Chapter 1: The computational model

Turing Machines (TM)

Read only head
“‘"‘“!IIIH!IHI\'IH!IIIC
tape lo

Rcad/wrltc head
Work | ol
tape \III\III\IIIIIIIIIIIC

Read/wrlte head :_

Output
oo (O I I
I

TTTTTIC

e S =

Register: 47

Figure: A 3-tape Turing Machine

CS 4TH3

Chapter 1: The computational model

Turing Machines (TM)

@ The running time T(n) on input of size n is the number of basic
operations.

@ Making the machine more powerful (e.g., bigger alphabet, more
states, etc.) can be simulated by the simpler TM with only
polynomial slowdown, i.e., T(n) algorithm on stronger TM runs in
O(T(n)¢) time in weaker TM, for some constant ¢ > 0.

@ Any TM can be described by a fixed-format string (e.g., (Alphabet,
States, Transition rules)). A numerical encoding of this string is a
unique numerical ID for the TM in our encoding scheme.
= If a is the encoding of a TM, we will denote this TM as M,,. =
TMs can get the encoding o of TM M,, as input.
= We can built a universal TM (let's call it UTM) that can
simulate any other TM M,, it gets in its input. = SOFTWARE!

@ If M,(x) runs in time T(|x|), UTM(a,x) runs in time
O(T(|x|)log T(|x|)), i.e., we lose only a logarithmic factor.

CS 4TH3

Chapter 1: The computational model

Computability

@ Decision problem: Let f:{0,1}* — {0,1} be a binary function.
The computation of f is called a decision problem. The set
Lf = {x: f(x) = 1} is the language defined by f.

@ Algorithm: A mechanical “recipe” for solving a decision problem
that (i) always terminate (ii) with the correct answer.

@ If decision problem L has algorithm then it is called decidable.
Otherwise it is undecidable.

@ If L has a TM that always halts with 1 for all x € L¢, but may not
halt when x & L¢ (and outputs 0 if it halts) is called recursive
enumerable.

CS 4TH3

Chapter 1: The computational model

Computability

There exists function UC : {0,1}* — {0,1} that is not computable by
any TM (i.e., UC is undecidable).

Proof: By diagonalization. We define for every string a € {0, 1}*

— Oa If Ma(a) =]‘
UC(a) = { 1, if M,(a) =0 or M,(a) doesn't halt

0 |1|00]ot]|10]|1 «
0. ,(ﬁ1 *{o|1]0 My(a) |
0 1 Ala 1]« |1
0| * o folof1 |
or | 1 |*[o |gi]|*|o0
@ M@ - "‘wunm‘j;»i

CS 4TH3

Chapter 1: The computational model

Computability
Definition: HALT (a, x) = 1 iff M,(x) halts (halting problem).

HALT is undecidable.

Proof: By reduction UC < HALT. Assume My, 1+ computes HALT .
Muyc(a) .= If Myarr(a,a) = 0 then return 1 else return —=M,(a).

® Muyarr(a,a) = 0= M,(a) doesn't halt = UC(a) =1
® Myair(a,a) =1 = M,(a) halts = UC(a) = —-M,(a)

= Myc(a) computes UC = contradiction of Thm. 1. a

- Godel's theorem and Decidability

CS 4TH3

Chapter 1: The computational model

The class P
Definition: A complexity class is a set of functions computable within
given resource bounds.

Definition: Language L € DTIME(T(n)) iff there is TM that decides L in
time ¢ - T(n) for some constant ¢ > 0.
Note: DTIME(T(n)) is defined for decision problems (languages).

Definition: P = J -, DTIME(n°)

Note 1: nis the size of writing the input in bits (on the TM tape), not
the value of the input. E.g., algorithm that solves equation Ax =1 in
time O(log® A) is polynomial, algorithm that runs in time O(A?) is
pseudo-polynomial.

Note 2: P is the only class closed under composition, i.e., algorithm
with poly-time work and polynomially many calls to subroutines in P is
still in P!

CS 4TH3

Chapter 1: The computational model

Computational model may not matter

Church-Turing thesis: Any model of computation can be simulated by a
TM.

Church-Turing thesis (strong form): Any model of computation can be
efficiently (i.e., with polynomial overhead) simulated by a TM.
Note: What about quantum computers?

Definition: P = J 5o DTIME(n®)

Note 1: n is the size of writing the input in bits (on the TM tape), not
the value of the input. E.g., algorithm that solves equation Ax =1 in
time O(log® A) is polynomial, algorithm that runs in time O(A?) is
pseudo-polynomial.

Note 2: P is the only class closed under composition, i.e., algorithm
with poly-time work and polynomially many calls to subroutines in P is
still in P!

CS 4TH3

Chapter 1: The computational model

Comments on the definition of P
@ Worst-case analysis and exact computation
@ Precision (or R vs. N)
@ Use of randomness
@ Use of quantum mechanics or other exotic physics
@ Decision problems are too restrictive

Read Edmond’s quote (from someone who defined P when P didn't yet
exist...) Read the Chapter notes and history.

CS 4TH3

