
Assignment 4 solutions

Exercise 7.4

M ′(x) runs M(x) k independent times and accepts x iff M(x) = 1 at least once. Obviously,
if x ̸∈ L we have M(x) = 0 for all k times, and Pr[M ′(x) = 0] = 1. If x ∈ L,

Pr[M ′(x) = 0] = Pr[M(x) = 1∀k times] ≤ (1− n−c)k. (1)

If we set k := dnc lnn then, since for large enough n we have (1− n−c)n
c ≤ 1/e (1) implies

Pr[M ′(x) = 0] ≤ n−d.

Exercise 7.6

(a) First assume that M exists, and its running time is at most nc. We construct a
new TM M ′, which runs M(x) repeatedly, until it gets something other than ?. If
M ′(x) terminates, then it terminates with L(x) by definition. To calculate its expected
running time, we note that it runs M(x) i times iff M(x) =? for the first i− 1 times,
and M(x) ̸=? the i-th time. Then the running time is inc, and the probability that
this event happens is

Pr[repeat M(x) i times] ≤ 1

2i−1
Pr[M(x) ̸=?] ≤ 1

2i−1
.

So, the expected running time for M ′(x) is at most
∑∞

i=1
inc

2i−1 = 2nc
∑∞

i=1
i
2i

≤ 2Dnc =
O(nc), where D is the constant of exercise 7.2. Therefore L ∈ ZPP .

Now assume that L ∈ ZPP . Then there is a probabilistic TM M ′ that outputs the
correct answer if it terminates, and runs in expected polynomial time. If TM ′(n) is
the running time of M ′, then E[TM ′(n)] =

∑∞
i=1 iPr[TM ′(n) = i] = nc. We apply

Markov’s inequality (Lemma A.7 for k := l/E[TM ′(n)]) for some l (to be determined),
and get

Pr[TM ′(n) ≥ l] ≤ E[TM ′(n)]

l
=

nc

l
. (2)

If we set l := 2nc, the probability of (2) is ≤ 1/2. Let M be the probabilistic TM
that runs M ′(x) for at most l = 2nc steps. If it terminates at some point with
an answer M ′(x) = 0 or 1, then output the answer, else output ?. Because of (2),
Pr[M(x) =?] ≤ 1/2.

(b) See lecture notes.

Exercise 7.8

(a) As described at the beginning of the proof for Theorem 7.14, we have a polynomial-
time probabilistic TM M that, given input |x| = n, uses m = p(n) random bits for
some polynomial p so that Prr[3SAT (M(x, r)) ̸= 3SAT (x)] ≤ 1

2−n−1 . Continuing with
the argument of Theorem 7.14, there is a random string r0 with |r0| = m, such that
3SAT (M(x, r)) ̸= 3SAT (x), ∀x.
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(b) Modify the proof in (a) to show how it works if the input is not just x, but (x, u),
where you know that u ∈ {0, 1}q(|x|) for a polynomial q. (Hint: The only change is
that r0 will now be of size polynomial in q(|x|), which is still polynomial in |x|.)

(c) Σp
4 languages have polynomial-time TM M ′ s.t.

∃u1∀u2∃u3∀u4 : M ′(x, u1, u2, u3, u4) = 1.

The inner statement ∀u4 : M ′(x, u1, u2, u3, u4) = 1 is an coNP statement, which can be
reduced (deterministically in poly-time) to a 3SAT statement for fixed u1, u2, u3, i.e.,
it is equivalent to 3SAT (R(x, u1, u2, u3)). We guess the random string r0 that works for
any u1, u2, u3, to reduce deterministically this 3SAT statement to 3SAT (M(R(x, u1, u2, u3), r0)),
i.e., the statement becomes

∃r0∃u1∀u2∃u3∃v4 : M ′′(M(R(x, u1, u2, u3), r0), v4) = 1

for a polynomial certifier M ′′ of 3SAT , which is a Σp
3 statement.

Exercise 7.10

Consider the directed graph that consists of a path s → v1 → v2 → . . . → vn−2 → t, plus
the edges (vi, s), i = 1, . . . , n− 2. Each edge can be taken with probability 1/2, except for
(s, v1) that is taken with probability 1. Then the expected time to reach t can be calculated
recursively

E[s → t] = E[s → vn−2] +
1

2
1 +

1

2
E[s → vn−2], E[s → v1] = 1

or
1

2
En = En−1 +

1

2
, E1 = 1

which implies En = Ω(2n).
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