
Assignment 1

Exercise 1.7

(a) O(T (n)× T (n)) = O(T 2(n))

(b) Note that since we do not know how large the grid will be in each dimension in
the end, we don’t want to store it row-by-row or column-by-column. So, we store
it in diagonals, i.e., (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), . . . Then the worst delay
incurred by this organization is when going from (1, 1) to (T (n), T (n)), which now
takes O(1 + 2 + 3 + 4 + . . . + 2T (n)) = O(T 2(n)) time instead of 2T (n) time it takes
in the grid TM.

Exercise 1.10

We build a TM that computes f(n) in O(T (n) time. If we think of A as the infinite working
tape of the TM we build, then i is the current head position. Also note that the number of
lines of code in the program is fixed (we are not required to design a TM that executes all
programs, just a given) one). So, we encode the program line

label : If A[i] equals σ then cmds

into a state (label, σ) for every label and σ (note that both are fixed for a particular program
line). The transition function δ is well-defined, since given the current state (label, σ) and
head position i, we know the tape contents A[i], what the head writes at A[i], where its next
position is, and what the new state/program line is.

Exercise 1.15

(a) The input size shrinks by a factor of log b when written base-b. So, if the running time
is O(nc) when the input x is written in binary and |x| = n, then O((n

log b)
c) = O(nc) is

the running time when x is written base-b.

(b) The following algorithm solves the problem: Reject ⟨n, l, k⟩ if l > k, or l > n or k > n.
For every number l + 1 ≤ m ≤ k − 1, first check whether n = 0(mod m). If yes, then
for every number 2 ≤ q ≤ ⌈

√
m⌉, check whether m = 0(mod q). If none of these q’s

divides m (i.e., m is prime), then accept ⟨n, l, k⟩. If there is no prime m divides n,
then reject ⟨n, l, k⟩.
Assuming that each arithmetic operation (including

√
) takes time log n, using the

binary representation of all numbers (note that all are at most n in value) and the
elementary algorithm for it, then the running time of the algorithm is O(n3/2 log n).

Exercise 2.9

Given exercise 2.8, then any L ∈ NP and L′ = HALT show that ≤R is not symmetric. (To
solve 2.8, note that we can construct a TM M that given a 3SAT formula ϕ, it goes over
all truth assignments, and if none satisfies the formula then goes into an infinite loop. Then
HALT (M,ϕ) = 1 iff ϕ ∈ 3SAT .)

1

Exercise 2.10

Let M1,M2 be the TMs in the definitions of L1, L2 respectively, i.e.,

x ∈ L1 ⇔ ∃u1 : M1(x, u1) = 1

x ∈ L2 ⇔ ∃u2 : M2(x, u2) = 1

Define TM M∪(x,Qu) so that it just runs MQ(x, u) for Q ∈ {1, 2}. Then

x ∈ L1 ∪ L2 ⇔ ∃Qu : M∪(x,Qu) = 1

Similarly, define TM M∩(x, u1|u2) so that it accepts iff M1(x, u1) = 1∧M2(x, u2) = 1. Then

x ∈ L1 ∩ L2 ⇔ ∃u1|u2 : M∩(x, u1|u2) = 1

Exercise 2.15

V ERTEX COV ER(G, k) reduces to INDSET (G,n− k), and CLIQUE(G, k) reduces to
INDSET (Ḡ, k).

Exercise 2.32

(a) Input size |x| = log x in binary, and |x| = x in unary

(b) Let M be the polynomial time NDTM that on input x decides L in 2p(log x) time. Let

M ′ be the NDTM that takes input x = [w]unary1
2p(logw)

of size |x| = w + 2p(logw) and

(i) strips it of the last 12
p(logw)

1’s (in time O(12
p(logw)

) = O(|x|), i.e., linear), (ii) writes
w in binary (in time O(w) = O(|x|), i.e., again linear), and (iii) runs M([w]binary)
in time O(2p(logw)) = O(|x|) (again linear). Then M ′ decides L′ in linear time, i.e.,
L′ ∈ NP .

(c) Since L′ is a unary language in NP , then L′ ∈ P , i.e., there is a deterministic TM

M ′′ that decides whether input x = [w]unary1
2p(logw) ∈ L′ in q(|x|) time for some

polynomial q. Since x ∈ L′ ⇔ w ∈ L, we can decide whether some w ∈ L, by con-
structing x = [w]unary1

2p(logw)
in O(2p(logw)) time, and then run M ′′(x) in O(q(|x|)) =

O(q(2p(logw))) = O(2p
′(logw)) time for some polynomial p′. Therefore we can determin-

istically decide L in O(2p
′(logw)) time, i.e., L ∈ EXP , i.e., NEXP ⊆ EXP (the other

direction is trivial).

2

