
Chapter 5: Polynomial hierarchy and alternations

INDSET = {⟨G , k⟩ : ∃IS I of G s.t. |I | ≥ k}

EXACT INDSET = {⟨G , k⟩ : ∃IS |I | = k of G s.t. ∀ IS I ′,|I ′| ≤ |I |}

MIN−EQ−DNF = {⟨ϕ, 1k⟩ : ∃DNF formula |ψ| ≤ k s.t. ∀u : ϕ(u) = ψ(u)}

MIN − EQ − DNF = {⟨ϕ, 1k⟩ : ∀DNF formula |ψ| ≤ k,∃u : ϕ(u) ̸= ψ(u)}
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Chapter 5: Polynomial hierarchy and alternations

Definition 1 (NP)

L ∈ NP if there exists a polynomial-time TM M and polynomial q such
that ∀x ∈ {0, 1}∗,

x ∈ L ⇔ ∃u ∈ {0, 1}q(|x|) : M(x , u) = 1.

Definition 2 (Σp
2)

L ∈ Σp
2 if there exists a polynomial-time TM M and polynomial q such

that ∀x ∈ {0, 1}∗,
x ∈ L ⇔ ∃u ∈ {0, 1}q(|x|) ∀v ∈ {0, 1}q(|x|) : M(x , u, v) = 1.

Examples:

EXACT INDSET = {⟨G , k⟩ : ∃IS |I | = k of G s.t. ∀ IS I ′,|I ′| ≤ |I |}
MIN−EQ−DNF = {⟨ϕ, 1k⟩ : ∃DNF formula |ψ| ≤ k s.t. ∀u : ϕ(u) = ψ(u)}
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Chapter 5: Polynomial hierarchy and alternations

Definition 3 (coNP)

L ∈ coNP if L̄ ∈ NP, i.e., if there exists a polynomial-time TM M̄ and
polynomial q such that ∀x ∈ {0, 1}∗,

x ∈ L ⇔ ∀u ∈ {0, 1}q(|x|) : M̄(x , u) = 1.

Definition 4 (Πp
2)

L ∈ Πp
2 if there exists a polynomial-time TM M and polynomial q such

that ∀x ∈ {0, 1}∗,
x ∈ L ⇔ ∀u ∈ {0, 1}q(|x|) ∃v ∈ {0, 1}q(|x|) : M(x , u, v) = 1.

Examples:

MIN − EQ − DNF = {⟨ϕ, 1k⟩ : ∀DNF formula |ψ| ≤ k,∃u : ϕ(u) ̸= ψ(u)}
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Chapter 5: Polynomial hierarchy and alternations

Definition 5 (Σp
2)

L ∈ Σp
2 if there exists a polynomial-time TM M and polynomial q such

that ∀x ∈ {0, 1}∗,
x ∈ L ⇔ ∃u ∈ {0, 1}q(|x|) ∀v ∈ {0, 1}q(|x|) : M(x , u, v) = 1.

NP ⊆ Σp
2 (use verifier M(x , u, v) for L ∈ NP, just ignore input v)

coNP ⊆ Σp
2 (use verifier M̄(x , u, v) for L ∈ coNP, just ignore input

u)

Similarly NP ⊆ Πp
2 , coNP ⊆ Πp

2

NP = Σp
1 , coNP = Πp

1 .

Σp
0 = P = coP = Πp

0 (no quantifiers)
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Chapter 5: Polynomial hierarchy and alternations

Definition 6 (Σp
i )

For i ≥ 1, L ∈ Σp
i if there exists a polynomial-time TM M and

polynomial q such that ∀x ∈ {0, 1}∗,
x ∈ L ⇔

∃u1 ∈ {0, 1}q(|x|)∀u2 ∈ {0, 1}q(|x|) . . .Qiui ∈ {0, 1}q(|x|) : M(x , u1, . . . , ui ) = 1

where Qi = ∃ or ∀ if i =odd or even respectively.

Definition 7 (Polynomial hierarchy)

The polynomial hierarchy is the set PH =
⋃

i≥0 Σ
p
i .
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Chapter 5: Polynomial hierarchy and alternations

Definition 8 (Σp
i )

For i ≥ 1, L ∈ Σp
i if there exists a polynomial-time TM M and

polynomial q such that ∀x ∈ {0, 1}∗,
x ∈ L ⇔

∃u1 ∈ {0, 1}q(|x|)∀u2 ∈ {0, 1}q(|x|) . . .Qiui ∈ {0, 1}q(|x|) : M(x , u1, . . . , ui ) = 1

where Qi = ∃ or ∀ if i =odd or even respectively.

