

Some facts about TMs

- Every string x represents a TM M_x , and every TM M can be represented by an infinite number of strings.
- Universal TM U simulates any TM M_x that runs in time $f(n)$ in time $O(f(n) \log f(n))$.
- Function f is **time-constructible** iff $f(n)$ can be computed in $O(f(n))$ time.

Theorem 1

$$DTIME(n) \subset DTIME(n^{1.5})$$

Proof: By contradiction.

Algorithm $D(x)$

```
Run  $U(M_x, x)$  for  $|x|^{1.4}$  steps
if  $U(M_x, x)$  hasn't finished then
    return 0
else
    return  $\neg U(M_x, x)$ 
```

Language $D \in DTIME(n^{1.5})$. Assume language $D \in DTIME(n)$, i.e., TM M decides D in $O(n)$ time.

- $U(M, x)$ runs in $O(|x| \log |x|) \leq c \cdot |x| \log |x|$ time for $c > 0$
- $\exists n_0 > 0 \ \forall n > n_0 : n^{1.4} > cn \log n$

Let $\lfloor M \rfloor \geq n_0 \Rightarrow U(M, \lfloor M \rfloor) = \neg M(\lfloor M \rfloor)$ **contradiction!**

□

Chapter 3: Diagonalization

Theorem 2

$$DTIME(n) \subset DTIME(\Theta(n \log n))$$

Proof: By contradiction.

Algorithm $D(x)$

```
Run  $U(M_x, x)$  for  $\Theta(|x| \log |x|)$  steps
if  $U(M_x, x)$  hasn't finished then
    return 0
else
    return  $\neg U(M_x, x)$ 
```

Language $D \in DTIME(\Theta(n \log n))$.

- Assume language $D \in DTIME(n)$, i.e., TM M decides D in $O(n)$ time.
- $U(M, x)$ runs in $O(|x| \log |x|)$ time
- $M(\perp M \perp) = U(M, \perp M \perp) = D(\perp M \perp) = \neg M(\perp M \perp)$ **contradiction!**

□

Chapter 3: Diagonalization

Theorem 3

If f, g are *time-constructible* and $\lim_{n \rightarrow \infty} \frac{f(n) \log f(n)}{g(n)} = 0$, then

$$DTIME(f(n)) \subset DTIME(g(n))$$

Proof: Same as before

□

Theorem 4

If f, g are *time-constructible* and $\lim_{n \rightarrow \infty} \frac{f(n+1)}{g(n)} = 0$, then

$$NTIME(f(n)) \subset NTIME(g(n))$$

Proof: Tricky because cannot just “flip” the output of a universal NDTM. Read proof

□

Chapter 3: Diagonalization

Theorem 5 (Ladner's theorem)

If $P \neq NP$, then there is $L \in NP \setminus P$ and L is not NP-complete.

Proof: On the board!

□

Chapter 3: Diagonalization

All **diagonalization** techniques must rely on the following two properties of TMs:

- ① TMs are represented by strings
- ② There is a universal TM that simulate any other without much running time/space overhead

Definition 6 (Oracle TM)

Oracle TM (or NDTM) for language O has an **oracle tape** where input $q \in \{0, 1\}^*$ is written, and then the TM decides $q \in O$ in **a single step**.

Definition 7

For any language O :

- P^O = set of languages decided by polynomial TM with oracle access to O
- NP^O = set of languages decided by polynomial NDTM with oracle access to O

Chapter 3: Diagonalization

- $\overline{SAT} \in P^{SAT}$
- If $O \in P$, then $P^O = P$
- $EXP^{CON} = \{\langle M, x, 1^n \rangle : M(x) = 1 \text{ in } 2^n \text{ steps}\}$

$P^{EXP^{CON}} = EXP$: If $L \in EXP$

\Rightarrow there is TM M that decides $x \in L$ in 2^{n^c} time

\Rightarrow ask EXP^{CON} oracle question $\langle M, x, 1^{n^c} \rangle$

$\Rightarrow L \in P^{EXP^{CON}}$

$\Rightarrow EXP \subseteq P^{EXP^{CON}}$.

$NP^{EXP^{CON}} = EXP$: If $L \in NP^{EXP^{CON}}$

\Rightarrow there is NDTM $M^{EXP^{CON}}$ that decides $x \in L$ in poly-time

\Rightarrow can simulate both M and EXP^{CON} in EXP

$\Rightarrow NP^{EXP^{CON}} \subseteq EXP$

$\Rightarrow P^{EXP^{CON}} = NP^{EXP^{CON}} = EXP$

Chapter 3: Diagonalization

Theorem 8

There exist oracles A, B , such that $P^A = NP^A$ and $P^B \neq NP^B$.

...i.e., result $P \stackrel{?}{=} NP$ cannot be extended to oracles (cannot be a **relativizing** result)

Proof: On the board!

□