Assignment 4 solutions

Exercise 7.4

M'(z) runs M (x) k independent times and accepts x iff M(x) =1 at least once. Obviously,
if x ¢ L we have M(x) =0 for all k times, and Pr[M'(z) =0] =1. If z € L,

Pr[M'(z) = 0] = Pr[M(z) = 1Vk times] < (1 — n=%)*. (1)

If we set k := dnInn then, since for large enough n we have (1 —n~¢)"" < 1/e (1) implies
Pr[M'(z) =0] <n~ .

Exercise 7.6

(a) First assume that M exists, and its running time is at most n®. We construct a
new TM M’ which runs M (z) repeatedly, until it gets something other than 7. If
M’(x) terminates, then it terminates with L(z) by definition. To calculate its expected
running time, we note that it runs M(x) ¢ times iff M (x) =7 for the first ¢ — 1 times,
and M (z) #7 the i-th time. Then the running time is in® and the probability that
this event happens is

1
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Pr{repeat M (z) i times] < FP’I“[M(CE) #7] <

So, the expected running time for M’ (x) is at most > .=, ;ﬁcl =2n°%" 2, # <2Dn¢ =

O(n¢), where D is the constant of exercise 7.2. Therefore L € ZPP.

Now assume that L € ZPP. Then there is a probabilistic TM M’ that outputs the
correct answer if it terminates, and runs in ezpected polynomial time. If Thp(n) is
the running time of M’, then E[Tyy(n)] = > .o, iPr[Ty(n) = i = n°. We apply
Markov’s inequality (Lemma A.7 for k := [/ E[Ty;(n)]) for some [ (to be determined),

and get

PrTy(n) > 1] < W - ”7 2)

If we set [ := 2n°, the probability of (2) is < 1/2. Let M be the probabilistic TM
that runs M’(x) for at most | = 2n® steps. If it terminates at some point with

an answer M'(z) = 0 or 1, then output the answer, else output ?. Because of (2),
PriM(x) =?] <1/2.

(b) See lecture notes.

Exercise 7.8

(a) As described at the beginning of the proof for Theorem 7.14, we have a polynomial-
time probabilistic TM M that, given input |z| = n, uses m = p(n) random bits for
some polynomial p so that Pr.[3SAT (M (z,r)) # 3SAT (x)] < 2_7711_1 Continuing with
the argument of Theorem 7.14, there is a random string rg with |rg| = m, such that
3SAT (M (x,r)) # 3SAT(x), V.



(b) Modify the proof in (a) to show how it works if the input is not just z, but (x,u),
where you know that v € {0,1}90%) for a polynomial q. (Hint: The only change is
that ro will now be of size polynomial in ¢(|z|), which is still polynomial in |z|.)

(c) Xf languages have polynomial-time TM M’ s.t.
FuiVusJusVuy : M’ (2, u1, us, us, ug) = 1.

The inner statement Vuy : M'(x, uy, us, ug,uqs) = 1is an coN P statement, which can be

reduced (deterministically in poly-time) to a 3SAT statement for fixed uj, ug, us, i.e.,

it is equivalent to 3SAT(R(x, u1, ug, us)). We guess the random string r( that works for

any ui, ug, us, to reduce deterministically this 3S AT statement to 3SAT (M (R(z,u1,u2,u3),70)),
i.e., the statement becomes

IroIugVusJuzIvy : M"(M(R(x,uy, us, uz),ro),vq) = 1

for a polynomial certifier M"” of 3SAT, which is a ¥f statement.

Exercise 7.10

Consider the directed graph that consists of a path s — v1 = v9 — ... = v,_o0 — ¢, plus
the edges (vi,s), i = 1,...,n — 2. Each edge can be taken with probability 1/2, except for
(s,v1) that is taken with probability 1. Then the expected time to reach ¢ can be calculated
recursively

1 1
E[s > t]| = E[s = vp—2] + 51 + §E[s — vp_a], E[s > v1] =1

or 1 1
iEn =FEnp 1+ 57 Er=1

which implies FE,, = Q(2").



