

Chapter 2: NP and NP -completeness

Definition 1

$L \in NP$ if there exists a polynomial-time TM M (called the **verifier** for L) and polynomial $p : \mathbb{N} \rightarrow \mathbb{N}$ such that $\forall x \in \{0, 1\}^*$,

$$x \in L \Leftrightarrow \exists u \in \{0, 1\}^{p(|x|)} : M(x, u) = 1.$$

Note: TM M runs in polynomial time

$$q(|x| + |u|) = (|x| + |x|^c)^d = O(|x|^{cd}) \text{ for } q(n) = n^d \text{ and } p(n) = n^c.$$

Note: Equivalent definition via **Not-Deterministic TM**'s (cf. 2.1.2).

Examples: **INDSET**, **TSP**, **SUBSUM**, **LP**, **0-1 IP**, **GRAPHISO**,
COMPSITES, **FACTORING**, **CONNECTIVITY**

Definition 2 (alternative)

$L \in NP$ if \exists poly-time **non-deterministic** TM $M(x) = 1 \Leftrightarrow x \in L$.

Definition 3

$$EXP = \bigcup_{c \geq 0} DTIME(2^{n^c})$$

Chapter 2: NP and NP -completeness

Claim 1

$$P \subseteq NP \subseteq EXP$$

Proof $P \subseteq NP$: $L \in P \Rightarrow$ poly-time TM M decides L

$\Rightarrow M'(x, 0 \text{ or } 1) := M(|x|)$ is a verifier for L with $p(|x|) = |x|^0 = 1$

$NP \subseteq EXP$: $L \in NP \Rightarrow$ poly-time verifier $M(x, u)$ with $|u| = p(|x|)$

\Rightarrow the following TM M' decides L in $O(2^{n^{p(|x|)}})$ time

Algorithm $M'(x)$

for each $u \in \{0, 1\}^{p(|x|)}$ **do**

if $M(x, u) = 1$ **then**

return 1

return 0

Chapter 2: NP and NP -completeness

Definition 4 (Reductions)

L is **poly-time Karp reducible** to L' ($L \leq_P L'$) if there is **poly-time computable** function f s.t. $\forall x \in \{0, 1\}^*$

$$x \in L \Leftrightarrow f(x) \in L'$$

Chapter 2: NP and NP -completeness

- Why $L \leq_P L'$?
 - $L' \in P \Rightarrow L \in P$, i.e., if L' easy then L easy
 - $L \notin P \Rightarrow L' \notin P$, i.e., if L hard then L' hard
- Karp vs. Turing reductions: In $L \leq_P^T L'$ we are allowed to use a polynomial number of calls to L' (not just one).

Theorem 5 (Transitivity)

If $L \leq_P L'$ and $L' \leq_P L''$, then $L \leq_P L''$.

Proof:

- $x \rightarrow f_1(x)$ with $f_1(x)$ computable in $O(|x|^c)$ ($L \leq_P L'$)
- $y \rightarrow f_2(y)$ with $f_2(y)$ computable in $O(|y|^d)$ ($L' \leq_P L''$)
- $x \rightarrow f_2(f_1(x))$ is $L \leq_P L''$, with $f_2(f_1(x))$ computable in $O((|x|^c)^d) = O(|x|^{cd})$.

since $x \in L \Leftrightarrow f_1(x) \in L' \Leftrightarrow f_2(f_1(x)) \in L''$.

□

Chapter 2: NP and NP -completeness

Definition 6 (NP -hardness)

L is **NP -hard** if $L' \leq_P L$ for every $L' \in NP$.

Definition 7 (NP -completeness)

L is **NP -complete** if

- 1 L is NP -hard, and
- 2 $L \in NP$.

Theorem 8

- 1 If L is NP -hard and $L \in P$, then $P = NP$.
- 2 If L is NP -complete, then $L \in P \Leftrightarrow P = NP$.

Proof:

- 1 $L' \in NP \xrightarrow{L \text{ is } NP\text{-hard}} L' \leq_P L \xrightarrow{L \in P} L' \in P$
- 2 If $P = NP \Rightarrow L \in P$. If L is NP -complete and $L \in P$ then $P = NP$ from (1).

