Assignment 1

Exercise 1.7
(a) O(T(n) x T(n)) = O(T*(n))

(b) Note that since we do not know how large the grid will be in each dimension in
the end, we don’t want to store it row-by-row or column-by-column. So, we store
it in diagonals, i.e., (1,1), (1,2), (2,1), (1,3), (2,2), (3,1),... Then the worst delay
incurred by this organization is when going from (1,1) to (T(n),T'(n)), which now
takes O(1 +2+ 3 +4+...+2T(n)) = O(T?(n)) time instead of 27 (n) time it takes
in the grid TM.

Exercise 1.10

We build a TM that computes f(n) in O(T'(n) time. If we think of A as the infinite working
tape of the TM we build, then 7 is the current head position. Also note that the number of
lines of code in the program is fized (we are not required to design a TM that executes all
programs, just a given) one). So, we encode the program line

label : 1f A[i] equals o then cmds

into a state (label, o) for every label and o (note that both are fized for a particular program
line). The transition function § is well-defined, since given the current state (label,o) and
head position i, we know the tape contents Ali], what the head writes at A[i], where its next
position is, and what the new state/program line is.

Exercise 1.15

(a) The input size shrinks by a factor of log b when written base-b. So, if the running time
is O(n®) when the input z is written in binary and |x| = n, then O((logb)c) = 0O(n®) is
the running time when x is written base-b.

(b) The following algorithm solves the problem: Reject (n,l,k) if l > k, or [> n or k > n.
For every number | + 1 < m < k — 1, first check whether n = 0(mod m). If yes, then
for every number 2 < ¢ < [y/m], check whether m = 0(mod ¢). If none of these ¢’s
divides m (i.e., m is prime), then accept (n,l, k). If there is no prime m divides n,
then reject (n,l, k).

Assuming that each arithmetic operation (including va) takes time logn, using the
binary representation of all numbers (note that all are at most n in value) and the
elementary algorithm for it, then the running time of the algorithm is O(n3/ 2logn).

Exercise 2.9

Given exercise 2.8, then any L € NP and L' = HALT show that <p is not symmetric. (To
solve 2.8, note that we can construct a TM M that given a 3SAT formula ¢, it goes over
all truth assignments, and if none satisfies the formula then goes into an infinite loop. Then

HALT(M,$) = 1 iff ¢ € 3SAT.)

Exercise 2.10

Let My, Ms be the TMs in the definitions of L1, Lo respectively, i.e.,

X €L1<:>E|u1:M1(x,u) 1
1

1
x € Lo & Jug : My(z,uz)

Define TM My (z, Qu) so that it just runs Mg(z,u) for @ € {1,2}. Then

x € L1 ULy < 3Qu : My(z,Qu) =1

Similarly, define TM Mn(x, u1|uz) so that it accepts iff My (z,u;) = 1A Ma(x,us) = 1. Then

reliNly & E|U1|’u,2 : Mm(:c,ul\uQ) =1

Exercise 2.15

VERTEX COVER(G,k) reduces to INDSET(G,n — k), and CLIQU E(G, k) reduces to
INDSET(G, k).

Exercise 2.32

(a)
(b)

Input size |z| = log x in binary, and |z| = x in unary

Let M be the polynomial time NDTM that on input = decides L in or(og®) time. Let
M' be the NDTM that takes input z = [w]unwy12p(logw> of size |z| = w + op(logw) 4114
(i) strips it of the last 12***" 1’s (in time 0(12p(10gw)) = O(|z|), i.e., linear), (ii) writes
w in binary (in time O(w) = O(|z|), i.e., again linear), and (iii) runs M ([w]pinary)
in time O(2P1°e®)) = O(|z|) (again linear). Then M’ decides L’ in linear time, i.e.,
L' e NP.

Since L' is a unary language in NP, then L' € P, i.e., there is a deterministic TM
M" that decides whether input x = [w]unaryIQP(logw) € L' in g(|z|) time for some
polynomial ¢q. Since x € L' & w € L, we can decide whether some w € L, by con-
structing = = [w]umrylgp(logw) in O(2r°e®)) time, and then run M”(z) in O(q(|z|)) =
O(g(2rlosw))) = O(2¥' (e w)) time for some polynomial p’. Therefore we can determin-
istically decide L in O(2¢'(1°8®)) time, i.e., L € EXP, i.e., NEXP C EXP (the other
direction is trivial).

