

Chapter 1: The computational model

Turing Machines (TM)

Figure: A 3-tape Turing Machine

Turing Machines (TM)

- The **running time** $T(n)$ on input of size n is the number of basic operations.
- Making the machine more powerful (e.g., bigger alphabet, more states, etc.) can be simulated by the simpler TM with only **polynomial slowdown**, i.e., $T(n)$ algorithm on stronger TM runs in $O(T(n)^c)$ time in weaker TM, for some constant $c > 0$.
- Any TM can be described by a **fixed-format string** (e.g., (Alphabet, States, Transition rules)). A numerical encoding of this string is a **unique numerical ID** for the TM in our encoding scheme.
 - ⇒ If α is the encoding of a TM, we will denote this TM as M_α . ⇒ TMs can get the encoding α of TM M_α as **input**.
 - ⇒ We can build a **universal TM** (let's call it *UTM*) that can simulate any other TM M_α it gets in its input. ⇒ **SOFTWARE!**
- If $M_\alpha(x)$ runs in time $T(|x|)$, $UTM(\alpha, x)$ runs in time $O(T(|x|) \log T(|x|))$, i.e., we lose **only a logarithmic factor**.

Computability

- **Decision problem:** Let $f : \{0, 1\}^* \rightarrow \{0, 1\}$ be a binary function. The computation of f is called a **decision problem**. The set $L_f = \{x : f(x) = 1\}$ is the **language** defined by f .
- **Algorithm:** A mechanical “recipe” for solving a decision problem that (i) always **terminate** (ii) with the **correct** answer.
- If decision problem L has algorithm then it is called **decidable**. Otherwise it is **undecidable**.
- If L has a TM that always halts with 1 for all $x \in L_f$, but may not halt when $x \notin L_f$ (and outputs 0 if it halts) is called **recursive enumerable**.

Chapter 1: The computational model

Computability

Theorem 1

There exists function $UC : \{0, 1\}^* \rightarrow \{0, 1\}$ that is not computable by any TM (i.e., UC is undecidable).

Proof: By **diagonalization**. We define for every string $a \in \{0, 1\}^*$

$$UC(a) = \begin{cases} 0, & \text{if } M_a(a) = 1 \\ 1, & \text{if } M_a(a) = 0 \text{ or } M_a(a) \text{ doesn't halt} \end{cases}$$

	0	1	00	01	10	11	...	α	...
0	01	1	*	0	1	0		$M_0(\alpha)$	
0	1	1	0	1	*	1		...	
00	*	0	10	0	1	*			
01	1	*	0	01	*	0			
...									
α	$M_a(\alpha)$...					$M_a(\alpha) 1 - M_a(\alpha)$		
...									

Chapter 1: The computational model

Computability

Definition: $\text{HALT}(a, x) = 1$ iff $M_a(x)$ halts (halting problem).

Theorem 2

HALT is undecidable.

Proof: By reduction $UC \leq \text{HALT}$. Assume M_{HALT} decides HALT .

$M_{UC}(a) :=$ If $M_{\text{HALT}}(a, a) = 0$ then return 1 else return $\neg M_a(a)$.

- $M_{\text{HALT}}(a, a) = 0 \Rightarrow M_a(a)$ doesn't halt $\Rightarrow UC(a) = 1$
- $M_{\text{HALT}}(a, a) = 1 \Rightarrow M_a(a)$ halts $\Rightarrow UC(a) = \neg M_a(a)$

$\Rightarrow M_{UC}(a)$ decides $UC \Rightarrow$ contradiction of Thm. 1. □

- Gödel's theorem and Decidability

Chapter 1: The computational model

The class P

Definition: A **complexity class** is a set of functions computable within given resource bounds.

Definition: Language $L \in DTIME(T(n))$ iff there is TM that decides L in time $c \cdot T(n)$ for some constant $c > 0$.

Note: $DTIME(T(n))$ is defined for *decision problems* (languages).

Definition: $P = \bigcup_{c \geq 0} DTIME(n^c)$

Note 1: n is the size of writing the input **in bits** (on the TM tape), **not** the **value** of the input. E.g., algorithm that solves equation $Ax = 1$ in time $O(\log^3 A)$ is **polynomial**, algorithm that runs in time $O(A^2)$ is **pseudo-polynomial**.

Note 2: P is the only class closed under composition, i.e., algorithm with poly-time work and polynomially many calls to subroutines in P is still in P !

Chapter 1: The computational model

Computational model may not matter

Church-Turing thesis: Any model of computation can be **simulated** by a TM.

Church-Turing thesis (strong form): Any model of computation can be **efficiently (i.e., with polynomial overhead) simulated** by a TM.

Note: What about **quantum computers**?

Comments on the definition of P

- Worst-case analysis and exact computation
- Precision (or \mathbb{R} vs. \mathbb{N})
- Use of randomness
- Use of quantum mechanics or other exotic physics
- Decision problems are too restrictive

Read Edmond's quote (from someone who defined P when P didn't yet exist...) Read the **Chapter notes and history**.