Some facts about TMs

- Every string x represents a TM M_x , and every TM M can be represented by an infinite number of strings.
- Universal TM U simulates any TM M_x that runs in time f(n) in time $O(f(n) \log f(n))$.
- Function f is time-constructible iff f(n) can be computed in O(f(n)) time.

Theorem 1

 $DTIME(n) \subset DTIME(n^{1.5})$

Proof:

Algorithm D(x)

```
Run U(M_x,x) for |x|^{1.4} steps if U(M_x,x) hasn't finished then return 0 else return \neg U(M_x,x)
```

 $D \in DTIME(n^{1.5})$. Assume $D \in DTIME(n)$, i.e., TM M decides D in O(n) time.

- U(M,x) runs in $O(|x| \log |X|) \le c \cdot |x| \log |x|$ time for c > 0
- $\exists n_0 > 0 \ \forall n > n_0 : n^{1.4} > cn \log n$

Let
$$\bot M \bot \ge n_0 \Rightarrow U(M, \bot M \bot) = \neg M(\bot M \bot)$$
 contradiction!

Theorem 2

If f, g are time-constructible and $\lim_{n\to\infty}\frac{f(n)\log f(n)}{g(n)}=0$, then

$$DTIME(f(n)) \subset DTIME(g(n))$$

Proof: Same as before

Theorem 3

If f, g are time-constructible and $\lim_{n\to\infty}\frac{f(n+1)}{g(n)}=0$, then

$$DTIME(f(n)) \subset DTIME(g(n))$$

Proof: Tricky because cannot just "flip" the output of a universal NDTM. Read proof (book typo: it's f(i + 1), not f(i) + 1)

Theorem 4 (Ladner's theorem)

If $P \neq NP$, then there is $L \in NP \setminus P$ and L is not NP-complete.

Proof: On the board!

CS 4TH3

All diagonalization techniques must rely on the following two properties of TMs:

- TMs are represented by strings
- There is a universal TM that simulate any other without much running time/space overhead

Definition 5 (Oracle TM)

Oracle TM (or NDTM) for language O has an oracle tape where input $q \in \{0,1\}^*$ is written, and then the TM decides $q \in O$ in a single step.

Definition 6

For any language O:

- P^{O} = set of languages decided by polynomial TM with oracle access to O
- NP^O = set of languages decided by polynomial NDTM with oracle access to O

- $\overline{SAT} \in P^{SAT}$
- If $O \in P$, then $P^O = P$
- $EXPCON = \{\langle M, x, 1^n \rangle : M(x) = 1 \text{ in } 2^n \text{ steps} \}$

```
P^{EXPCON} = EXP: If L \in EXP
```

- \Rightarrow there is TM M that decides $x \in L$ in 2^{n^c} time
- \Rightarrow ask *EXPCON* oracle question $\langle M, x, 1^{n^c} \rangle$
- $\Rightarrow L \in P^{EXPCON}$
- \Rightarrow EXP \subseteq P^O.

$NP^{EXPCON} = EXP$: If $L \in NP^{EXPCON}$

- \Rightarrow there is NDTM M^{EXPCON} that decides $x \in L$ in poly-time
- \Rightarrow can simulate both NDTM and *EXPCON* in *EXP*
- $\Rightarrow NP^{EXPCON} \subseteq EXP$
- $\Rightarrow P^{EXPCON} = NP^{EXPCON} = EXP$

Theorem 7

There exist oracles A, B, such that $P^A = NP^A$ and $P^B \neq NP^B$.

...i.e., result $P \stackrel{?}{=} NP$ cannot be extended to oracles (cannot be a relativizing result)

Proof: On the board!