Chapter 5: Polynomial hierarchy and alternations

INDSET = {(G,k) :3IS | of G s.t. |I| > k}
EXACT INDSET = {(G,k) : IS |I| =k of G s.t. VIS I'|I'| < |I]}
MIN—EQ—DNF = {($,1%) : 3DNF formula |¢| < k s.t. Yu : ¢(u) = ¢(u)}

MIN — EQ — DNF = {(¢,1%) : YDNF formula |[¢| < k, Ju : ¢(u) # ¢(u)}
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Chapter 5: Polynomial hierarchy and alternations

Definition 1 (NP)
L € NP if there exists a polynomial-time TM M and polynomial g such
that Vx € {0,1}",

x e L e Jue{0,1390D: M(x, u) = 1.

.

Definition 2 (£5)

L € Y5 if there exists a polynomial-time TM M and polynomial g such
that Vx € {0,1}*,
x € Lo Jue {0,1}9D vy e {0,1}390D : M(x, u,v) = 1.

Examples:
EXACT INDSET = {(G,k) : IS |I| = k of G s.t. VIS I',|I'| < |I]}

MIN—EQ—DNF = {($,1%) : 3DNF formula |¢| < k s.t. Yu : ¢(u) = ¢(u)}
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Chapter 5: Polynomial hierarchy and alternations

Definition 3 (colNP)

L € coNP if L € NP, i.e., if there exists a polynomial-time TM M and
polynomial g such that Vx € {0,1}*,
x e L e Vue{0,1390D M(x,u) = 1.

Definition 4 (N3%)

L € 15 if there exists a polynomial-time TM M and polynomial g such
that Vx € {0,1}",
x € Lo Vue {0,139 3y e {0,1390D . M(x,u,v) =1.

Examples:
MIN — EQ — DNF = {{(¢,1%) : VDNF formula |¢| < k, Ju : ¢(u) # 1(u)}
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Chapter 5: Polynomial hierarchy and alternations

Definition 5 (X5)
L € ¥ if there exists a polynomial-time TM M and polynomial g such
that Vx € {0,1}",

x € L e 3Jue {0,139 vy e {0,1}9D . M(x,u,v) = 1.

@ NP C Y5 (use verifier M(x,u,v) for L € NP, just ignore input v)

@ colNP C 55 (use verifier M(x, u,v) for L € coNP, just ignore input
u)

@ Similarly NP C 15, coNP C 115
o NP =", coNP =",

@ Y} = P = coP = N§ (no quantifiers)
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Chapter 5: Polynomial hierarchy and alternations

Definition 6 (Zf)
Fori>1, Le Zf if there exists a polynomial-time TM M and
polynomial g such that Vx € {0,1}*,

x€eElLs

Fuy € {0,139 Dvu, € {0,1390D | Qiu; € {0, 139D s M(x, uy, ..., ) £ 1

where Q; = 3 or V if i =odd or even respectively.

Definition 7 (Polynomial hierarchy)

The polynomial hierarchy is the set PH = J;~o X5
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Chapter 5: Polynomial hierarchy and alternations

Definition 8 (Zf)
Fori>1, Le Z,P if there exists a polynomial-time TM M and
polynomial g such that Vx € {0,1}*,

x€eElLs

Fuy € {0,139 Dvu, € {0,1390D | Qiu; € {0, 139D s M(x, uy, ..., ) £ 1

where Q; = 3 or V if i =odd or even respectively.

€

Definition 9 (MN?)
For i > 1, L € M7 if there exists a polynomial-time TM M and
polynomial g such that Vx € {0,1}*,

xelLs

Vuy € {0,139 34, € {0,1390D . Quu; € {0, 139D s M(x, 0y, ..., ) = 1

where Q; =V or 3 if i =odd or even respectively.

¢

Equivalently, N7 = {L: L € £7}.
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Chapter 5: Polynomial hierarchy and alternations

PH = Uizo I'If’

Proof:
Zf C I'If+1 C Zﬂz, just like NP =37 C 15 and coNP =17 C ¥5.
Then

® PH = UiZO P C Ui21 ny = UiZO ny
° UIZO ne = UIZI ny Ui22 P = UIZO P =PH
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Chapter 5: Polynomial hierarchy and alternations

If P = NP, then the hierarchy collapses to P (i.e., PH = P).

Proof: Induction on i to prove £?,M? C P:

Q@ i =0:%=ME=P
@i—k—1:30 ,MP CP
©Q /i=k:Let LeX}. Then
x€Le InVuy... Quug: M(x,up, ... u) =1 (1)

Define L' s.t.
(x,) € L' & Vuy... Quukx : M({x,u1),ua,...,ux) =1

IH
= L' eN;_;, C P = poly-time TM M’ decides L’
= (1) implies x € L= Juy : M(x,11) =1
=LeNP=P ad
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Chapter 5: Polynomial hierarchy and alternations

For every i > 0, if ¥ = T17 then the hierarchy collapses to ith level (i.e.,
PH =%?).

Proof: Same as proof of Theorem 11
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Chapter 5: Polynomial hierarchy and alternations

Definition 13 (X-hardness)
Lis ¥-hard if L’ <p L for every L' € .

