$$INDSET = \{ \langle G, k \rangle : \exists IS \ I \text{ of } G \text{ s.t. } |I| \ge k \}$$

EXACT INDSET = {
$$\langle G, k \rangle$$
 : ∃IS $|I| = k$ of G s.t. \forall IS $I', |I'| \le |I|$ }

$$MIN-EQ-DNF = \{\langle \phi, k \rangle : \exists DNF \text{ formula } |\psi| \leq k \text{ s.t. } \forall u : \phi(u) = \psi(u) \}$$

$$\overline{MIN - EQ - DNF} = \{ \langle \phi, k \rangle : \forall DNF \text{ formula } |\psi| \le k, \exists u : \phi(u) \ne \psi(u) \}$$

Definition 1 (NP)

 $L \in NP$ if there exists a polynomial-time TM M and polynomial q such that $\forall x \in \{0,1\}^*$,

$$x \in L \Leftrightarrow \exists u \in \{0,1\}^{q(|x|)} : M(x,u) = 1.$$

Definition 2 (Σ_2^p)

 $L \in \Sigma_2^p$ if there exists a polynomial-time TM M and polynomial q such that $\forall x \in \{0,1\}^*$,

$$x \in L \Leftrightarrow \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} : M(x,u,v) = 1.$$

Definition 3 (Σ_2^p)

 $L \in \Sigma_2^p$ if there exists a polynomial-time TM M and polynomial q such that $\forall x \in \{0,1\}^*$,

$$x \in L \Leftrightarrow \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} : M(x,u,v) = 1.$$

Examples:

EXACT INDSET =
$$\{\langle G, k \rangle : \exists IS | I | = k \text{ of } G \text{ s.t. } \forall IS I', |I'| \leq |I| \}$$

$$MIN-EQ-DNF = \{ \langle \phi, k \rangle : \exists DNF \text{ formula } |\psi| \leq k \text{ s.t. } \forall u : \phi(u) = \psi(u) \}$$

Definition 4 (Π_2^p)

 $L \in \Pi_2^p$ if there exists a polynomial-time TM M and polynomial q such that $\forall x \in \{0,1\}^*$,

$$x \in L \Leftrightarrow \forall u \in \{0,1\}^{q(|x|)} \exists v \in \{0,1\}^{q(|x|)} : M(x,u,v) = 1.$$

Examples:

$$\overline{MIN - EQ - DNF} = \{ \langle \phi, k \rangle : \forall DNF \text{ formula } |\psi| \leq k, \exists u : \phi(u) \neq \psi(u) \}$$

Definition 5 (Σ_2^p)

 $L \in \Sigma_2^p$ if there exists a polynomial-time TM M and polynomial q such that $\forall x \in \{0,1\}^*$,

$$x \in L \Leftrightarrow \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} : M(x,u,v) = 1.$$

- $NP \subseteq \Sigma_2^p$ (use verifier M(x, u, v) for $L \in NP$, just ignore input v)
- $coNP \subseteq \Sigma_2^p$ (use verifier M(x, u, v) for $L \in coNP$, just ignore input u)
- Similarly $NP \subseteq \Pi_2^p$, $coNP \subseteq \Pi_2^p$
- $NP = \Sigma_{1}^{p}$, $coNP = \Pi_{1}^{p}$.

Definition 6 (Σ_i^p)

For $i \geq 1$, $L \in \Sigma_i^p$ if there exists a polynomial-time TM M and polynomial q such that $\forall x \in \{0,1\}^*$,

$$x \in L \Leftrightarrow$$

$$\exists u_1 \in \{0,1\}^{q(|x|)} \forall u_2 \in \{0,1\}^{q(|x|)} \dots Q_i u_i \in \{0,1\}^{q(|x|)} : M(x,u_1,\dots,u_i) = 1$$

where $Q_i = \exists$ or \forall if i = odd or even respectively.

Definition 7 (Polynomial hierarchy)

The polynomial hierarchy is the set $PH = \bigcup_i \Sigma_i^p$.

Definition 8 (Π_i^p)

For $i \geq 1$, $L \in \Pi_i^p$ if there exists a polynomial-time TM M and polynomial q such that $\forall x \in \{0,1\}^*$,

$$x \in L \Leftrightarrow$$

$$\forall u_1 \in \{0,1\}^{q(|x|)} \exists u_2 \in \{0,1\}^{q(|x|)} \dots Q_i u_i \in \{0,1\}^{q(|x|)} : M(x,u_1,\dots,u_i) = 1$$

where $Q_i = \forall$ or \exists if i = odd or even respectively.

