
Assignment 3 solutions

Exercise 5.2

The computation of an ATM can be modelled by a tree, where each node at distance i
from the root corresponds to a snapshot of the machine after i steps, the node is labeled by
∃ or ∀, and there are two children corresponding to the two possible choices made by the
ATM. We can arrange the tree nodes into layers, where each layer has the same label (∃
or ∀). An accepting computation corresponds to a subtree that includes one child of each
∃ node and all children of every ∀ node, and all its leaves are in the accepting state of the
ATM. Then it is clear that L ∈ ∪cΣiTIME(nc) (∪cΠiTIME(nc)) iff there is an ATM whose
computation for every x corresponds to a tree of polynomial height, with the root labeled
∃(∀), and exactly i− 1 alternations of the label on its layers.

On the other hand, L ∈ Σp
i can be computed by an ATM that ‘guesses’ certificates

u1, u2, . . . , ui using its transition function choices, by recording whether the choice was 0 or
1. While guessing u1 it is in ∃ states, while guessing u2 it is in ∀ states, etc. After recording
u1, u2, . . . , ui on its working tape, it runs M(x, u1, u2, . . . , ui) for a polynomial time keeping
the state label of ui. (Symmetric for Πp

i .)

(a) The computation of the ATM for L ∈ Σp
i above corresponds to a labeled tree, with the

root labeled ∃, the first |u1| layers labeled ∃, followed by |u2| layers labeled ∀, etc. After
|u1|+|u2|+. . .+|ui| layers, follow polynomial many layers without transition branchings,
labeled with the same label as the ui layers, that correspond to the computation of
the deterministic M(x, u1, u2, . . . , ui). Obviously the tree has polynomial height. This
tree corresponds exactly to the computation of an ATM that decides a ∪cΣiTIME(nc)
language, i.e., L ∈ ∪cΣiTIME(nc).

(b) To show that ∪cΣiTIME(nc) ⊆ Σp
i , we can assign to the j-th block of consecutive lay-

ers with the same label of the ATM M computation tree for ∪cΣiTIME(nc) a certifi-
cate uj with the quantifier that labels the block. This certificate records the transition
function choices made inside this block of layers. Then there is an acceptance subtree
of this ATM tree for input x iff the statement ∃u1∀u2 . . . Qui : M(x, u1, u2, . . . , ui) = 1
is true.

Exercise 5.12

Assuming that Σp
i = Πp

i , we use induction on j to prove that Σp
j ,Π

p
j ⊆ Σp

i .

j = i: True by hypothesis.

j = k − 1: We assume that Σp
k−1,Π

p
k−1 ⊆ Σp

i .

j = k: We show that Σp
k ⊆ Σp

i . Let L ∈ Σp
k. Then

x ∈ L ⇔ ∃u1∀u2 . . . Qk−i+1uk−i+1Qk−i+2uk−i+2 . . . Qkuk : M(x, u1, . . . , uk) = 1

The statement Qk−i+1uk−i+1Qk−i+2uk−i+2 . . . Qkuk : M(x, u1, . . . , uk) = 1 is in Σp
i

if Qk−i+1 = ∃ or Πp
i if Qk−i+1 = ∀, so it can replaced by an equivalent statement
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Q̄k−i+1uk−i+1Q̄k−i+2uk−i+2 . . . Q̄kuk : M ′(x, u1, . . . , uk) = 1 in Πp
i or Σp

i respec-
tively, by hypothesis. Since Q̄k−i+1 = Qk−i (i.e., Qk−iuk−i, Q̄k−i+1uk−i+1 collapse
to Qk−iuk−iuk−i+1), the new (equivalent) statement is in Σp

k−1 ⊆ Σp
i .

We can similarly prove that Πp
k ⊆ Σp

i , since Πk−1 = Σp
k−1 ⊆ Σp

i = Πp
i = Σp

i .

Exercise 5.3

(a) If R(x) is the polynomial-time reduction L ≤P L̄, we have x ∈ L ⇔ R(x) ∈ L̄, or,
equivalently, x ̸∈ L ⇔ R(x) ̸∈ L̄, or, equivalently, x ∈ L̄ ⇔ R(x) ∈ L, i.e., R(x) is also
the reduction L̄ ≤P L.

(b) Since we have assumed that 3SAT ≤p 3SAT , (a) implies that we have also 3SAT ≤p

3SAT . Let L ∈ Σp
2. Then

x ∈ L ⇔ ∃u1∀u2 : M(x, u1, u2) = 1. (1)

For a fixed certificate u1, the language L′ defined by

x ∈ L′ ⇔ ∀u2 : M(x, u1, u2) = 1

is in Πp
1 = coNP , and since 3SAT is coNP -complete, we have L′ ≤p 3SAT ≤p 3SAT ,

i.e., there is polynomial TM M ′ such that

∀u2 : M(R(x), u1, u2) = 1 ⇔ x ∈ L′ ⇔ ∃u2 : M ′(S(R(x)), u1, u2) = 1,

where R,S are the two polynomial reductions, and (1) becomes

x ∈ L ⇔ ∃u1∃u2 : M ′(x, u1, u2) = 1,

which implies that L ∈ Σp
1.

(c) The proof goes exactly like in (b), except that we use the hypothesis 3SAT ≤p 3SAT .

(d) We have Πp
1 ⊆ Σp

2 = Σp
1 and Σp

1 ⊆ Πp
2 = Πp

1, and, therefore, Π
p
1 = Σp

1. Theorem 5.4
implies the exercise result.

Exercise 5.7

To show APSPACE ⊆ EXP , it is enough to see that we can construct the configuration
graph for the ATM for input x, and then check if there is an accepting computation by
applying the rules of Definition 5.7.

To show EXP ⊆ APSPACE, first note that the computation of a TM for an L ∈ EXP
uses 2p(n) time and 2p(n) space, for a polynomial p, and can be represented by a 2p(n)× 2p(n)

matrix. Like in the Cook-Levin theorem, or every (∀) cell (i, j) of this matrix, we can ‘guess’
(∃) its content σ, and the contents of cells (i − 1, j − 1), (i − 1, j), (i − 1, j + 1) (let’s say
σ1, σ2, σ3), and verify that σ is compatible with σ1, σ2, σ3 going from time step i− 1 to time
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step i (using constant space and time). After this verification is done, we verify recursively
the computation for all (∀) three σ1, σ2, σ3. For the verification of σ1, σ2, σ3, we reuse the
space used for σ to keep σ1, then σ2, then σ3 in each recursive call. Extending this reuse all
the way down the recursion tree, the only space we need is to index cell (i, j) (which takes
O(log 2p(n)) = O(p(n)) space) and some constant space for verification computations.

Note that this description corresponds to an ATM computation tree, which, due to space
reuse, takes polynomial space, proving the result.
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