Assignment 1

Exercise 1.7

- (a) $O(T(n) \times T(n)) = O(T^2(n))$
- (b) Note that since we do not know how large the grid will be in each dimension in the end, we don't want to store it row-by-row or column-by-column. So, we store it in diagonals, i.e., (1,1), (1,2), (2,1), (1,3), (2,2), (3,1),... Then the worst delay incurred by this organization is when going from (1,1) to (T(n),T(n)), which now takes $O(1+2+3+4+...+2T(n)) = O(T^2(n))$ time instead of 2T(n) time it takes in the grid TM.

Exercise 1.10

We build a TM that computes f(n) in O(T(n)) time. If we think of A as the infinite working tape of the TM we build, then i is the current head position. Also note that the number of lines of code in the program is fixed (we are not required to design a TM that executes all programs, just a given) one). So, we encode the program line

$$label:$$
 If $A[i]$ equals σ then $cmds$

into a state $(label, \sigma)$ for every label and σ (note that both are fixed for a particular program line). The transition function δ is well-defined, since given the current state $(label, \sigma)$ and head position i, we know the tape contents A[i], what the head writes at A[i], where its next position is, and what the new state/program line is.

Exercise 1.15

- (a) The input size shrinks by a factor of $\log b$ when written base-b. So, if the running time is $O(n^c)$ when the input x is written in binary and |x| = n, then $O((\frac{n}{\log b})^c) = O(n^c)$ is the running time when x is written base-b.
- (b) The following algorithm solves the problem: Reject $\langle n,l,k\rangle$ if l>k, or l>n or k>n. For every number $l+1\leq m\leq k-1$, first check whether $n=0 (mod\ m)$. If yes, then for every number $2\leq q\leq \lceil \sqrt{m}\rceil$, check whether $m=0 (mod\ q)$. If none of these q's divides m (i.e., m is prime), then accept $\langle n,l,k\rangle$. If there is no prime m divides n, then reject $\langle n,l,k\rangle$.

Assuming that each arithmetic operation (including $\sqrt{\ }$) takes time $\log n$, using the binary representation of all numbers (note that all are at most n in value) and the elementary algorithm for it, then the running time of the algorithm is $O(n^{3/2} \log n)$.

Exercise 2.9

Given exercise 2.8, then any $L \in NP$ and L' = HALT show that \leq_R is not symmetric. (To solve 2.8, note that we can construct a TM M that given a 3SAT formula ϕ , it goes over all truth assignments, and if none satisfies the formula then goes into an infinite loop. Then $HALT(M, \phi) = 1$ iff $\phi \in 3SAT$.)

Exercise 2.10

Let M_1, M_2 be the TMs in the definitions of L_1, L_2 respectively, i.e.,

$$x \in L_1 \Leftrightarrow \exists u_1 : M_1(x, u_1) = 1$$

$$x \in L_2 \Leftrightarrow \exists u_2 : M_2(x, u_2) = 1$$

Define TM $M_{\cup}(x, Qu)$ so that it just runs $M_Q(x, u)$ for $Q \in \{1, 2\}$. Then

$$x \in L_1 \cup L_2 \Leftrightarrow \exists Qu : M_{\cup}(x, Qu) = 1$$

Similarly, define TM $M_{\cap}(x, u_1|u_2)$ so that it accepts iff $M_1(x, u_1) = 1 \wedge M_2(x, u_2) = 1$. Then

$$x \in L_1 \cap L_2 \Leftrightarrow \exists u_1 | u_2 : M_{\cap}(x, u_1 | u_2) = 1$$

Exercise 2.15

 $VERTEX\ COVER(G,k)$ reduces to INDSET(G,n-k), and CLIQUE(G,k) reduces to $INDSET(\bar{G},k)$.

Exercise 2.32

- (a) Input size $|x| = \log x$ in binary, and |x| = x in unary
- (b) Let M be the polynomial time NDTM that on input x decides L in $2^{p(\log x)}$ time. Let M' be the NDTM that takes input $x = [w]_{unary} 1^{2^{p(\log w)}}$ of size $|x| = w + 2^{p(\log w)}$ and (i) strips it of the last $1^{2^{p(\log w)}}$ 1's (in time $O(1^{2^{p(\log w)}}) = O(|x|)$, i.e., linear), (ii) writes w in binary (in time O(w) = O(|x|), i.e., again linear), and (iii) runs $M([w]_{binary})$ in time $O(2^{p(\log w)}) = O(|x|)$ (again linear). Then M' decides L' in linear time, i.e., $L' \in NP$.
- (c) Since L' is a unary language in NP, then $L' \in P$, i.e., there is a deterministic TM M'' that decides whether input $x = [w]_{unary} 1^{2^{p(\log w)}} \in L'$ in q(|x|) time for some polynomial q. Since $x \in L' \Leftrightarrow w \in L$, we can decide whether some $w \in L$, by constructing $x = [w]_{unary} 1^{2^{p(\log w)}}$ in $O(2^{p(\log w)})$ time, and then run M''(x) in $O(q(|x|)) = O(q(2^{p(\log w)})) = O(2^{p'(\log w)})$ time for some polynomial p'. Therefore we can deterministically decide L in $O(2^{p'(\log w)})$ time, i.e., $L \in EXP$, i.e., $NEXP \subseteq EXP$ (the other direction is trivial).