Assignment 3 solutions

Exercise 5.2

The computation of an ATM can be modelled by a tree, where each node at distance i
from the root corresponds to a snapshot of the machine after ¢ steps, the node is labeled by
3 or V, and there are two children corresponding to the two possible choices made by the
ATM. We can arrange the tree nodes into layers, where each layer has the same label (3
or V). An accepting computation corresponds to a subtree that includes one child of each
J node and all children of every V node, and all its leaves are in the accepting state of the
ATM. Then it is clear that L € U.X,TIME(n¢) (UJLTIME(n¢)) iff there is an ATM whose
computation for every x corresponds to a tree of polynomial height, with the root labeled
3(V), and exactly ¢ — 1 alternations of the label on its layers.

On the other hand, L € X can be computed by an ATM that ‘guesses’ certificates

u1, U, . . ., Uu; using its transition function choices, by recording whether the choice was 0 or
1. While guessing u; it is in 3 states, while guessing us it is in V states, etc. After recording
ui,ug,...,u; on its working tape, it runs M (x, uy, ug, ..., u;) for a polynomial time keeping

the state label of u;. (Symmetric for IT¢.)

(a) The computation of the ATM for L € ¥ above corresponds to a labeled tree, with the
root labeled 3, the first |u;| layers labeled 3, followed by |ug| layers labeled V, etc. After
|ug |+ |ug|+. . .+ |u;| layers, follow polynomial many layers without transition branchings,
labeled with the same label as the u; layers, that correspond to the computation of
the deterministic M (z, w1, ua,...,u;). Obviously the tree has polynomial height. This
tree corresponds exactly to the computation of an ATM that decides a U.X;TIM E(n°)
language, i.e., L € U3, TIME(n®).

(b) To show that U.X;TTM E(n¢) C ¥¥, we can assign to the j-th block of consecutive lay-
ers with the same label of the ATM M computation tree for U.X; TIM E(n®) a certifi-
cate u; with the quantifier that labels the block. This certificate records the transition
function choices made inside this block of layers. Then there is an acceptance subtree
of this ATM tree for input x iff the statement JuiVuy ... Qu; : M (z,ui,uz,...,u;) =1
is true.

Exercise 5.12

Assuming that Ef = Hf , we use induction on j to prove that Z? , H? - Ef .
7 = 1: True by hypothesis.

j =k —1: We assume that ¥f | II; |, € 3.

j = k: We show that ¥} C ¥¥. Let L € ¥?. Then

€ L& JuVug ... Qr—ip1uk—it1Qr—iv2uk—iv2 .- Qrug : M(z,up, ... u) =1

The statement Qp—;+1Uk—i+1Qk—it2Uk—it2--- Qrur : M(z,u1,...,up) = 1is in X¥
if Q411 = Jor Hf if Qr_;+1 =V, so it can replaced by an equivalent statement



Qk,i+1Uk,i+1Qk,i+2Uk,i+2..._Qk-Uk : M (xz,uq, .. ug) = 1 in 1P or ¥¥ respec-
tively, by hypothesis. Since Qx_j+1 = Qr—; (i.e., Qr_iug—i, Qr—i+1uk—;+1 collapse
t0 Qk—iUk—iUug—i+1), the new (equivalent) statement is in X | C .

We can similarly prove that II} C ¥?, since Iy = XF_, C P =11 = %P,

Exercise 5.3

(a)

(b)

()
(d)

If R(z) is the polynomial-time reduction L <p L, we have r € L R(z) € L, or,
equivalently, * ¢ L < R(z) € L, or, equivalently, x € L < R(z) € L, i.e., R(z) is also
the reduction L <p L.

Since we have assumed that 3SAT <, 3SAT, (a) implies that we have also 3SAT <,
3SAT. Let L € X5, Then

x € L& JuiVug : M(x,u1,ue) = 1. (1)
For a fixed certificate uq, the language L’ defined by
v €L & Vuy: M(x,ui,uz) =1

is in [} = coN P, and since 3SAT is coN P-complete, we have L' <, 3SAT <, 3SAT,
i.e., there is polynomial TM M’ such that

Vug : M(R(x),u1,u2) =1z € L' & Jug : M'(S(R(x)),u1,u) =1,
where R, S are the two polynomial reductions, and (1) becomes
r € L & Jug3ug : M'(x,u1,uz) = 1,
which implies that L € 7.
The proof goes exactly like in (b), except that we use the hypothesis 3SAT <, 3SAT.

We have II] C X8 = 37 and ¥} C II5 = IIf, and, therefore, II} = 7. Theorem 5.4
implies the exercise result.

Exercise 5.7

To show APSPACE C EXP, it is enough to see that we can construct the configuration
graph for the ATM for input x, and then check if there is an accepting computation by
applying the rules of Definition 5.7.

To show EXP C APSPACE, first note that the computation of a TM for an L € EXP
uses 2™ time and 2°(™ space, for a polynomial p, and can be represented by a op(n) w 2p(n)
matrix. Like in the Cook-Levin theorem, or every (V) cell (7, j) of this matrix, we can ‘guess’
(3) its content o, and the contents of cells (i — 1,5 — 1),(i — 1,4),(i — 1,5 + 1) (let’s say
o1,09,03), and verify that o is compatible with o1, 02, 03 going from time step i — 1 to time



step 7 (using constant space and time). After this verification is done, we verify recursively
the computation for all (V) three o1, 09,03. For the verification of o1, 09,03, we reuse the
space used for o to keep o1, then o9, then o3 in each recursive call. Extending this reuse all
the way down the recursion tree, the only space we need is to index cell (,7) (which takes
O(log 2°™) = O(p(n)) space) and some constant space for verification computations.

Note that this description corresponds to an ATM computation tree, which, due to space
reuse, takes polynomial space, proving the result.



