
Chapter 2: NP and NP-completeness

Definition 1

L ∈ NP if there exists a polynomial-time TM M (called the verifier for L)
and polynomial p : N → N such that ∀x ∈ {0, 1}∗,

x ∈ L ⇔ ∃u ∈ {0, 1}p(|x|) : M(x , u) = 1.

Note: TM M runs in polynomial time
q(|x |+ |u|) = (|x |+ |x |c)d = O(|x |cd) for q(n) = nd and p(n) = nc .

Note: Equivalent definition via Not-Deterministic TM’s (cf. 2.1.2).

Examples: INDSET, TSP, SUBSUM, LP, 0-1 IP, GRAPHISO,
COMPSITES, FACTORING, CONNECTIVITY

Definition 2 (alternative)

L ∈ NP if ∃ poly-time non-deterministic TM M(x) = 1 ⇔ x ∈ L.

CS 4TH3

Chapter 2: NP and NP-completeness

Definition 3

EXP =
⋃

c≥0 DTIME (2n
c

)

CS 4TH3

Chapter 2: NP and NP-completeness

Claim 1

P ⊆ NP ⊆ EXP

Proof P ⊆ NP: L ∈ P ⇒ poly-time TM M decides L
⇒ M ′(x , 0 or 1) := M(|x |) is a verifier for L with p(|x |) = |x |0 = 1

NP ⊆ EXP: L ∈ NP ⇒ poly-time verifier M(x , u) with |u| = p(|x |)
⇒ the following TM M ′ decides L in O(2n

p(|x|)
) time

Algorithm M ′(x)

for each u ∈ {0, 1}p(|x |) do
if M(x , u) = 1 then

return 1
return 0

CS 4TH3

Chapter 2: NP and NP-completeness

Definition 4 (Reductions)

L is poly-time Karp reducible to L′ (L ≤P L′) if there is poly-time
computable function f s.t. ∀x ∈ {0, 1}∗

x ∈ L ⇔ f (x) ∈ L′

!

CS 4TH3

Chapter 2: NP and NP-completeness

!

Why L ≤P L′?

L′ ∈ P ⇒ L ∈ P, i.e., if L′ easy then L easy
L ̸∈ P ⇒ L′ ̸∈ P, i.e., if L hard then L′ hard

Karp vs. Turing reductions: In L ≤T
P L′ we are allowed to use a

polynomial number of calls to L′ (not just one).

CS 4TH3

Chapter 2: NP and NP-completeness

Theorem 5 (Transitivity)

If L ≤P L′ and L′ ≤P L′′, then L ≤P L′′.

Proof:

x → f1(x) with f1(x) computable in O(|x |c) (L ≤P L′)

y → f2(y) with f2(y) computable in O(|y |d) (L′ ≤P L′′)

x → f2(f1(x)) is L ≤P L′′, with f2(f1(x)) computable in
O((|x |c)d) = O(|x |cd).

since x ∈ L ⇔ f1(x) ∈ L′ ⇔ f2(f1(x)) ∈ L′′. 2

CS 4TH3

Chapter 2: NP and NP-completeness

Definition 6 (NP-hardness)

L is NP-hard if L′ ≤P L for every L′ ∈ NP.

Definition 7 (NP-completeness)

L is NP-complete if

1 L is NP-hard, and

2 L ∈ NP.

CS 4TH3

Chapter 2: NP and NP-completeness

Theorem 8

1 If L is NP-hard and L ∈ P, then P = NP.

2 If L is NP-complete, then L ∈ P ⇔ P = NP.

Proof:

1 L′ ∈ NP
L is NP−hard⇒ L′ ≤P L

L∈P⇒ L′ ∈ P

2 If P = NP ⇒ L ∈ P. If L is NP-complete and L ∈ P then P = NP
from (1).

2

CS 4TH3

Chapter 2: NP and NP-completeness

Theorem 9

The following language is NP-complete:

TMSAT = {⟨a, x , 1n, 1t⟩ : ∃u ∈ {0, 1}n s.t. Ma(x , u) = 1 within t steps}

Proof:

1 TMSAT ∈ NP (easy)

2 L ∈ NP ⇒ verifier M(x , u) s.t.
x ∈ L ⇔ ∃u ∈ {0, 1}p(|x| : M(x , u) = 1 in q(|x |+ p(|x |)) steps
⇒ x → ⟨⌞M⌟, x , 1p(|x|), 1q(|x|+p(|x|))⟩ gives L′ ≤P TMSAT .

2

...but too artificial, like rewriting the NP-completeness definition!

CS 4TH3

Chapter 2: NP and NP-completeness

Definition 10 (CNF formula)

Given n boolean variables u1, u2, . . . , un

u1, ū1 are the literals for variable u1.

A clause is an OR of literals, e.g., (u1 ∨ ū3 ∨ u4).

A CNF formula is an AND of clauses, e.g.,
(u3) ∧ (ū1 ∨ u3 ∨ ū4) ∧ (u2 ∨ ū3).

CNF formula is satisfiable if there is truth assignment to vars that
makes formula true.

Definition 11 (SAT)

Given a CNF formula with n vars and k clauses, is it satisfiable?

CS 4TH3

Chapter 2: NP and NP-completeness

Theorem 12 (Cook-Levin)

SAT is NP-complete.

