Assignment 2 solutions

Exercise 3.2

(a) Let R(x) be the polynomial-time reduction $L_2 \leq_P L_1$, i.e.,

$$x \in L_2 \Leftrightarrow R(x) \in L_1.$$
 (1)

Since $L_1 \in NP$, there is a polynomial-time TM M such that

$$R(x) \in L_1 \Leftrightarrow \exists u : M(R(x), u) = 1.$$
 (2)

- (1) together with (2) imply that $x \in L_2 \Leftrightarrow \exists u : M(R(x), u) = 1$, where M(R(x), u) runs in polynomial time, i.e., $L_2 \in NP$.
- (b) Take any $L_2 \in SPACE(n^2) \setminus SPACE(n)$, which exists because of the Time Hierarchy theorem, and let M be the $O(n^2)$ -space TM that decides L_2 . Then the reduction that takes x and produces $x1^{|x|^2-|x|}$ runs in polynomial $(O(n^2))$ time. Let $L_1 = \{x1^{|x|^2-|x|}: x \in L_2\}$. $L_1 \in SPACE(n)$, since the TM M' that (i) takes input $y = x1^{|x|^2-|x|}$, (ii) strips away $1^{|x|^2-|x|}$, and (iii) runs M(x), uses space $O(|x|^2-|x|+|x|^2)=O(|x|^2)=O(|y|)$.
- (c) Since NP is closed under polynomial reductions, but SPACE(n) is not, we have $NP \neq SPACE(n)$.

Exercise 3.5

Let $L \in DTIME(n^2) \setminus DTIME(n)$, that exists because of the Time Hierarchy Theorem. The function f(n) = n + L(n) takes values $n \le f(n) \le n + 1$. Assume that f(n) is time-constructible, i.e., there is TM M(n) = f(n) that runs in O(n) time. Then M uses O(n) space, and TM M' that runs M(n) and outputs M(n) - n decides L in O(n) space, i.e., $L \in SPACE(n)$, a contradiction.

Exercise 4.4

First, note that the language is in NL because the following algorithm is in NL: For every pair $u, v \in G$, if PATH(G, u, v) = 0 then return 0. After enumerating all pairs without termination, return 1. It is in NL because the enumeration of u, v needs $O(\log n)$ space, and $PATH \in NL$.

We reduce PATH to the language. For any input G, u, v of PATH, we add to G edges (v, w) for all $w \in V$. This is done in log-space, since we just need to output 1 to any edge inquiry EDGE?(w, x). Let G' be the new graph. Then it is easy to see that $PATH(G, u, v) = 1 \Leftrightarrow G'$ is strongly connected.

Exercise 4.7

- (a) A polynomial-time $NDTM_{r-o}$ can simulate a polynomial-time NDTM by copying its read-once certificate onto its working tape, which can be done in polynomial time since the certificate is of polynomial length. Then Theorem 2.6 holds if NDTMs are replaced by $NDTM_{r-o}$'s.
- (b) Since the NDTM M uses only $O(\log n)$ working-tape space and only p(n) certificate-tape positions, each configuration for this NDTM uses only $O(\log n + \log p(n)) = O(\log n)$ space, i.e., there are at most $2^{O(\log n)} = O(q(n))$ configurations for some polynomial q. Therefore, there is a TM M' such that, given input x and a certificate u with |u| = p(|x|), constructs in polynomial time the configuration graph of M(x, u), and checks (in polynomial time) whether there is a path between the starting and the accepting configuration.
- (c) Let $L \in NP$, then there is a NDTM M such that $x \in L \Leftrightarrow \exists u : M(x,u) = 1$. Following the Cook-Levin theorem proof, there is polynomial p such that the p(|x|) computation steps of M(x,u) correspond to tape, state, head(s) location snapshots, each of length p(|x|). The correctness of each location (i,j) of this $p(|x|) \times p(|x|)$ of this matrix can be checked by checking whether locations (i-1,j-1), (i-1,j), (i-1,j+1) produce (i,j). Only $O(\log |x|)$ bits are needed (for indexing) by a NDTM M' that takes this matrix as its certificate (of size $O(p^2(|X|))$, and checks whether it's a correct accepting computation of M(x,u) for some u, by moving back-and-forth on this matrix.

Exercise 4.12

Savitch's theorem proof uses polyL space, but exponential time. SC is not the same as $polyL\cap P$ because $L\in polyL\cap P$ if it has a polynomial-time solver M and a polylogarithmic space solver M', but it may be the case $M\neq M'$.