Equivalently, $\Pi_i^p = \{L : \overline{L} \in \Sigma_i^p\}.$

Definition 9 (Polynomial hierarchy)

The polynomial hierarchy is the set $PH = \bigcup_i \Sigma_i^p$.

We can extend definitions to have $\Sigma_0^p = P = coP = \Pi_0^p$ (no quantifiers)

Lemma 10

$$PH = \bigcup_i \Pi_i^p$$

Proof:
$$\Sigma_i^p \subseteq \Pi_{i+1}^p \subseteq \Sigma_{i+2}^p$$

Theorem 11

If P = NP, then the hierarchy collapses to P (i.e., PH = P).

Proof: Induction on *i* to prove Σ_i^p , $\Pi_i^p \subseteq P$:

Define L' s.t.

$$\langle x, u_1 \rangle \in L' \Leftrightarrow \forall u_2 \dots Q_k u_k : M(x, u_1, u_2, \dots, u_k) = 1$$

$$\Rightarrow L' \in \Pi_{k-1}^{p} \overset{(2)}{\subseteq} P \Rightarrow \text{poly-time TM } M' \text{ decides } L'$$
$$\Rightarrow (1) \text{ implies } x \in \underline{L} \Leftrightarrow \exists u_1 : M'(x, u_1) = 1$$
$$\Rightarrow \underline{L} \in NP = P$$

Theorem 12

For every $i \geq 0$, if $\sum_{i=1}^{p} \prod_{j=1}^{p} \sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{j=1}^{p} \sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{j=1$

Proof: Same as proof of Theorem 11

Definition 13 (Σ_i^p -hardness)

L is $\sum_{i=1}^{p}$ -hard if $L' \leq_{P} L$ for every $L' \in \sum_{i=1}^{p} L$

Definition 14 (\sum_{i}^{p} -completeness)

L is $\sum_{i=1}^{p}$ -complete if

- **1** L is $\sum_{i=1}^{p}$ -hard, and
- $2 L \in \Sigma_i^p.$

$$\sum_{i}^{p} - SAT = \{ \langle \exists u_1 \forall u_2 \dots Q_i u_i \ \phi(u_1, u_2, \dots, u_i) = 1 \rangle \text{ is TRUE} \}$$

Theorem 15

 \sum_{i}^{p} - SAT is \sum_{i}^{p} -complete.

Note: $\Sigma_i^p - SAT$ is special case of TQBF (or QSAT if ϕ is CNF)

Theorem 16

If some $L \in \Sigma_i^p$ is PH-complete, then $PH = \Sigma_i^p$.

Proof:

L is PH-complete

$$\Rightarrow \forall L' \in PH : L' \leq_P L$$

$$\Rightarrow L' \in \Sigma_i^p$$

$$\Rightarrow PH \subseteq \Sigma_i^p$$

Does PH have complete problems?

Corollary 1

If PH = PSPACE, then the hierarchy collapses.

Proof: TQBF is PH-complete and belongs to Σ_i^p for some i.

Alternating TMs

- ATMs similar to NDTMs. Certificate tape contains u_1, u_2, \ldots, u_i .
- Each state (other than q_{start} , q_{accept}) has label \exists or \forall .
- ATM M runs in time T(|x|) if M(x) halts after T(|x|) steps for every possible certificate strings. \Rightarrow Configuration graph is a DAG
- ATM acceptance: $G_{M,x}$ is a DAG \Rightarrow Topological order $(C_0 =) C_{start}, C_1, C_2, \ldots, C_m, \ldots, C_{accept}$ Let $q_{start}, q_1, q_2, \ldots, q_m, \ldots, q_{accept}$ be the ATM states

 - ② If $label(q_m) = \exists$ then $C_m := ACCEPT \Leftrightarrow \exists (C_m, C_k) \in E_{G_{M,k}} : C_k = ACCEPT$
 - **3** If $label(q_m) = \forall$ then $C_m := ACCEPT \Leftrightarrow \forall (C_m, C_k) \in E_{G_{M,x}} : C_k = ACCEPT$
 - **4** ATM M accepts iff $C_{start} = ACCEPT$