Proof:

1 SAT ∈ NP: easy

2 ∀L ∈ NP : L ≤P SAT : Idea is like TMSAT, but for L ∈ NP
explicitly write the configuration of verifier M(x , u) at every step as
a big tableau of O(q(|x |+ |u|)) = O(q(|x |+ p(|x |))) rows and
O(q(|x |+ p(|x |))) columns
⇒ encode certificate u bits as vars, and correctness conditions of
transition from step i configuration to i + 1 configuration as clauses
⇒ SAT formula ϕx(u) is satisfiable iff ∃u to make M(x , u) accept
⇒ ϕx(u) ∈ SAT iff x ∈ L

2

CS 4TH3

Chapter 2: NP and NP-completeness

Levin-reductions
Reduction of Theorem 12 is Levin: One-to-one mapping between
satisfying assignment for ϕx(u) and certificate for x ∈ L.

Proving decision problem L is NP-complete:

1 Prove that L ∈ NP.

2 Pick NP-complete problem L′. Show that L′ ≤P L.

Example: 3SAT
SAT with all clauses with 3 literals.

CS 4TH3

Chapter 2: NP and NP-completeness

Theorem 13

3SAT is NP-complete.

Proof:

1 3SAT ∈ NP: easy

2 ∀L ∈ NP : L ≤P SAT : We show that SAT ≤P 3SAT . Given a CNF
formula ϕ(x) for SAT with n vars x1, x2, . . . , xn and k clauses, we
construct a 3SAT formula ψ(y) s.t. ϕ(x) ∈ SAT ⇔ ψ(y) ∈ 3SAT .

Keep all vars x
Let C be a clause of ϕ(x). If C has more than 3 literals break
it into two clauses C ′,C ′′ using a new var zc as follows:

(x1 ∨ x̄2 ∨ x4 ∨ x̄6 ∨ x̄7) →
{

(x1 ∨ x̄2 ∨ zc)
(x4 ∨ x̄6 ∨ x̄7 ∨ z̄c)

If C fewer than 3: Repeat last literal

2
CS 4TH3

Chapter 2: NP and NP-completeness

!

CS 4TH3

Chapter 2: NP and NP-completeness

Theorem 14

If P = NP, then can also solve in poly-time the search version of SAT,
i.e., compute a satisfying assignment.

Proof:Let A be a poly-time algorithm that decides SAT. Then the
following algorithm B computes a satisfying assignment for CNF ϕ(x):

Algorithm B(ϕ(x))

V [1..n] = truth assignment for x1, x2, . . . , xn
if A(ϕ(0, x2, . . . , xn)) = 1 then

V [1] = 0
V [2, . . . , n] = B(ϕ(0, x2, . . . , xn)
return V

else if A(ϕ(1, x2, . . . , xn)) = 1 then
V [1] = 1
V [2, . . . , n] = B(ϕ(1, x2, . . . , xn)
return V

return No

2
CS 4TH3

Chapter 2: NP and NP-completeness

Note: SAT is self-reducible

Theorem 15

If P = NP, then can also compute in poly-time a certificate of any
L ∈ NP.

Proof:
The reduction L ≤P SAT is a Levin-reduction, i.e., if x ∈ L then we can
compute the certificate for f (x) ∈ SAT in poly-time and from it the
certificate for x .

2

CS 4TH3

Chapter 2: NP and NP-completeness

Definition 16

co − NP = {L : L̄ ∈ NP}.

Example: ¯SAT = {ϕ : ϕ is unsatisfiable}
Note: L ∈ co − NP has a certifier for its “No” instances. Does it have
one for its “Yes” instances...?

Definition 17

L ∈ co − NP if there exists a polynomial-time TM M and polynomial
p : N → N such that ∀x ∈ {0, 1}∗,

x ∈ L ⇔ ∀u ∈ {0, 1}p(|x|) : M(x , u) = 1.

Definitions 21 and 17 are equivalent (why?)

Note that Definition 17 is exactly the same as our definition of NP
except that ∀u instead of ∃u.

CS 4TH3

Chapter 2: NP and NP-completeness

Theorem 18

TAUTOLOGY = {ϕ : ϕ is a tautology} is co − NP-complete.

Proof:

TAUTOLOGY ∈ co − NP from Definition 17.

∀L ∈ co − NP → L̄ ∈ NP → L̄ ≤P SAT (Cook-Levin)
→ x ̸∈ L̄ ⇔ ϕx ̸∈ SAT
→ x ∈ L ⇔ ¬ϕx ∈ TAUTOLOGY→ L ≤P TAUTOLOGY 2

Theorem 19

L ∈ co − NP-complete ⇔ L̄ ∈ NP-complete.

Theorem 20

P = NP ⇒ P = NP = co − NP.

CS 4TH3

Chapter 2: NP and NP-completeness

Definition 21

NEXP =
⋃

c≥0 NTIME (2n
c

)

Theorem 22

EXP ̸= NEXP ⇒ P ̸= NP (or P = NP ⇒ EXP = NEXP)

Proof:Use input size to cheat! (padding)
Obviously EXP ⊆ NEXP. Show NEXP ⊆ EXP.

L ∈ NTIME (2n
c

) ⇒ Lpad = {⟨x , 12|x|
c

⟩ : x ∈ L}. Poly-time NDTM:

Algorithm MLpad (y)

if y ̸= ⟨z, 12|z|
c

⟩ for some z then
return 0

return ML(z)

⇒ Lpad ∈ NP ⇒ Lpad ∈ P ⇒ L ∈ EXP 2

CS 4TH3

Chapter 2: NP and NP-completeness

The philosophical importance of NP (read 2.7.1)

NP and (short) mathematical proofs:

THEOREMSA = {⟨ϕ, 1n⟩ : ϕ has formal proof of ≤ n steps in system A}

Is there anything between P and NP-complete? (factoring, graph
isomorphism, Nash equilibrium, Ladner’s theorem)

Coping with NP-hardness (approximation algorithms, average-case
complexity)

Read chapter notes & history!

CS 4TH3

