Definition 1

 $L \in SPACE(s(n))$ if TM M decides L using space O(s(n)) in work tape(s). $L \in NSPACE(s(n))$ if NDTM M decides L using space O(s(n)) in work tape(s).

Note: s(n) is space-constructible, i.e., can be computed in O(s(n)) space (a TM space-bounded by s(n) can calculate how much space it uses).

- DTIME(t(n)) doesn't make sense for t(n) < n
- DSPACE(s(n)) does make sense for s(n) < n (e.g., $s(n) = \log n$)

Configuration graph $G_{M,x}$

- Nodes=Configurations. Snapshot of TM M with (work tape(s) contents, head position(s), state). If M space-bounded by s(n), then at most $2^{O(s(n))}(!!!)$ configurations.
- Edges (C, C') if M can go from configuration C to configuration C' in one step when input is x.

Configuration graph $G_{M,\times}$

- Can make M to clean tapes & move heads to fixed positions before accepting, so only one accepting final configuration C_{accept}. C_{start} is starting configuration.
- If M DTM, then out-degree of each configuration is ≤ 1. If M NDTM, then out-degree of each configuration is ≤ 2 (two possibilities for the current bit of certificate).
- M(x) = 1 iff there is directed path $C_{start} \rightsquigarrow C_{accept}$
- O(s(n))-size CNF $\phi_{M,x}(C,C')=1\Leftrightarrow (C,C')\in E_{G_{M,x}}$ (Cook's theorem)

Theorem 2

 $DTIME(s(n)) \subseteq SPACE(s(n)) \subseteq NSPACE(s(n)) \subseteq DTIME(2^{O(s(n))})$

Proof:

- $NSPACE(s(n)) \subseteq DTIME(2^{O(s(n))})$: Construct $G_{M,x}$ in $2^{O(s(n))}$ time, run BFS to see if there is path $C_{start} \leadsto C_{accept}$ in $2^{O(s(n))}$ time.
- $DTIME(s(n)) \subseteq SPACE(s(n)) \subseteq NSPACE(s(n))$ Obvious

CS 4TH3

Definition 3

$$\begin{array}{l} \textit{PSPACE} = \bigcup_{c \geq 0} \textit{SPACE}(n^c) \\ \textit{NPSPACE} = \bigcup_{c \geq 0} \textit{NSPACE}(n^c) \\ \textit{L} = \textit{SPACE}(\log n) \\ \textit{NL} = \textit{NSPACE}(\log n) \end{array}$$

Theorem 4

 $NP \subseteq PSPACE$

Proof:

Run $L \leq_P 3SAT$ in poly-time (and poly-space) to compute CNF $|\phi_L(x)| = O(|x|^c)$ and try all possible assignments (of size $O(|x|^c)$).

 $PATH = \{\langle G, s, t \rangle : directed G \text{ has directed path } s \leadsto t\}$

Theorem 5

PATH ∈ NL

Proof:

NDTM that takes as certificate at most n nodes of s-t path. We need indices for certificate and input, to check if $(cert_i, cert_{i+1}) \in E$. Each index of size $O(\log n)$.

Note: Is $PATH \in L$? Open like $L \stackrel{?}{=} NL$ (naturally, because PATH is NL-complete).

...But if G undirected then $PATH \in L!$

Theorem 6 (Space Hierarchy)

If f, g space-constructible with $\lim \frac{f(n)}{g(n)} = 0$ (i.e., f(n) = o(g(n))), then

$$SPACE(f(n)) \subset SPACE(g(n))$$

Proof:

Same as Time Hierarchy, but now Universal TM simulates SPACE(f(n)) in O(f(n)) (not $O(f(n)\log f(n))$ as in time hierarchy).

Definition 7 (*PSPACE*-hardness)

L is *PSPACE*-hard if $L' \leq_P L$ for every $L' \in PSPACE$.

Definition 8 (PSPACE-completeness)

L is PSPACE-complete if

- 1 L is PSPACE-hard, and
- 2 $L \in PSPACE$.

SPACE TMSAT = $\{\langle M, x, 1^n \rangle : DTM \ M \text{ accepts } x \text{ in space } n\}$

Theorem 9

SPACE TMSAT is PSPACE-complete.

Definition 10 (Quantified Boolean Formula (QBF))

$$Q_1x_1Q_2x_2\ldots Q_nx_n \phi(x_1,x_2,\ldots,x_n)$$

where $Q_i = \exists$ or \forall , and ϕ is unquantified formula.

Note: Wlog we can assume that ϕ is 3CNF

QSAT. Let $\Phi(x_1, ..., x_n)$ be a Boolean CNF formula. Is the following propositional formula true?

$$\exists x_1 \ \forall x_2 \ \exists x_3 \ \forall x_4 \dots \ \forall x_{n-1} \ \exists x_n \ \Phi(x_1, \dots, x_n)$$

$$\uparrow$$
assume n is odd

Intuition. Amy picks truth value for x_1 , then Bob for x_2 , then Amy for x_3 , and so on. Can Amy satisfy Φ no natter what Bob does?