□

Theorem 9

The following language is NP -complete:

$$TMSAT = \{\langle a, x, 1^n, 1^t \rangle : \exists u \in \{0, 1\}^n \text{ s.t. } M_a(x, u) = 1 \text{ within } t \text{ steps}\}$$

Proof:

- ① $TMSAT \in NP$ (easy)
- ② $L \in NP \Rightarrow$ verifier $M(x, u)$ s.t.
 $x \in L \Leftrightarrow \exists u \in \{0, 1\}^{p(|x|)} : M(x, u) = 1$ in $q(|x| + p(|x|))$ steps
 $\Rightarrow x \rightarrow \langle \sqcup M \sqcup, x, 1^{p(|x|)}, 1^{q(|x|+p(|x|))} \rangle$ gives $L' \leq_P TMSAT$.

□

...but too artificial, like rewriting the NP -completeness definition!

Chapter 2: NP and NP -completeness

Definition 10 (CNF formula)

Given n boolean variables u_1, u_2, \dots, u_n

- u_1, \bar{u}_1 are the **literals** for variable u_1 .
- A **clause** is an OR of literals, e.g., $(u_1 \vee \bar{u}_3 \vee u_4)$.
- A **CNF formula** is an AND of clauses, e.g.,
 $(u_3) \wedge (\bar{u}_1 \vee u_3 \vee \bar{u}_4) \wedge (u_2 \vee \bar{u}_3)$.
- CNF formula is **satisfiable** if there is truth assignment to vars that makes formula true.

Definition 11 (SAT)

Given a CNF formula with n vars and k clauses, is it satisfiable?

Theorem 12 (Cook-Levin)

SAT is NP -complete.

Proof:

- 1 $SAT \in NP$: easy
- 2 $\forall L \in NP : L \leq_P SAT$: Idea is like TMSAT, but for $L \in NP$ explicitly write the configuration of verifier $M(x, u)$ at every step as a big tableau of $O(q(|x| + |u|)) = O(q(|x| + p(|x|)))$ rows and $O(q(|x| + p(|x|)))$ columns
⇒ encode certificate u bits as **vars**, and correctness conditions of transition from step i configuration to $i + 1$ configuration as **clauses**
⇒ SAT formula $\phi_x(u)$ is satisfiable iff $\exists u$ to make $M(x, u)$ accept
⇒ $\phi_x(u) \in SAT$ iff $x \in L$

□

Levin-reductions

Reduction of Theorem 12 is **Levin**: One-to-one mapping between satisfying assignment for $\phi_x(u)$ and certificate for $x \in L$.

Proving decision problem L is NP -complete:

- ① Prove that $L \in NP$.
- ② Pick NP -complete problem L' . Show that $L' \leq_P L$.

Example: 3SAT

SAT with all clauses with 3 literals.

Theorem 13

$3SAT$ is NP -complete.

Proof:

- ① $3SAT \in NP$: easy
- ② $\forall L \in NP : L \leq_P SAT$: We show that $SAT \leq_P 3SAT$. Given a CNF formula $\phi(x)$ for SAT with n vars x_1, x_2, \dots, x_n and k clauses, we construct a $3SAT$ formula $\psi(y)$ s.t. $\phi(x) \in SAT \Leftrightarrow \psi(y) \in 3SAT$.
 - Keep all vars x
 - Let C be a clause of $\phi(x)$. If C has more than 3 literals break it into two clauses C', C'' using a new var z_c as follows:

$$(x_1 \vee \bar{x}_2 \vee x_4 \vee \bar{x}_6 \vee \bar{x}_7) \rightarrow \begin{cases} (x_1 \vee \bar{x}_2 \vee z_c) \\ (x_4 \vee \bar{x}_6 \vee \bar{x}_7 \vee \bar{z}_c) \end{cases}$$

- If C fewer than 3: Repeat last literal

□

Chapter 2: NP and NP -completeness

Theorem 14

*If $P = NP$, then can also solve in poly-time the **search** version of SAT, i.e., compute a satisfying assignment.*

Proof: Let A be a poly-time algorithm that decides SAT. Then the following algorithm B computes a satisfying assignment for CNF $\phi(x)$:

