Chapter 2: NP and NP-completeness

Definition 1

L € NP if there exists a polynomial-time TM M (called the verifier for L)
and polynomial p : N — N such that Vx € {0, 1}*,

xeLe Jue {0, 1PN M(x,u) = 1.

Note: TM M runs in polynomial time
q(Ix| + [ul) = (Ix] + [x|)¢ = O(|x|) for g(n) = n? and p(n) = n°.

Note: Equivalent definition via Not-Deterministic TM's (cf. 2.1.2).

Examples: INDSET, TSP, SUBSUM, LP, 0-1 IP,
COMPSITES, , CONNECTIVITY

Definition 2 (alternative)

L € NP if 3 poly-time non-deterministic TM M(x) =1 & x € L.

CS 4TH3

Chapter 2: NP and NP-completeness

Definition 3
EXP = U.so DTIME(2™)

CS 4TH3

Chapter 2: NP and NP-completeness

P C NP C EXP

Proof P C NP: L € P = poly-time TM M decides L
= M'(x,0 or 1) := M(|x|) is a verifier for L with p(|x|) = |x|° =1

NP C EXP: L € NP = poly-time verifier M(x, u) with |u] = p(]x|)
= the following TM M’ decides L in O(2""") time

Algorithm M'(x)
for each u € {0,1}P(*) do
if M(x,u) =1 then
return 1
return 0

CS 4TH3

Chapter 2: NP and NP-completeness

Definition 4 (Reductions)

L is poly-time Karp reducible to L' (L <p L') if there is poly-time
computable function f s.t. Vx € {0,1}*

xelef(x)el

] f;('é—)' Algorithm for L output:

e Input: x f(x) 1iff £(x) in L'
L —*—> Algorithm for L' ———
S @ /

CS 4TH3

Chapter 2: NP and NP-completeness

Algorithm for L output:

Input: x f(x) 1iff f(x) in L’
P —>—> Algorithm for L' ———

o Why L <p L'?

o l'’e P=LeP,ie.,if L' easy then L easy
o LgP=L1'¢&P, ie.,if L hard then L’ hard

@ Karp vs. Turing reductions: In L g; L’ we are allowed to use a
polynomial number of calls to L’ (not just one).

CS 4TH3

Chapter 2: NP and NP-completeness

Theorem 5 (Transitivity)

IfL<pl and L' <p L”, then L <p L".

Proof:
@ x — fi(x) with fi(x) computable in O(|x|¢) (L <p L)

with f(y) computable in O(|y|?) (L' <p L")

(x)
o y— h(y)

@ x — h(f(x))is L <p L”, with f(fi(x)) computable in
O((|x])) = O(|x|).

sincex € L& fi(x) e ' & H(A(x)) e L". O

CS 4TH3

Chapter 2: NP and NP-completeness

Definition 6 (/VP-hardness)

L is NP-hard if L' <p L for every L' € NP.

Definition 7 (NP-completeness)

L is NP-complete if
@ L is NP-hard, and

Q Le NP

CS 4TH3

Chapter 2: NP and NP-completeness

Theorem 8
@ /fL is NP-hard and L € P, then P = NP.

@ I/fL is NP-complete, then L € P < P = NP.

Proof:
@ LenptEMEd 1 S rep

Q If P=NP=LeP.If Lis NP-complete and L € P then P = NP
from (1).

O

CS 4TH3

Chapter 2: NP and NP-completeness

Theorem 9

The following language is NP-complete:

TMSAT = {(a,x,1",1%) : Ju € {0,1}" s.t. M,(x,u) =1 within t steps}
Proof:

@ TMSAT € NP (easy)

@ L € NP = verifier M(x, u) s.t.

x € Le 3ue{0,1}PX: M(x,u) = 1in q(|x| + p(|x|)) steps
— X = (LM, x, 1700x) 1a(x5e(xD)) gives L <p TMSAT.

...but too artificial, like rewriting the NP-completeness definition!

CS 4TH3

Chapter 2: NP and NP-completeness

Definition 10 (CNF formula)

Given n boolean variables uq, uo, ..., u,

@ uy, i1; are the literals for variable ;.
@ A clause is an OR of literals, e.g., (u1 V O3 V uy).

@ A CNF formula is an AND of clauses, e.g.,
(U3) N (El V us V L74) VAN (U2 V L_I3).

@ CNF formula is satisfiable if there is truth assignment to vars that
makes formula true.

Definition 11 (SAT)

Given a CNF formula with n vars and k clauses, is it satisfiable?

CS 4TH3

Chapter 2: NP and NP-completeness

Theorem 12 (Cook-Levin)

SAT is NP-complete.

Proof:
@ SAT € NP: easy

Q@ VL e NP : L <p SAT: ldea is like TMSAT, but for L € NP
explicitly write the configuration of verifier M(x, u) at every step as
a big tableau of O(q(|x| + |u])) = O(q(|x| + p(|x]))) rows and
0(q(1x| + p(Ix1))) columns
= encode certificate u bits as vars, and correctness conditions of
transition from step i configuration to / + 1 configuration as clauses
= SAT formula ¢ (u) is satisfiable iff 3u to make M(x, u) accept
= ¢x(u) € SAT iff x e L

CS 4TH3

Chapter 2: NP and NP-completeness

Levin-reductions
Reduction of Theorem 12 is Levin: One-to-one mapping between
satisfying assignment for ¢, (u) and certificate for x € L.
Proving decision problem L is NP-complete:

@ Prove that L € NP.