Definition 14 (X?-completeness)

L is ¥P-complete if

O Lis X?-hard, and
Q@ LeX?h

le — SAT = {<3U1VU2 . Q,‘U,‘ (b(ul, u, ..., U,') = 1> is TRUE}

Y — SAT is Xf-complete.

Note: ¥? — SAT is special case of TQBF (or QSAT if ¢ is CNF)
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Chapter 5: Polynomial hierarchy and alternations

Theorem 16
If some L € ¥¥ is PH-complete, then PH = XF.

Proof:

L is PH-complete

=V ePH:L'<plL

=>LleX?

= PHCY? |

Does PH have complete problems?

If PH = PSPACE, then the hierarchy collapses.

Proof: TQBF is PH-complete and belongs to X for some 1. |
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Chapter 5: Polynomial hierarchy and alternations

Alternating TMs
@ ATMs similar to NDTMs.
@ Each state (other than gstart, Gaccept) has label 3 or V.

@ ATM M runs in time T(|x|) if M(x) halts after T(|x|) steps for
every possible certificate strings. = Configuration graph is a DAG

@ ATM acceptance: Gp « is a DAG
= Topological order (Co =)Cstart, C1, Coy - -+ s Gy - -+, Caccept
Let Gstarts G15G25 -+ -y Gm) - - -, Qaccept be the ATM states
Q Ciccept .= ACCEPT
Q If label(qy,) = 3 then
Cm := ACCEPT & 3(Cp, C) € Eg,,, : Cx = ACCEPT
O |If label(gm) =V then
Cm = ACCEPT < V(GCp, C) € Eg,,, : Ck = ACCEPT
Q@ ATM M accepts iff Csapp = ACCEPT
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Chapter 5: Polynomial hierarchy and alternations

Definition 17
For every i >0, L € X; TIME(T(n)) (resp. L € I; TIME(T(n))) iff
accepted by T (n)-time ATM with

® label(gstart) = 3 (resp. label(gstart) = V)

@ For all x, every path in Gy x has at most i — 1 state label alterations

For every i > 0, X7 = 5o Xi TIME(n€) and N7 = J 5 M TIME(n©).

Proof hints (for X7 C (J ., X; TIME(n®)):
@ Copy branching decisions uy, Uy, . .., u; using two 3,V states

alternatively (i — 1 alterations)

@ Then running of M(x, u1, ta, ..., u;) is deterministic, i.e., single
path in Gy x, with all states labeled Q; (doesn't matter what Q; is)

O
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Chapter 5: Polynomial hierarchy and alternations

Theorem 18
Zzp = NPSAT

Proof: ¥5 C NPAT
@ Oracle for SAT is same as oracle for SAT!

@ L € NP>AT: There is poly-time TM M>A" and polynomial g s.t.
x e Le Jue {0,190 MAT (x,u) =1
@ Let L € ¥5. Then
x € Lo 3u € {0,190 v, € {0, 139D - M(x, 0y, 1) = 1
o L'={{x,u):Vup € {0, 139D s M(x, uy,p) = 1} = L' € coNP
= (x, u1) é L’ becomes a SAT (or SAT) question (coNP-complete)
@ xeLa 3y e{0,1}90D: MAT (x, ) =1 = L € NPAT
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Chapter 5: Polynomial hierarchy and alternations

Theorem 19
Zzp = NPSAT

Proof: NP>AT C ¥

@ Let L € NP5AT . Then
xelLe3ce {0,139 NAT(x ) =1

@ N°AT asks k SAT-questions ¢;(q;), and gets answers a; = 0 or 1

@ N(x,c) can run without oracle if it already knows all oracle answers

ai, ar,...,ax = Guess them!
@ xel & dc,ay,...,a - N(x,¢,a) =1 ...but what if a, ..., a are
not SAT-oracle answers to questions ¢1(q1), ..., dx(qx)???

@ Need to make sure:

Q If 3; =0 (i.e., ¢;(v;) unsatisfiable) then Yv; ¢;(v;) = 0 holds
Q If a;, =1 (i.e., ¢i(u;) satisfiable) then Ju; ¢;(u;) =1 holds
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Chapter 5: Polynomial hierarchy and alternations

Proof: NP>AT C ¥P (cont'd)
@ Include these checks in formula for L:
x€Lledcar,. . a0, YV, Vg
N(x,c,a) =1 AND
Vi:(aj=1= ¢i(u) =1)A(ai = 0= ¢i(v;) =0)

@ A poly-time TM M(x, c, a, u,v) can decide the last two lines

@ xel & dcay,. ., ak, Uy, ik Ve, v M(x, ¢ a,u,v) =1
=Le¥} O
Theorem 20
P — NPZ,-,lsAT
Proof:
Exactly as before. |
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Chapter 5: Polynomial hierarchy and alternations

An unconditional result (finally...)

Definition 21

TISP(T(n),S(n)) is the set of languages decided by a TM M(x) which
uses time O(T(|x|)) and space O(S(|x])).

SAT ¢ TISP(nt, n%1).

Proof: Omitted (read 5.4)
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