Chapter 5: Polynomial hierarchy and alternations

INDSET = {(G, k) : JIS | of G s.t. |I| > k}

EXACT INDSET = {(G,k) : S |I| = k of G s.t. VIS I',|I'] < |I]}

MIN—EQ—DNF = {{¢, k) : 3DNF formula |¢| < k s.t. Yu: ¢(u) = p(u)}

MIN — EQ — DNF = {(¢, k) : YDNF formula |¢)| < k, Ju : ¢(u) # ¢(u)}

Definition 1 (NP)
L € NP if there exists a polynomial-time TM M and polynomial g such
that Vx € {0,1}",

x e Le Jue {0,190 M(x,u) = 1.

.

Definition 2 (X5)
L € ¥ if there exists a polynomial-time TM M and polynomial g such
that Vx € {0,1}*,

x € Lo Jue {0,139 vy e {0,1}9D . M(x,u,v) = 1.

v
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Definition 3 (X5)
L € ¥ if there exists a polynomial-time TM M and polynomial g such
that Vx € {0,1}",

x € L e 3Jue {0,139 vy e {0,1}9D . M(x,u,v) = 1.

Examples:
EXACT INDSET = {(G,k) : S |I| =k of Gst. VIS /',

<1}

MIN—EQ—DNF = {{¢, k) : 3DNF formula |¢| < k s.t. Yu: ¢(u) = (u)}
Definition 4 (N5)

L € 15 if there exists a polynomial-time TM M and polynomial g such
that Vx € {0,1}",
x € L e Vue{0,1390D 3y ¢ {0,1}9D . M(x,u,v) = 1.

Examples:
MIN — EQ — DNF = {(¢, k) : YDNF formula |1)| < k, Ju : ¢(u) # ¢(u)}

CS 4TH3



Chapter 5: Polynomial hierarchy and alternations

Definition 5 (X5)

L € ¥ if there exists a polynomial-time TM M and polynomial g such
that Vx € {0,1}",
x € L e 3Jue {0,139 vy e {0,1}9D . M(x,u,v) = 1.

@ NP C Y5 (use verifier M(x,u,v) for L € NP, just ignore input v)

coNP C 35 (use verifier M(x, u, v) for L € coNP, just ignore input
u)

Similarly NP C M5, coNP C N5
o NP =", coNP =",
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Definition 6 (Zf)
Fori>1, Le Zf if there exists a polynomial-time TM M and
polynomial g such that Vx € {0,1}*,

x€lLs
Fuy € {0,139 Dvu, € {0, 139D Qu; € {0, 139D - M(x, 1y, ... ) =1

where Q; = 3 or V if i =odd or even respectively.

Definition 7 (Polynomial hierarchy)

The polynomial hierarchy is the set PH = J; Z¥.

CS 4TH3



Chapter 5: Polynomial hierarchy and alternations

Definition 8 (IN?)

Fori>1, Le ﬂf’ if there exists a polynomial-time TM M and
polynomial g such that Vx € {0,1}*,

x€lLs
Vuy € {0,190 30, € {0, 139D . Qiu; € {0, 139D - M(x, 1y, ..., u) = 1

where Q; =V or 3 if i =odd or even respectively.

Equivalently, N7 = {L: L € £7}.

Definition 9 (Polynomial hierarchy)

The polynomial hierarchy is the set PH = J; X¥.

We can extend definitions to have £ = P = coP = I} (no quantifiers)
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PH:U;”?

.y P P P
Proof: 7 C 17, C ¥/,
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If P = NP, then the hierarchy collapses to P (i.e., PH = P).

Proof: Induction on i to prove £?,M? C P:

Q@ i =0:%=ME=P
@ i—k 1:%0 M CP
©Q /i=k:Let LeX}. Then

x€Le InVuy... Quug: M(x,up, ... u) =1 (1)
Define L s.t.
(x,u1) € L' & Vuy...Qrukx : M(x,uy,up,...,ux) =1

(2)
= L'eN}_;, C P = poly-time TM M’ decides L’
= (1) implies x € L & Ju; - M'(x,u1) =1
=LeNP=P ad
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For every i > 0, if ¥ = T17 then the hierarchy collapses to ith level (i.e.,
PH =%?).

Proof: Same as proof of Theorem 11
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Definition 13 (X-hardness)
Lis ¥-hard if L’ <p L for every L' € .