@ Pick NP-complete problem L’. Show that L' <p L.

Example: 3SAT
SAT with all clauses with 3 literals.

CS 4TH3

Chapter 2: NP and NP-completeness

3SAT is NP-complete.

Proof:
© 3SAT € NP: easy

Q@ VL e NP : L <p SAT: We show that SAT <p 3SAT. Given a CNF
formula ¢(x) for SAT with n vars x1, %2, ..., x, and k clauses, we
construct a 3SAT formula ¥(y) s.t. ¢(x) € SAT < (y) € 3SAT.

o Keep all vars x
o Let C be a clause of ¢(x). If C has more than 3 literals break
it into two clauses C’, C” using a new var z. as follows:

(Xl V)_(2 \Y ZC)

(Xl \/X2\/X4\/X6\/X7)—>{ (X4\/)_(6\/)_<7\/Z_C)

o If C fewer than 3: Repeat last literal
O

CS 4TH3

Chapter 2: NP and NP-completeness

VL e NP

Theorem 2.10 (Lemma 2.11)

SAT Theorem 2.10 (Lemma 2.14)

Theorem 2.17 Theorem 2.16

INTEGERPROG

dHAMPATH 3SAT Ex 221
Ex2.18 Theorem 2.15 Ex2.17
HAMPATH INDSET Exactone3SAT 3COL
/EW]S Ex2.17l
TSP HAMCYCLE Ex 215 SUBSETSUM
Ex2.11 /
THEOREMS CLIQUE VERTEXCOVER
. Ex2.22
l Ex2.16
Ex2.19 MAXCUT
QUADEQ
COMBINATORIAL

AUCTION

CS 4TH3

Chapter 2: NP and NP-completeness

Theorem 14

If P = NP, then can also solve in poly-time the search version of SAT,
i.e., compute a satisfying assignment.

Proof:Let A be a poly-time algorithm that decides SAT. Then the
following algorithm B computes a satisfying assignment for CNF ¢(x):

Algorithm B(¢(x))

V[1..n] = truth assignment for x1,x2, ..., Xp
if A(6(0,xa, ...,xn)) =1 then
V[l =0
VI[2,...,n = B(é(0,x2,...,xn)
return V
else if A(¢(1,x2,...,xn)) =1 then
V[=1
V[2,...,n = B(é(1,x2,...,xn)
return V
return No

O

CS 4TH3

Chapter 2: NP and NP-completeness

Note: SAT is self-reducible

If P = NP, then can also compute in poly-time a certificate of any
L e NP.

Proof:
The reduction L <p SAT is a Levin-reduction, i.e., if x € L then we can

compute the certificate for f(x) € SAT in poly-time and from it the
certificate for x.

CS 4TH3

Chapter 2: NP and NP-completeness

Definition 16

coNP = {L: [€ NP}.

Example: SAT = {¢ : ¢ is unsatisfiable}
Note: L € coNP has a certifier for its “No” instances. Does it have one
for its “Yes" instances...?

Definition 17

L € colNP if there exists a polynomial-time TM M and polynomial
p: N — N such that Vx € {0,1}*,

xeLeVYue {01} M(x,u) = 1.

@ Definitions 16 and 17 are equivalent (why?)

@ Note that Definition 17 is exactly the same as our definition of NP
except that Vu instead of Ju.

CS 4TH3

Chapter 2: NP and NP-completeness

Theorem 18
TAUTOLOGY = {¢ : ¢ is a tautology} is coNP-complete.

Proof:
@ TAUTOLOGY € co — NP from Definition 17.

® LecoNP— Le NP — L<p SAT (Cook-Levin)
—x¢Le ¢ SAT

—x € L& ¢, € TAUTOLOGY — L <p TAUTOLOGY |
Theorem 19
L € coNP-complete < L € NP-complete.
Theorem 20

P = NP = P= NP = colNP.

CS 4TH3

Chapter 2: NP and NP-completeness

Definition 21

NEXP = J 5o NTIME(2™)

EXP # NEXP = P # NP (or P = NP = EXP = NEXP)

Proof:Use input size to cheat! (padding)
Obviously EXP C NEXP. Show NEXP C EXP.

L€ NTIME(2") = Lpag = {(x,12"") : x € L}. Poly-time NDTM:
Algorithm M, .(y)

if y # (z, 12") for some z then
return 0
return M, (z)

= Lpag € NP = Lpg € P= L€ EXP]

CS 4TH3

Chapter 2: NP and NP-completeness

@ The philosophical importance of NP (read 2.7.1)

@ NP and (short) mathematical proofs:

THEOREMS 4 = {{¢,1") : ¢ has formal proof of < n steps in system A}
@ Is there anything between P and NP-complete? (factoring, graph
isomorphism, Nash equilibrium, Ladner's theorem)

@ Coping with NP-hardness (approximation algorithms, average-case
complexity)

@ Read chapter notes & history!

CS 4TH3