Definition 17

For every $i \ge 0$, $L \in \Sigma_i TIME(T(n))$ (resp. $L \in \Pi_i TIME(T(n))$) iff accepted by T(n)-time ATM with

- $label(q_{start}) = \exists (resp. \ label(q_{start}) = \forall)$
- For all x, every path in $G_{M,x}$ has at most i-1 state label alterations

Claim 1

For every $i \geq 0$, $\sum_{i=1}^{p} \sum_{c \geq 0} \sum_{i=1}^{p} \sum_{c \geq 0} \prod_{i=1}^{p} \prod_{c \geq 0} \prod_{c \geq 0} \prod_{i=1}^{p} \prod_{c \geq 0} \prod_{c \geq 0}$

Proof hints:

- Copy certificate tape contents u_1, u_2, \ldots, u_i using $\exists, \forall, \ldots, Q_i$ states (i-1 alterations)
- Then running of $M(x, u_1, u_2, ..., u_i)$ is deterministic, i.e., single path in $G_{M,x}$, with all states labeled Q_i (doesn't matter what Q_i is)

Ц

Theorem 18

$$\Sigma_2^p = NP^{SAT}$$

Proof: $\Sigma_2^p \subseteq NP^{SAT}$

- Oracle for SAT is same as oracle for \overline{SAT} !
- Let $L \in \Sigma_2^p$. Then $x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} \ \forall u_2 \in \{0,1\}^{q(|x|)} : M(x,u_1,u_2) = 1$
- $L' = \{\langle x, u_1 \rangle : \forall u_2 \in \{0, 1\}^{q(|x|)} : M(x, u_1, u_2) = 1\} \Rightarrow L' \in coNP$ $\Rightarrow \langle x, u_1 \rangle \in L'$ becomes a \overline{SAT} (or SAT) question (coNP-complete)
- $x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} : M^{SAT}(x,u_1) = 1 \Rightarrow L \in NP^{SAT}$

Theorem 19

$$\Sigma_2^p = NP^{SAT}$$

Proof: $NP^{SAT} \subseteq \Sigma_2^p$

- Let $L \in \mathit{NP}^{\mathit{SAT}}$. Then $x \in L \Leftrightarrow \exists c \in \{0,1\}^{q(|x|)} : \mathit{N}^{\mathit{SAT}}(x,c) = 1$
- N^{SAT} asks k SAT-questions $\phi_i(q_i)$, and gets answers $a_i = 0$ or 1
- N(x, c) can run without oracle if it already knows all oracle answers $a_1, a_2, \ldots, a_k \Rightarrow$ Guess them!
- $x \in L \Leftrightarrow \exists c, a_1, \dots, a_k : N(x, c, a) = 1$...but what if a_1, \dots, a_k are not SAT-oracle answers to questions $\phi_1(q_1), \dots, \phi_k(q_k)$???
- Need to make sure:
 - If $a_i = 0$ (i.e., $\phi_i(v_i)$ unsatisfiable) then $\forall v_i \ \phi_i(v_i) = 0$ holds
 - 2 If $a_i = 1$ (i.e., $\phi_i(u_i)$ satisfiable) then $\exists u_i \ \phi_i(u_i) = 1$ holds

Proof:
$$NP^{SAT} \subseteq \Sigma_2^p$$
 (cont'd)

• Include these checks in formula for *L*:

$$x \in L \Leftrightarrow \exists c, a_1, \dots, a_k, u_1, \dots, u_k \forall v_1, \dots, v_k :$$

$$N(x, c, a) = 1 \text{ AND}$$

$$\forall i : (a_i = 0 \Rightarrow \phi_i(u_i) = 1) \land (a_i = 1 \Rightarrow \phi_i(v_i) = 0)$$

- A poly-time TM M(x, c, a, u, v) can decide the last two lines
- $x \in L \Leftrightarrow \exists c, a_1, \ldots, a_k, u_1, \ldots, u_k \forall v_1, \ldots, v_k : M(x, c, a, u, v) = 1$ $\Rightarrow L \in \Sigma_2^p$

An unconditional result (finally...)

Definition 20

TISP(T(n), S(n)) is the set of languages decided by a TM M(x) which uses time O(T(|x|)) and space O(S(|x|)).

Theorem 21

 $SAT \notin TISP(n^{1.1}, n^{0.1}).$

Proof: Omitted (read 5.4)