Ex.
$$(x_1 \lor x_2) \land (x_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor x_3)$$

Yes. Amy sets x_1 true; Bob sets x_2 ; Amy sets x_3 to be same as x_2 .

$$\mathsf{Ex.} \quad (x_1 \vee x_2) \wedge (\bar{x}_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee x_3)$$

No. If Amy sets x_1 false; Bob sets x_2 false; Amy loses; if Amy sets x_1 true; Bob sets x_2 true; Amy loses.

```
Algorithm QBF(Q_1x_1Q_2x_2...Q_nx_n \phi(x_1,x_2,...,x_n))
```

```
if Q_1 = \exists then return QBF(Q_2x_2 \dots Q_nx_n\phi(0,x_2,\dots,x_n)) \vee QBF(Q_2x_2 \dots Q_nx_n\phi(1,x_2,\dots,x_n)) else if Q_1 = \forall then return QBF(Q_2x_2 \dots Q_nx_n\phi(0,x_2,\dots,x_n)) \wedge QBF(Q_2x_2 \dots Q_nx_n\phi(1,x_2,\dots,x_n)) else return 1
```

Theorem. $QSAT \in PSAPCE$.

- Pf. Recursively try all possibilities.
 - Only need one bit of information from each subproblem.
 - Amount of space is proportional to depth of function call stack.

Theorem 11

TQBF (or QSAT) is PSPACE-complete.

Proof:

- TQBF ∈ PSPACE : Already shown
- $\forall L \in PSPACE : L \leq_P TQBF : Write acceptance M(x) = 1 \text{ for } L \text{ as } PATH \text{ problem in configuration graph } G_{M,x}$
 - \Rightarrow reduce PATH(C, C') in 2^i steps to (recursive) QBF

$$\psi_i(C,C') = \exists C'' \ \psi_{i-1}(C,C'') \land \psi_{i-1}(C'',C)$$

...**but**
$$\psi_m$$
 needs 2^m space (recurrence $S(i) = 2S(i-1) + O(1)$)

$$\Rightarrow$$
 increase # of vars to get recurrence $S(i) = S(i-1) + O(1)$:

$$\psi_i(C,C') =$$

$$\exists \textit{C}'' \forall \textit{D}_1 \forall \textit{D}_2 ((\textit{D}_1 = \textit{C} \land \textit{D}_2 = \textit{C}'') \lor (\textit{D}_1 = \textit{C}'' \land \textit{D}_2 = \textit{C}')) \Rightarrow \psi_{i-1}(\textit{D}_1, \textit{D}_2)$$

Configuration graph argument exactly the same for NDTM M for $L \in NPSPACE$!

Theorem 12

TQBF (or QSAT) is NPSPACE-complete.

Theorem 13

PSPACE = NPSPACE.

(compare with P vs. NP)

Theorem 14

PSPACE = coPSPACE.

 $\Rightarrow \overline{TQBF}$ is also *PSPACE*-complete!

Theorem 15 (Savitch's theorem)

```
For S(n) \ge \log n, NSPACE(S(n)) \subseteq SPACE(S(n)^2).
```

Proof:

- **①** Configuration graph $G_{M,x}$ for $L \in NSPACE(S(n))$ ($2^{O(S(n))}$ nodes)
- 2 REACH?(u, v, i) = 1 iff \exists path $u \rightsquigarrow v$ of length $\leq 2^i$

Algorithm REACH?(u, v, i)

```
if u=v then return 1 for each node z do if REACH?(u,z,i-1)=1 \land REACH?(z,v,i-1)=1 then return 1 return 0
```

- **③** If $REACH?(C_{start}, C_{accept}, S(n)) = 1$ then x ∈ L.
- Space recurrence: $s(2^{i}) = s(2^{i-1}) + O(\log 2^{S(n)}) \Rightarrow s(S(n)) = O(S(n)^{2})$

Definition 16 (implicitly logspace computable function)

Function f is implicitly logspace computable if $|f(x)| \le n^c$ and $L_f = \{\langle x, i \rangle : f(x)_i = 1\}$, $L_f = \{\langle x, i \rangle : i \le |f(x)|\}$ are in L.

Definition 17 (logspace reducibility \leq_l)

B is logspace reducible to C ($B \le_l C$) if there is implicitly logspace computable function f such that $\forall x \in \{0,1\}^* : x \in B \Leftrightarrow f(x) \in C$.

Definition 18 (NL-complete)

C is NP-complete if $C \in NL$ and $\forall B \in NL : B \leq_l C$.

Note: Logspace NDTM has a read-once certificate tape

Lemma 19

If f,g are implicitly logspace computable, then so is h(x) = g(f(x)).

Proof:

Basic idea: To compute bits $h(x)_j = g(f(x))_j$, (re-)compute bits $f(x)_j$ used by g on-the-fly and on a "virtual tape" of M_g (i.e., special portion of M_g 's tape).

Lemma 20

- **1** If $B \leq_l C$ and $C \leq_l D$, then $B \leq_l D$.
- ② If $B \leq_l C$ and $C \in L$, then $B \in L$.

Proof:

- **4** Apply Lemma 19 to $f = B \leq_I C$ and $g = C \leq_I D$.
- ② Apply Lemma 19 to $f = B \leq_I C$ and $g = M_C$.

Lemma 21

PATH is NL-complete

Proof:

 $PATH \in NL$ (Theorem 5). For $L \in NL$, implicitly represent $M_L(x)$

- Node $C \in G_{M_L, \times}$ takes log-space
- $(C, C') \in E_{G_{M_L, \times}}$ checked in log-space: Run M_L from C to see if C' reached by some non-deterministic choice

Theorem 22 (Immerman-Szelepcsényi theorem)

 $\overline{PATH} \in NL$

Corollary 1

If $S(n) \ge \log n$ is space constructible, $NSPACE(S(n)) \subseteq coNSPACE(S(n))$

Corollary 2

NL = coNL

$$L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP$$

Note: We know $L \subset PSPACE$ and $P \subset EXP$, but we don't know which inclusions are strict :-(