Chapter 4: Space complexity

Definition 1

L € SPACE(s(n)) if TM M decides L using space O(s(n)) in work
tape(s). L € NSPACE(s(n)) if NDTM M decides L using space O(s(n))
in work tape(s).

Note: s(n) is space-constructible, i.e., can be computed in O(s(n)) space
(a TM space-bounded by s(n) can calculate how much space it uses).

@ DTIME(t(n)) doesn't make sense for t(n) < n
@ DSPACE(s(n)) does make sense for s(n) < n (e.g., s(n) = logn)

CS 4TH3

Chapter 4: Space complexity

Configuration graph Gy

@ Nodes=Configurations. Snapshot of TM M with (work tape(s)
contents, head position(s), state). If M space-bounded by s(n),
then at most 2°G(")(111) configurations.

@ Edges (C, C') if M can go from configuration C to configuration C’
in one step when input is x.

CS 4TH3

Chapter 4: Space complexity

Configuration graph Gy

@ Can make M to clean tapes & move heads to fixed positions before
accepting, so only one accepting final configuration C,ccept- Cstart IS
starting configuration.

@ If M DTM, then out-degree of each configuration is < 1. If M
NDTM, then out-degree of each configuration is < 2 (two
possibilities for the current bit of certificate).

@ M(x) = 1 iff there is directed path Csparr ~> Caceept

@ O(s(n))-size CNF ¢u x(C,C") =1 (C, ') € Eg,, (Cook’s
theorem)

CS 4TH3

Chapter 4: Space complexity

DTIME(s(n)) € SPACE(s(n)) € NSPACE(s(n)) € DTIME(2°6G("))

Proof:

@ NSPACE(s(n)) € DTIME(206(")): Construct G in 20(s(")
time, run BFS to see if there is path Ceparr ~ Caccept in 20(s(m) time.

@ DTIME(s(n)) € SPACE(s(n)) € NSPACE(s(n)) Obvious

CS 4TH3

Chapter 4: Space complexity

PSPACE = | J SPACE(n)
c>0

NPSPACE = |_J NSPACE(n)
c>0
L = SPACE (log n)
NL = NSPACE (log n)

V.

Theorem 4
NP C PSPACE

Proof:
Run L <p 3SAT in poly-time (and poly-space) to compute CNF
|p(x)| = O(]x|¢) and try all possible assignments (of size O(|x|¢)). O

CS 4TH3

Chapter 4: Space complexity

PATH = {{(G, s, t) : directed G has directed path s~ t}

PATH € NL

Proof:

NDTM that takes as certificate at most n nodes of s — t path. We need
indices for certificate and input, to check if (cert;, cert;11) € E. Each
index of size O(log n). a
Note: Is PATH € L? Open like L Z L (naturally, because PATH is
NL-complete).

...But if G undirected then PATH < L!

CS 4TH3

Chapter 4: Space complexity

Theorem 6 (Space Hierarchy)

If f, g space-constructible with lim £ () =0 (ie, f(n) = o(g(n))), then

SPACE(f(n)) C SPACE(g(n))

Proof:
Same as Time Hierarchy, but now Universal TM simulates SPACE(f(n))
in O(f(n)) (not O(f(n)logf(n)) as in time hierarchy). O

CS 4TH3

Chapter 4: Space complexity

Definition 7 (PSPACE-hardness)

L is PSPACE-hard if L’ <p L for every L' € PSPACE.

Definition 8 (PSPACE-completeness)

L is PSPACE-complete if
@ L is PSPACE-hard, and

© L € PSPACE.

SPACE TMSAT = {{M,x,1") : DTM M accepts x in space n}

Theorem 9
SPACE TMSAT is PSPACE-complete.

CS 4TH3

Chapter 4: Space complexity

Definition 10 (Quantified Boolean Formula (QBF))

lel Q2X2 e Q,,Xn ¢(X1,X27 e 7X,,)

where Q; = J or V, and ¢ is unquantified formula.

Note: Wlog we can assume that ¢ is 3CNF

CS 4TH3

Chapter 4: Space complexity

QSAT. Let @(xy, ..., X,) be a Boolean CNF formula. Is the following
propositional formula true?

Axy VX2 Ix3 VXg... VXpg 3Xn O(X1, ..., Xn)
t

assume n is odd

Intuition. Amy picks truth value for x1, then Bob for xz, then Amy for
x3, and so on. Can Amy satisfy @ no natter what Bob does?

Ex. (.17] \ .172) A (172 V f‘g) A (.T] V 332 V Ig)
Yes. Amy sets x; true; Bob sets x,; Amy sets x3 to be same as x,.

Ex. (.’L‘l V .’Eg) A (.TQ vV iig) VAN (Zf?] V i’g V .’173)
No. If Amy sets x; false; Bob sets x; false; Amy loses;
if Amy sets x; true; Bob sets x; true; Amy loses.