Definition 9 (Πp
i )

For i ≥ 1, L ∈ Πp
i if there exists a polynomial-time TM M and

polynomial q such that ∀x ∈ {0, 1}∗,
x ∈ L ⇔

∀u1 ∈ {0, 1}q(|x|)∃u2 ∈ {0, 1}q(|x|) . . .Qiui ∈ {0, 1}q(|x|) : M(x , u1, . . . , ui ) = 1

where Qi = ∀ or ∃ if i =odd or even respectively.

Equivalently, Πp
i = {L : L ∈ Σp

i }.
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Chapter 5: Polynomial hierarchy and alternations

Lemma 10

PH =
⋃

i≥0 Π
p
i

Proof:
Σp

i ⊆ Πp
i+1 ⊆ Σp

i+2, just like NP = Σp
1 ⊆ Πp

2 and coNP = Πp
1 ⊆ Σp

2 .
Then

PH =
⋃

i≥0 Σ
p
i ⊆

⋃
i≥1 Π

p
i =

⋃
i≥0 Π

p
i⋃

i≥0 Π
p
i =

⋃
i≥1 Π

p
i ⊆

⋃
i≥2 Σ

p
i =

⋃
i≥0 Σ

p
i = PH

2
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Chapter 5: Polynomial hierarchy and alternations

Theorem 11

If P = NP, then the hierarchy collapses to P (i.e., PH = P).

Proof: Induction on i to prove Σp
i ,Π

p
i ⊆ P:

1 i = 0 : Σp
0 = Πp

0 = P

2 i = k − 1 : Σp
k−1,Π

p
k−1 ⊆ P

3 i = k : Let L ∈ Σp
k . Then

x ∈ L ⇔ ∃u1∀u2 . . .Qkuk : M(x , u1, . . . , uk) = 1 (1)

Define L′ s.t.

⟨x , u1⟩ ∈ L′ ⇔ ∀u2 . . .Qkuk : M(⟨x , u1⟩, u2, . . . , uk) = 1

⇒ L′ ∈ Πp
k−1

IH
⊆ P ⇒ poly-time TM M ′ decides L′

⇒ (1) implies x ∈ L ⇔ ∃u1 : M ′(x , u1) = 1
⇒ L ∈ NP = P 2
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Chapter 5: Polynomial hierarchy and alternations

Theorem 12

For every i ≥ 0, if Σp
i = Πp

i then the hierarchy collapses to ith level (i.e.,
PH = Σp

i ).

Proof: Same as proof of Theorem 11
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Chapter 5: Polynomial hierarchy and alternations

Definition 13 (Σp
i -hardness)

L is Σp
i -hard if L′ ≤P L for every L′ ∈ Σp

i .

Definition 14 (Σp
i -completeness)

L is Σp
i -complete if

1 L is Σp
i -hard, and

2 L ∈ Σp
i .

Σp
i − SAT = {⟨∃u1∀u2 . . .Qiui ϕ(u1, u2, . . . , ui ) = 1⟩ is TRUE}

Theorem 15

Σp
i − SAT is Σp

i -complete.

Note: Σp
i − SAT is special case of TQBF (or QSAT if ϕ is CNF)

CS 4TH3



Chapter 5: Polynomial hierarchy and alternations

Theorem 16

If some L ∈ Σp
i is PH-complete, then PH = Σp

i .

Proof:
L is PH-complete
⇒ ∀L′ ∈ PH : L′ ≤P L
⇒ L′ ∈ Σp

i

⇒ PH ⊆ Σp
i 2

Does PH have complete problems?

Corollary 1

If PH = PSPACE, then the hierarchy collapses.

Proof: TQBF is PH-complete and belongs to Σp
i for some i . 2
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Chapter 5: Polynomial hierarchy and alternations

Alternating TMs

ATMs similar to NDTMs.

Each state (other than qstart , qaccept) has label ∃ or ∀.

