CS3AC3: Algorithms and Complexity Graduate Attributes and Indicators

George Karakostas

1 What the students should know and be able to do

1. Students should know and understand

- (a) Analysis of algorithms
- (b) Divide-and-Conquer algorithms
- (c) Greedy algorithms
- (d) Dynamic Programming
- (e) Network Flows
- (f) Turing-Church Thesis, complexity classes (P, NP, PSPACE)
- (g) Simple approximation algorithms
- (h) Simple randomized algorithms
- 2. Students should be able to
 - (a) Analyze the time complexity of algorithms using recurrences
 - (b) Design Divide-and-Conquer algorithms
 - (c) Design Greedy algorithms
 - (d) Design Dynamic Programming algorithms
 - (e) Solve Network Flow problems
 - (f) Distinguish problems according to their complexity class
 - (g) Design simple approximation algorithms
 - (h) Use randomness in algorithms

2 Mapping to Attributes with their Indicators

A01 Knowledge	
Competence in Engineering Fundamentals	2a–2h
Competence in specialized engineering knowledge	1a–1h
A02 Analysis	
Ability to identify the essential characteristics of a technical problem, in- cluding scope	2a–2h
Ability to identify reasonable assumptions (including identification of un- certainties and imprecise information) that could or should be made before a solution path is proposed	2a–2h
Ability to identify a range of suitable engineering fundamentals (includ- ing techniques) that would be potentially useful for analyzing a technical problem	1a–1h, 2a–2h
Ability to decompose and organize a problem into manageable sub- problems	2a–2h
Ability to obtain substantiated conclusions as a results of a problem solu- tion, including recognizing the limitations of the solutions	2a–2h
A03 Investigation	
Able to recognize and discuss applicable theory knowledge base	1a–1h,2a–2h
Capable of selecting appropriate model and methods and identify assump-	2a–2h
tions and constraints	
A04 Design	
Recognizes and follows an engineering design process	2a–2h
Recognizes and follows engineering design principles	2a–2h
Properly documents and communicates processes and outcomes	2a–2h
A07 Communication	
Demonstrates an ability to respond to technical and non-technical instruc-	1a–1h,2a–2h
tions and questions	
Demonstrates appropriate use of technical vocabulary	1a–1h,2a–2h
Constructs effective written arguments	1a-1h,2a-2h

3 Rubrics

Topic	Below	Marginal	Meets	Exceeds
Analysis of al-	doesn't un-	can perform only	can form and an-	can form and an-
gorithms 1a,2a	derstand most	simple time anal-	alyze most time	alyze even so-
	concepts	ysis	recurrences	phisticated time
	%	%	%	recurrences %
Divide-and-	doesn't under-	can analyze but	can analyze and	is comfortable
Conquer &	stand DC &	cannot design	design DC &	with the analysis
Greedy al-	Greedy algo-	DC & Greedy	Greedy algo-	and design of
gorithms	rithms	algorithms	rithms	DC & Greedy
1b, 2b, 1c, 2c		%	%	algorithms
	%			%
Dynamic Pro-	doesn't un-	can analyze but	can analyze and	is comfortable
gramming al-	derstand DP	cannot design	design DP algo- rithms	with the analysis and design of DP
gorithms 1d,2d	algorithms	DP algorithms $\%$	%	algorithms
	%	70	/0	%
Network Flows	doesn't un-	understands ba-	understands	understands
1e,2e	derstand most	sic flow concepts	standard flow	flows and can
	concepts	but not flow al-	algorithms	reduce other
	~	$\operatorname{gorithms}_{\sim}$	%	problems to flow
	%	%		problems
Complexity	doesn't un-	understands	understands	% understands
classes and	derstand most	the differences	the differences	the differences
reductions 1f,1f	concepts	between com-	between com-	between com-
,		plexity classes	plexity classes	plexity classes
	%	but not reduc-	and can mostly	and can do most
		tions	do reductions	reductions
		%	%	07
Approximation	doesn't un-	understands ap-	understands	% has a sophis-
algorithms	derstand ap-	proximation but	and can an-	ticated un-
1g,2g	proximation in	cannot analyze	alyze simple	derstanding
	algorithms	approximation	approximation	of the design
		algorithms	algorithms	and analysis of
	%	%	%	approximation
				algorithms
Randomized	doesn't un-	understands	understands and	% has a sophis-
algorithms	derstand ran-	probabilities but	can analyze sim-	ticated under-
1h,2h	domization in	cannot analyze	ple randomized	standing of
,	algorithms	randomized al-	algorithms	the use of ran-
		gorithms	%	domization in
	%	%		algorithms
				%