
Chapter 1: The computational model

Turing Machines (TM)

"#$%!&'()!*#$%!

+',-.!

.$,#!

/&01!

.$,#!

2-.,-.!

.$,#!

3 4! ! 4! ! 4! ! 4! ! 4! ! 4! ! 4! ! 4! ! 4! ! 4! ! 4! ! 4! ! 4! ! 4! ! 4!

!

!

3! ! 5! ! 5! ! 4 5! ! 4 5! ! 4! ! 4! ! 4! ! 5!

!
!

! !

Figure: A 3-tape Turing Machine

CS 4TH3

Chapter 1: The computational model

Turing Machines (TM)

The running time T (n) on input of size n is the number of basic
operations.

Making the machine more powerful (e.g., bigger alphabet, more
states, etc.) can be simulated by the simpler TM with only
polynomial slowdown, i.e., T (n) algorithm on stronger TM runs in
O(T (n)c) time in weaker TM, for some constant c > 0.

Any TM can be described by a fixed-format string (e.g., (Alphabet,
States, Transition rules)). A numerical encoding of this string is a
unique numerical ID for the TM in our encoding scheme.
⇒ If α is the encoding of a TM, we will denote this TM as Mα. ⇒
TMs can get the encoding α of TM Mα as input.
⇒ We can built a universal TM (let’s call it UTM) that can
simulate any other TM Mα it gets in its input. ⇒ SOFTWARE!

If Mα(x) runs in time T (|x |), UTM(α, x) runs in time
O(T (|x |) logT (|x |)), i.e., we lose only a logarithmic factor.

CS 4TH3

Chapter 1: The computational model

Computability

Decision problem: Let f : {0, 1}∗ → {0, 1} be a binary function.
The computation of f is called a decision problem. The set
Lf = {x : f (x) = 1} is the language defined by f .

Algorithm: A mechanical “recipe” for solving a decision problem
that (i) always terminate (ii) with the correct answer.

If decision problem L has algorithm then it is called decidable.
Otherwise it is undecidable.

If L has a TM that always halts with 1 for all x ∈ Lf , but may not
halt when x ̸∈ Lf (and outputs 0 if it halts) is called recursive
enumerable.

CS 4TH3

Chapter 1: The computational model

Computability

Theorem 1

There exists function UC : {0, 1}∗ → {0, 1} that is not computable by
any TM (i.e., UC is undecidable).

Proof: By diagonalization. We define for every string a ∈ {0, 1}∗

UC (a) =

{
0, if Ma(a) = 1
1, if Ma(a) = 0 or Ma(a) doesn’t halt

CS 4TH3

Chapter 1: The computational model

Computability
Definition: HALT (a, x) = 1 iff Ma(x) halts (halting problem).

Theorem 2

HALT is undecidable.

Proof: By reduction UC ≤ HALT . Assume MHALT decides HALT .
MUC (a) := If MHALT (a, a) = 0 then return 1 else return ¬Ma(a).

MHALT (a, a) = 0 ⇒ Ma(a) doesn’t halt ⇒ UC (a) = 1

MHALT (a, a) = 1 ⇒ Ma(a) halts ⇒ UC (a) = ¬Ma(a)

⇒ MUC (a) decides UC ⇒ contradiction of Thm. 1. 2

- Gödel’s theorem and Decidability

CS 4TH3

Chapter 1: The computational model

The class P
Definition: A complexity class is a set of functions computable within
given resource bounds.

Definition: Language L ∈ DTIME (T (n)) iff there is TM that decides L in
time c · T (n) for some constant c > 0.
Note: DTIME (T (n)) is defined for decision problems (languages).

Definition: P =
⋃

c≥0 DTIME (nc)

Note 1: n is the size of writing the input in bits (on the TM tape), not
the value of the input. E.g., algorithm that solves equation Ax = 1 in
time O(log3 A) is polynomial, algorithm that runs in time O(A2) is
pseudo-polynomial.
Note 2: P is the only class closed under composition, i.e., algorithm
with poly-time work and polynomially many calls to subroutines in P is
still in P!

CS 4TH3

Chapter 1: The computational model

Computational model may not matter

Church-Turing thesis: Any model of computation can be simulated by a
TM.

Church-Turing thesis (strong form): Any model of computation can be
efficiently (i.e., with polynomial overhead) simulated by a TM.
Note: What about quantum computers?

CS 4TH3

Chapter 1: The computational model

Comments on the definition of P

Worst-case analysis and exact computation

Precision (or R vs. N)

Use of randomness

Use of quantum mechanics or other exotic physics

Decision problems are too restrictive

Read Edmond’s quote (from someone who defined P when P didn’t yet
exist...) Read the Chapter notes and history.

CS 4TH3