CS 4TH3

Chapter 4: Space complexity

Algorithm QBF(lel @2x2 ... QpXn qb(Xl, X2, ... ,X,,))

if Q1 = 3 then

return QBF(Qax2 ... Qpxnd(0, X2, ..., xn))V QBF(Qax2 ... Quxnd(1, x2,...,%n))
else if Q; =V then

return QBF(Qox2 ... Qnxnd(0, X2, ..., Xxn)) AN QBF(Q2x2 ... Quxnd(1, x2, ..., Xn))
else

return 1

CS 4TH3

Chapter 4: Space complexity

Theorem. QSAT e PSAPCE.
Pf. Recursively try all possibilities.
= Only need one bit of information from each subproblem.
= Amount of space is proportional to depth of function call stack.

return true iff both
subproblems are true

e

X1=0 X1=1

return true iff either
subproblem is true

®0,0,0) @©0,0,1) ®0,1,0) @0,1,1) &10,0) &1,0,1) o110 &d,1,1)

CS 4TH3

Chapter 4: Space complexity

TQBF (or QSAT) is PSPACE-complete.

Proof:
@ TQBF € PSPACE : Already shown

@ VL € PSPACE : L <p TQBF : Write acceptance M(x) =1 for L as
PATH problem in configuration graph G«
= reduce PATH(C, C') in 2/ steps to (recursive) QBF

¥i(C, C") =3C" i—1(C, C") A1 (C", C)

...but ¥, needs 2™ space (recurrence S(i) = 25(i — 1) + O(1))
= increase # of vars to get recurrence S(i) = S(i — 1) + O(1):

HCHVD1VD2((D1 = CAD, = C//)\/(Dl = C///\DQ = C/)) = @;fl(Dl./ Dz)

O

CS 4TH3

Chapter 4: Space complexity

Configuration graph argument exactly the same for NDTM M for
L € NPSPACE!

TQBF (or QSAT) is NPSPACE-complete.

PSPACE = NPSPACE.

(compare with P vs. NP)

Theorem 14
PSPACE = coPSPACE.

= TQBF is also PSPACE-complete!

CS 4TH3

Chapter 4: Space complexity

Theorem 15 (Savitch's theorem)

For S(n) > log n, NSPACE(S(n)) C SPACE(S(n)?).

Proof:
@ Configuration graph G, for L € NSPACE(S(n)) (2°05(") nodes)
@ REACH?(u,v,i) = 1iff 3 path u~» v of length < 2/

Algorithm REACH?(u, v, i)

if u = v then
return 1
for each node z do
if REACH?(u,z,i —1) =1A REACH?(z,v,i —1) =1 then
return 1
return 0

Q If REACH?(Cutart; Caccept: S(n)) = 1 then x € L.

Q Spa‘ce recurrence:
s(27) = (277 1) + O(log 25() = s(5(n)) = O(S(n)*) O

CS 4TH3

Chapter 4: Space complexity

Definition 16 (implicitly logspace computable function)

Function f is implicitly logspace computable if |f(x)| < n® and
Le ={{x,0) : f(x); =1}, Le = {(x,0) : i < |f(x)|} are in L.

Definition 17 (logspace reducibility <)

B is logspace reducible to C (B <; C) if there is implicitly logspace
computable function f such that Vx € {0,1}* : x € B < f(x) € C.

Definition 18 (NL-complete)

C is NP-complete if C € NLand VB € NL: B <, C.

Note: Logspace NDTM has a read-once certificate tape

CS 4TH3

Chapter 4: Space complexity

If f,g are implicitly logspace computable, then so is h(x) = g(f(x)).

Proof:

Basic idea: To compute bits h(x); = g(f(x));, (re-)compute bits f(x);
used by g on-the-fly and on a "virtual tape” of M, (i.e., special portion
of M,'s tape).

Virtual
input
tape

Read-write head Ruld only head |

,::gf‘ (B |()|0|0|1|1|0|1|0|0|0|1:0||0|0|n| [IU

s D]IH]]]IHH}III]]E
ldpk. \ r
1

Work
tape

Output § ! |
1
tape '..[E.B _ e [N |

M [—

I3

Chapter 4: Space complexity

Q IfB<,Cand C<, D, then B <, D.

Q IfB<, Cand CeL, thenB € L.

Proof:
Q ApplyLemma19tof =B <, Candg=C <, D.
@ Apply Lemma 19to f =B <; C and g = Mc.

CS 4TH3

Chapter 4: Space complexity
PATH is NL-complete

Proof:
PATH € NL (Theorem 5). For L € NL, implicitly represent M (x)

@ Node C € Gy, « takes log-space

e (C, (') € Eg,, , checked in log-space: Run M, from C to see if C’
reached by some non-deterministic choice O

CS 4TH3

Chapter 4: Space complexity

Theorem 22 (Immerman-Szelepcsényi theorem)

PATH € NL

If S(n) > log n is space constructible,
NSPACE(S(n)) € coNSPACE(S(n))

NL = coNL

LC NLC PC NP C PSPACE C EXP

Note: We know L C PSPACE and P C EXP, but we don't know which
inclusions are strict :-(

CS 4TH3