ATM M runs in time T (|x |) if M(x) halts after T (|x |) steps for
every possible certificate strings. ⇒ Configuration graph is a DAG

ATM acceptance: GM,x is a DAG
⇒ Topological order (C0 =)Cstart ,C1,C2, . . . ,Cm, . . . ,Caccept

Let qstart , q1, q2, . . . , qm, . . . , qaccept be the ATM states

1 Caccept := ACCEPT
2 If label(qm) = ∃ then

Cm := ACCEPT ⇔ ∃(Cm,Ck) ∈ EGM,x
: Ck = ACCEPT

3 If label(qm) = ∀ then

Cm := ACCEPT ⇔ ∀(Cm,Ck) ∈ EGM,x
: Ck = ACCEPT

4 ATM M accepts iff Cstart = ACCEPT
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Chapter 5: Polynomial hierarchy and alternations

Definition 17

For every i ≥ 0, L ∈ ΣiTIME (T (n)) (resp. L ∈ ΠiTIME (T (n))) iff
accepted by T (n)-time ATM with

label(qstart) = ∃ (resp. label(qstart) = ∀)

For all x , every path in GM,x has at most i − 1 state label alterations

Claim 1

For every i ≥ 0, Σp
i =

⋃
c≥0 ΣiTIME (nc) and Πp

i =
⋃

c≥0 ΠiTIME (nc).

Proof hints (for Σp
i ⊆

⋃
c≥0 ΣiTIME (nc)):

Copy branching decisions u1, u2, . . . , ui using two ∃,∀ states
alternatively (i − 1 alterations)

Then running of M(x , u1, u2, . . . , ui ) is deterministic, i.e., single
path in GM,x , with all states labeled Qi (doesn’t matter what Qi is)

2
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Chapter 5: Polynomial hierarchy and alternations

Theorem 18

Σp
2 = NPSAT

Proof: Σp
2 ⊆ NPSAT

Oracle for SAT is same as oracle for SAT !

L ∈ NPSAT : There is poly-time TM MSAT and polynomial q s.t.

x ∈ L ⇔ ∃u ∈ {0, 1}q(|x|) : MSAT (x , u) = 1

Let L ∈ Σp
2 . Then

x ∈ L ⇔ ∃u1 ∈ {0, 1}q(|x|) ∀u2 ∈ {0, 1}q(|x|) : M(x , u1, u2) = 1

L′ = {⟨x , u1⟩ : ∀u2 ∈ {0, 1}q(|x|) : M(x , u1, u2) = 1} ⇒ L′ ∈ coNP

⇒ ⟨x , u1⟩
?
∈ L′ becomes a SAT (or SAT ) question (coNP-complete)

x ∈ L ⇔ ∃u1 ∈ {0, 1}q(|x|) : MSAT (x , u1) = 1 ⇒ L ∈ NPSAT

2
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Chapter 5: Polynomial hierarchy and alternations

Theorem 19

Σp
2 = NPSAT

Proof: NPSAT ⊆ Σp
2

Let L ∈ NPSAT . Then

x ∈ L ⇔ ∃c ∈ {0, 1}q(|x|) : NSAT (x , c) = 1

NSAT asks k SAT -questions ϕi (qi ), and gets answers ai = 0 or 1

N(x , c) can run without oracle if it already knows all oracle answers
a1, a2, . . . , ak ⇒ Guess them!

x ∈ L ⇔ ∃c , a1, . . . , ak : N(x , c , a) = 1 ...but what if a1, . . . , ak are
not SAT -oracle answers to questions ϕ1(q1), . . . , ϕk(qk)???

Need to make sure:

1 If ai = 0 (i.e., ϕi (vi ) unsatisfiable) then ∀vi ϕi (vi ) = 0 holds
2 If ai = 1 (i.e., ϕi (ui ) satisfiable) then ∃ui ϕi (ui ) = 1 holds
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Chapter 5: Polynomial hierarchy and alternations

Proof: NPSAT ⊆ Σp
2 (cont’d)

Include these checks in formula for L:

x ∈ L ⇔∃c , a1, . . . , ak , u1, . . . , uk∀v1, . . . , vk :

N(x , c , a) = 1 AND

∀i : (ai = 1 ⇒ ϕi (ui ) = 1) ∧ (ai = 0 ⇒ ϕi (vi ) = 0)

A poly-time TM M(x , c , a, u, v) can decide the last two lines

x ∈ L ⇔ ∃c , a1, . . . , ak , u1, . . . , uk∀v1, . . . , vk : M(x , c , a, u, v) = 1
⇒ L ∈ Σp

2 2

Theorem 20

Σp
i = NPΣi−1SAT

Proof:
Exactly as before. 2
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An unconditional result (finally...)

Definition 21

TISP(T (n),S(n)) is the set of languages decided by a TM M(x) which
uses time O(T (|x |)) and space O(S(|x |)).

Theorem 22

SAT ̸∈ TISP(n1.1, n0.1).

Proof: Omitted (read 5.4)
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