
Chapter 4: Space complexity

Definition 1

L ∈ SPACE (s(n)) if TM M decides L using space O(s(n)) in work
tape(s). L ∈ NSPACE (s(n)) if NDTM M decides L using space O(s(n))
in work tape(s).

Note: s(n) is space-constructible, i.e., can be computed in O(s(n)) space
(a TM space-bounded by s(n) can calculate how much space it uses).

DTIME (t(n)) doesn’t make sense for t(n) < n

DSPACE (s(n)) does make sense for s(n) < n (e.g., s(n) = log n)
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Chapter 4: Space complexity

Configuration graph GM,x

Nodes=Configurations. Snapshot of TM M with (work tape(s)
contents, head position(s), state). If M space-bounded by s(n),
then at most 2O(s(n))(!!!) configurations.

Edges (C ,C ′) if M can go from configuration C to configuration C ′

in one step when input is x .

!
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Chapter 4: Space complexity

Configuration graph GM,x

!

Can make M to clean tapes & move heads to fixed positions before
accepting, so only one accepting final configuration Caccept . Cstart is
starting configuration.

If M DTM, then out-degree of each configuration is ≤ 1. If M
NDTM, then out-degree of each configuration is ≤ 2 (two
possibilities for the current bit of certificate).

M(x) = 1 iff there is directed path Cstart ⇝ Caccept

O(s(n))-size CNF ϕM,x(C ,C
′) = 1 ⇔ (C ,C ′) ∈ EGM,x

(Cook’s
theorem)
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Theorem 2

DTIME (s(n)) ⊆ SPACE (s(n)) ⊆ NSPACE (s(n)) ⊆ DTIME (2O(s(n)))

Proof:

NSPACE (s(n)) ⊆ DTIME (2O(s(n))): Construct GM,x in 2O(s(n))

time, run BFS to see if there is path Cstart ⇝ Caccept in 2O(s(n)) time.

DTIME (s(n)) ⊆ SPACE (s(n)) ⊆ NSPACE (s(n)) Obvious

2
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Definition 3

PSPACE =
⋃
c≥0

SPACE (nc)

NPSPACE =
⋃
c≥0

NSPACE (nc)

L = SPACE (log n)

NL = NSPACE (log n)

Theorem 4

NP ⊆ PSPACE

Proof:
Run L ≤P 3SAT in poly-time (and poly-space) to compute CNF
|ϕL(x)| = O(|x |c) and try all possible assignments (of size O(|x |c)). 2
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Chapter 4: Space complexity

PATH = {⟨G , s, t⟩ : directed G has directed path s ; t}

Theorem 5

PATH ∈ NL

Proof:
NDTM that takes as certificate at most n nodes of s − t path. We need
indices for certificate and input, to check if (certi , certi+1) ∈ E . Each
index of size O(log n). 2

Note: Is PATH ∈ L? Open like L
?
= NL (naturally, because PATH is

NL-complete).
...But if G undirected then PATH ∈ L!
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Theorem 6 (Space Hierarchy)

If f , g space-constructible with lim f (n)
g(n) = 0 (i.e., f (n) = o(g(n))), then

SPACE (f (n)) ⊂ SPACE (g(n))

Proof:
Same as Time Hierarchy, but now Universal TM simulates SPACE(f(n))
in O(f (n)) (not O(f (n) log f (n)) as in time hierarchy). 2
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Definition 7 (PSPACE -hardness)

L is PSPACE -hard if L′ ≤P L for every L′ ∈ PSPACE .

Definition 8 (PSPACE -completeness)

L is PSPACE -complete if

1 L is PSPACE -hard, and

2 L ∈ PSPACE .

SPACE TMSAT = {⟨M, x , 1n⟩ : DTM M accepts x in space n}

Theorem 9

SPACE TMSAT is PSPACE-complete.
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Definition 10 (Quantified Boolean Formula (QBF))

Q1x1Q2x2 . . .Qnxn ϕ(x1, x2, . . . , xn)

where Qi = ∃ or ∀, and ϕ is unquantified formula.

Note: Wlog we can assume that ϕ is 3CNF

CS 4TH3



Chapter 4: Space complexity

!
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Algorithm QBF (Q1x1Q2x2 . . .Qnxn ϕ(x1, x2, . . . , xn))

if Q1 = ∃ then
return QBF (Q2x2 . . .Qnxnϕ(0, x2, . . . , xn))∨QBF (Q2x2 . . .Qnxnϕ(1, x2, . . . , xn))

else if Q1 = ∀ then
return QBF (Q2x2 . . .Qnxnϕ(0, x2, . . . , xn))∧QBF (Q2x2 . . .Qnxnϕ(1, x2, . . . , xn))

else
return 1
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!
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Theorem 11

TQBF (or QSAT) is PSPACE-complete.