Algorithm $B(\phi(x))$

```
 $V[1..n] =$  truth assignment for  $x_1, x_2, \dots, x_n$ 
if  $A(\phi(0, x_2, \dots, x_n)) = 1$  then
     $V[1] = 0$ 
     $V[2, \dots, n] = B(\phi(0, x_2, \dots, x_n))$ 
    return  $V$ 
else if  $A(\phi(1, x_2, \dots, x_n)) = 1$  then
     $V[1] = 1$ 
     $V[2, \dots, n] = B(\phi(1, x_2, \dots, x_n))$ 
    return  $V$ 
return No
```

□

Chapter 2: NP and NP -completeness

Note: SAT is self-reducible

Theorem 15

If $P = NP$, then can also compute in poly-time a certificate of any $L \in NP$.

Proof:

The reduction $L \leq_P SAT$ is a **Levin-reduction**, i.e., if $x \in L$ then we can compute the certificate for $f(x) \in SAT$ in poly-time and from it the certificate for x .

□

Chapter 2: NP and NP -completeness

Definition 16

$$coNP = \{L : \bar{L} \in NP\}.$$

Example: $\overline{SAT} = \{\phi : \phi \text{ is unsatisfiable}\}$

Note: $L \in coNP$ has a certifier for its “No” instances. Does it have one for its “Yes” instances...?

Definition 17

$L \in coNP$ if there exists a polynomial-time TM M and polynomial $p : \mathbb{N} \rightarrow \mathbb{N}$ such that $\forall x \in \{0, 1\}^*$,

$$x \in L \Leftrightarrow \forall u \in \{0, 1\}^{p(|x|)} : M(x, u) = 1.$$

- Definitions 16 and 17 are **equivalent** (why?)
- Note that Definition 17 is exactly the same as our definition of NP except that $\forall u$ instead of $\exists u$.

Chapter 2: NP and NP -completeness

Theorem 18

$TAUTOLOGY = \{\phi : \phi \text{ is a tautology}\}$ is $coNP$ -complete.

Proof:

- $TAUTOLOGY \in co - NP$ from Definition 17.
- $L \in coNP \rightarrow \bar{L} \in NP \rightarrow \bar{L} \leq_P SAT$ (Cook-Levin)
 $\rightarrow x \notin \bar{L} \Leftrightarrow \phi_x \notin SAT$
 $\rightarrow x \in L \Leftrightarrow \neg\phi_x \in TAUTOLOGY \rightarrow L \leq_P TAUTOLOGY$

□

Theorem 19

$L \in coNP$ -complete $\Leftrightarrow \bar{L} \in NP$ -complete.

Theorem 20

$P = NP \Rightarrow P = NP = coNP$.

Chapter 2: NP and NP -completeness

Definition 21

$$\text{NEXP} = \bigcup_{c \geq 0} \text{NTIME}(2^{n^c})$$

Theorem 22

$$EXP \neq NEXP \Rightarrow P \neq NP \text{ (or } P = NP \Rightarrow EXP = NEXP)$$

Proof: Use input size to cheat! (padding)

Obviously $EXP \subseteq NEXP$. Show $NEXP \subseteq EXP$.

$L \in \text{NTIME}(2^{n^c}) \Rightarrow L_{\text{pad}} = \{\langle x, 1^{2^{|x|^c}} \rangle : x \in L\}$. Poly-time NDTM:

Algorithm $M_{L_{\text{pad}}}(y)$

```
if  $y \neq \langle z, 1^{2^{|z|^c}} \rangle$  for some  $z$  then
    return 0
return  $M_L(z)$ 
```

$$\Rightarrow L_{\text{pad}} \in NP \Rightarrow L_{\text{pad}} \in P \Rightarrow L \in EXP$$

□

Chapter 2: NP and NP -completeness

- The philosophical importance of NP (read 2.7.1)
- NP and (short) mathematical proofs:

$$THEOREMS_{\mathcal{A}} = \{\langle \phi, 1^n \rangle : \phi \text{ has formal proof of } \leq n \text{ steps in system } \mathcal{A}\}$$

- Is there anything between P and NP -complete? (factoring, graph isomorphism, Nash equilibrium, Ladner's theorem)
- Coping with NP -hardness (approximation algorithms, average-case complexity)
- Read chapter notes & history!