pr[>(+du] = PI’[> (1+6)“] < (o, []
I I

f(x) = e™is monotone in x Markov's inequality: Pr[X >a]<E[X]/a

“Now [1= T[2*1=111 1
T T

definition of X independence

42

Pf. (cont)

Chernoff Bounds (above mean)

« Let p; = Pr[X; = 1]. Then,

E[etXi] =

pe +(1=p)e® = lep(e -1) = e

T

forany =0, l+a<e®

« Combining everything:

Prl[>(1+du] = ~ MR [1= ~®kpp (Do -0 w(-)
T T T
previous slide inequality above Spi=EX] =< u

« Finally, choose t = In(1 +). =

43

Chernoff Bounds (below mean)

Theorem. Suppose X;, ..., X, are independent O-1 random variables. Let
X =X;+ ..+ X,. Then for any u < E[X] and for any 0 < § < 1, we have

P{X<(=)]<e /2
Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider 6 < 1.

44

13.10 Load Balancing

Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to
be processed immediately on n identical processors. Find an assignment

that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each
processor receives at most [m/n] jobs.

Decentralized controller. Assign jobs to processors uniformly at
random. How likely is it that some processor is assigned "too many"
jobs?

46

Load Balancing

Analysis.

Let X; = number of jobs assigned to processor i.

Let ¥;; = 1if job j assigned to processor i, and O otherwise.
We have E[Y;] = 1/n

Thus, X; = ¥ Y, and u = E[X;] = L.

Applying Chernoff bounds with § = ¢ - 1 yields Pr[X, >¢] <

c-1
e
CC
Let y(n) be humber x such that x* = n, and choose ¢ = e y(n).
2 (n)

ec—l eC 1 e (n) 1 1
e R o I B

Union bound = with probability = 1 - 1/n no processor receives
more than e y(n) = ©(logn / log log n) jobs.
N

Fact: this bound is asymptotically tight: with high
probability, some processor receives ©(logn / log log n)

47

Load Balancing: Many Jobs

Theorem. Suppose the number of jobs m = 16n In n. Then on average,
each of the n processors handles u = 16 In n jobs. With high probability

every processor will have between half and twice the average load.

Pf.
. Let X;, Y, be as before.
« Applying Chernoff bounds with 6 = 1 yields

16nlnn Inn 2
PrX, > 2]<(E) 3 (l) _1 Prix, <1 J<e i) (161'nn>=12
4 e n n

« Union bound = every processor has load between half and twice
the average with probability =1 -2/n. «

48

Extra Slides

13.5 Randomized Divide-and-Conquer

Quicksort

Sorting. Given a set of n distinct elements S, rearrange them in
ascending order.

RandomizedQuicksort(S) {
if |S| = 0 return

choose a splitter a; € S uniformly at random
foreach (a € S) {
if (a < a;) put a in S-
else if (a > a;) put a in S*
}
RandomizedQuicksort (S7)
output a;
RandomizedQuicksort (St)

Remark. Can implement in-place.

T

O(log n) extra space

51

Quicksort

Running time.
. [Best case.] Select the median element as the splitter: quicksort

makes ©(n log n) comparisons.
« [Worst case.] Select the smallest element as the splitter:
quicksort makes ©(n?) comparisons.
Randomize. Protect against worst case by choosing splitter at random.
Intuition. If we always select an element that is bigger than 25% of

the elements and smaller than 25% of the elements, then quicksort
makes O(n log n) comparisons.

Notation. Label elements so that x;< x, < ... < x,..

52

Quicksort: BST Representation of Splitters

BST representation. Draw recursive BST of splitters.

% X xe o xa x xa % e xR xe % % %
|

first splitter, chosen uniformly at random

/

Quicksort: BST Representation of Splitters

Observation. Element only compared with its ancestors and descendants.
= X, and x; are compared if their Ica = x, or x.

« X, and x; are not compared if their lca = x5 or x, or x5 or X,.

Claim. Pr[x; and x; are compared] = 2 / lj-i+1].

54

Quicksort: Expected Number of Comparisons

Theorem. Expected # of comparisons is O(n log n).
Pf.

22=2§11

- — +1

T

probability that i and j are compared

N
I
—

1<

Theorem. [Knuth 1973] Stddev of humber of comparisons is ~ 0.65N.

Ex. If n=1million, the probability that randomized quicksort takes
less than 4n In n comparisons is at least 99.94%.

Chebyshev's inequality. Pr[|X - u| = kd] < 1/ k2.

55