Proof:

TQBF ∈ PSPACE : Already shown

∀L ∈ PSPACE : L ≤P TQBF : Write acceptance M(x) = 1 for L as
PATH problem in configuration graph GM,x

⇒ reduce PATH(C ,C ′) in 2i steps to (recursive) QBF

ψi (C ,C
′) = ∃C ′′ ψi−1(C ,C

′′) ∧ ψi−1(C
′′,C )

...but ψm needs 2m space (recurrence S(i) = 2S(i − 1) + O(1))
⇒ increase # of vars to get recurrence S(i) = S(i − 1) + O(1):

ψi (C ,C
′) =

∃C ′′∀D1∀D2((D1 = C∧D2 = C ′′)∨(D1 = C ′′∧D2 = C ′)) ⇒ ψi−1(D1,D2)

2
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Configuration graph argument exactly the same for NDTM M for
L ∈ NPSPACE !

Theorem 12

TQBF (or QSAT) is NPSPACE-complete.

Theorem 13

PSPACE = NPSPACE.

(compare with P vs. NP)

Theorem 14

PSPACE = coPSPACE.

⇒ TQBF is also PSPACE -complete!
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Theorem 15 (Savitch’s theorem)

For S(n) ≥ log n, NSPACE (S(n)) ⊆ SPACE (S(n)2).

Proof:

1 Configuration graph GM,x for L ∈ NSPACE (S(n)) (2O(S(n)) nodes)

2 REACH?(u, v , i) = 1 iff ∃ path u ; v of length ≤ 2i

Algorithm REACH?(u, v , i)

if u = v then
return 1

for each node z do
if REACH?(u, z, i − 1) = 1 ∧ REACH?(z, v , i − 1) = 1 then

return 1
return 0

3 If REACH?(Cstart ,Caccept ,S(n)) = 1 then x ∈ L.

4 Space recurrence:
s(2i ) = s(2i−1) + O(log 2S(n)) ⇒ s(S(n)) = O(S(n)2) 2
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Definition 16 (implicitly logspace computable function)

Function f is implicitly logspace computable if |f (x)| ≤ nc and
Lf = {⟨x , i⟩ : f (x)i = 1}, Lf = {⟨x , i⟩ : i ≤ |f (x)|} are in L.

Definition 17 (logspace reducibility ≤l)

B is logspace reducible to C (B ≤l C ) if there is implicitly logspace
computable function f such that ∀x ∈ {0, 1}∗ : x ∈ B ⇔ f (x) ∈ C .

Definition 18 (NL-complete)

C is NL-complete if C ∈ NL and ∀B ∈ NL : B ≤l C .

Note: Logspace NDTM has a read-once certificate tape
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Lemma 19

If f ,g are implicitly logspace computable, then so is h(x) = g(f (x)).

Proof:
Basic idea: To compute bits h(x)j = g(f (x))j , (re-)compute bits f (x)j
used by g on-the-fly and on a ”virtual tape” of Mg (i.e., special portion
of Mg ’s tape).

!

CS 4TH3



Chapter 4: Space complexity

Lemma 20

1 If B ≤l C and C ≤l D, then B ≤l D.

2 If B ≤l C and C ∈ L, then B ∈ L.

Proof:

1 Apply Lemma 19 to f = B ≤l C and g = C ≤l D.

2 Apply Lemma 19 to f = B ≤l C and g = MC .
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Lemma 21

PATH is NL-complete

Proof:
PATH ∈ NL (Theorem 5). For L ∈ NL, implicitly represent computation
ML(x) as configuration graph GML,x . Then

x ∈ L ⇔ PATH(GML,x ,Cstart ,Caccept) = 1.

How to access GML,x using only O(log n) bits:

Writing-down node C ∈ GML,x takes log-space

(C ,C ′) ∈ EGML,x
checked in log-space: Run ML from C to see if C ′

reached by some non-deterministic choice 2
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Theorem 22 (Immerman-Szelepcsényi theorem)

PATH ∈ NL

Corollary 1

If S(n) ≥ log n is space constructible,

NSPACE (S(n)) ⊆ coNSPACE (S(n))

Corollary 2

NL = coNL

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP

Note: We know L ⊂ PSPACE and P ⊂ EXP, but we don’t know which
inclusions are strict :-(

CS 4TH3