Definition 14 (X?-completeness)

L is ¥P-complete if

O Lis X?-hard, and
Q@ LeX?h

le — SAT = {<3U1VU2 . Q,‘U,‘ (b(ul, u, ..., U,') = 1> is TRUE}

Y — SAT is Xf-complete.

Note: ¥? — SAT is special case of TQBF (or QSAT if ¢ is CNF)
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Theorem 16
If some L € ¥¥ is PH-complete, then PH = XF.

Proof:

L is PH-complete

=V ePH:L'<plL

=>LleX?

= PHCY? |

Does PH have complete problems?

If PH = PSPACE, then the hierarchy collapses.

Proof: TQBF is PH-complete and belongs to X for some 1. |
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Alternating TMs
@ ATMs similar to NDTMs. Certificate tape contains uy, uo, ..., u;.
@ Each state (other than gstart, Gaccept) has label 3 or V.

@ ATM M runs in time T(|x|) if M(x) halts after T(|x|) steps for
every possible certificate strings. = Configuration graph is a DAG

@ ATM acceptance: Gp « is a DAG
= Topological order (Co =)Cstart, C1, Coy - -+ s Gy - -+, Caccept
Let Gstarts G15G25 -+ -y Gm) - - -, Qaccept be the ATM states
Q Ciccept .= ACCEPT
Q If label(qy,) = 3 then
Cm := ACCEPT & 3(Cp, C) € Eg,,, : Cx = ACCEPT
O |If label(gm) =V then
Cm = ACCEPT < V(GCp, C) € Eg,,, : Ck = ACCEPT
Q@ ATM M accepts iff Csapp = ACCEPT
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Definition 17

For every i >0, L € X; TIME(T(n)) (resp. L € I; TIME(T(n))) iff
accepted by T (n)-time ATM with

® label(gstart) = 3 (resp. label(gstart) = V)

@ For all x, every path in Gy x has at most i — 1 state label alterations

For every i > 0, X7 = 5o Xi TIME(n€) and N7 = J 5 M TIME(n©).

Proof hints:

@ Copy certificate tape contents uy, up, ..., u; using 3,V, ..., Q; states
(i — 1 alterations)

@ Then running of M(x, u1, ta, ..., u;) is deterministic, i.e., single
path in Gy x, with all states labeled Q; (doesn't matter what Q; is)

O
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Theorem 18
Zzp = NPSAT

Proof: ¥5 C NPAT
@ Oracle for SAT is same as oracle for SAT!

® Let L €Y% Then
x € Lo 3 e {0,139 vu, € {0, 139D M(x, 1y, ) = 1
o L' ={{x,u1) :Vun € {0,139 - M(x, 1, ) =1} = L' € coNP
= (x, u1) é L’ becomes a SAT (or SAT) question (coNP-complete)

o xcLe Ju {0,139 MAT (x,uy) =1 = L € NPAT
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Theorem 19
Zzp = NPSAT

Proof: NP>AT C ¥

@ Let L € NP5AT . Then
xelLe3ce {0,139 NAT(x ) =1

@ N°AT asks k SAT-questions ¢;(q;), and gets answers a; = 0 or 1

@ N(x,c) can run without oracle if it already knows all oracle answers

ai, ar,...,ax = Guess them!
@ xel & dc,ay,...,a - N(x,¢,a) =1 ...but what if a, ..., a are
not SAT-oracle answers to questions ¢1(q1), ..., dx(qx)???

@ Need to make sure:

Q If 3; =0 (i.e., ¢;(v;) unsatisfiable) then Yv; ¢;(v;) = 0 holds
Q If a;, =1 (i.e., ¢i(u;) satisfiable) then Ju; ¢;(u;) =1 holds
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Proof: NP>AT C ¥P (cont'd)
@ Include these checks in formula for L:
x€Lledcar,. . a0, YV, Vg
N(x,c,a) =1 AND
Vi:(ai=0= ¢i(u) =1)A(ai=1= ¢i(vi) =0)
@ A poly-time TM M(x, c, a, u,v) can decide the last two lines

@ xel & dcay,. ., ak, Uy, ik Ve, v M(x, ¢ a,u,v) =1
=Le¥} O
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An unconditional result (finally...)

Definition 20

TISP(T(n),S(n)) is the set of languages decided by a TM M(x) which
uses time O(T(|x|)) and space O(S(|x])).

SAT ¢ TISP(nt, n%1).

Proof: Omitted (read 5.4)
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