Chapter 7: Randomized computation

@ A probabilistic TM (PTM) is a TM with an extra read-only tape
which contains a string of uniformly random bits
(Vi: Pr[b; =0] = Pr[b; = 1] =1/2).
(Equivalently, at every step picks transition &g or 41 with prob. 1/2).

@ APTM M runs in T(n)-time if ¥x : M(x) halts within T(|x|) steps
for every random string (still worst-case...).

@ If M uses / random bits, then 2/ possible uniform random strings R
- PI‘R[M(X) _ 1] __ # of Rs that ;r;ake M(x) =1
@ PTM M decides L in time T(n) if
@ M(x) always halts in T(|x]|) steps
@ Pr[M(x) correct] > 2/3(7).

o L€ BPTIME(T(n)) if 3 PTM M that decides L in O(T(n)) time.

Definition 1
BREE Uczo BPTIME (n°)

CS 4TH3

Chapter 7: Randomized computation

Observations about PTMs (randomized algorithms)
@ Use of random coins by an algorithm can have two consequences:

@ Running time T(|x|) is a random variable. Then
worst case expected running time = |m‘ax{ER[T(|X|)]}
E.g., QUICKSORT is O(nlogn), MEDIAN (p. 126) is O(n).
@ M(x) is correct with a certain probability (over random bits R)

@ In BPTIME(T(n)) definition:

@ T(|x]) is not expected running time, but time upper-bound of
M(x) for all random R. But can be made expected (stay
tuned).

@ We require Pr[M(x) correct] > 2/3. Why 2/3? Why not 3/47?
Or 1 —1/n? Doesn’t matter! (stay tuned)

@ Randomized algorithms M(x) that are always correct (independently
of random bits R) if, say x ¢ L? Yes!
E.g., PRIMALITY (p. 128)

CS 4TH3

Chapter 7: Randomized computation

L e BPTIME(T(n)) if 3 PTM M running in O(T(n)) time, and

x€L= PriM(x)=1] > 2/3
x & L= Pr[M(x) =0] >2/3

BPP = .-, BTIME(n°)

L € RPTIME(T(n)) if 3 PTM M running in O(T(n)) time, and

x€L= PriM(x)=1] > 2/3
x¢ L= Pr[M(x)=0]=1

RP = U0 RPTIME(n°)

Note: Book typo for the x & L casel!l!

CS 4TH3

Chapter 7: Randomized computation

L € coRPTIME(T (n)) if 3 PTM M running in O(T(n)) time, and

xeLl=PriM(x)=1]=1
x & L= Pr[M(x) =0] >2/3

coRP = |J.>q coRPTIME(n®)
_— v

Le ZTIME(T(n)) if 3 PTM M running in expectedO(T(n)) time, and
for input x, whenever M halts, then M(x) is correct.

CS 4TH3

Chapter 7: Randomized computation

Relations between classes
@ P C BPP C EXP (run PTM for 2IRI=p(n) possible random strings)

@ RP C NP, coRP C coNP (certificate=random string R that makes
M(x)=1)

@ RP,coRP C BPP (obvious)

Theorem 6
ZPP = RP N coRP

Proof:

L e RPN coRP = 3AM; € RP, M, € coRP running in p1(n), p2(n)

= run Mi(x), then My(x) in p(n) = p1(n) + p2(n) time

= if Mi(x) = 1A Ma(x) =1 return 1, if My(x) =0 A My(x) =0 return
0, else repeat L

= at each repetition Proutput L(x)] > 2/3, Pr[output L(x)] =0,
Prlrepeat] <1/3

= E[T(n)] < =72, 52 = O(p(n)) = L € ZPP

CS 4TH3

Chapter 7: Randomized computation

Proof: (cont’d)
L € ZPP = IM running in expected p(n) time
= Pre[| T(x)| = 3p(|x|)] < 3 (Markov's inequality)
Mi(x) = { 1. Run M(x) for 3p(|x|) time

! 2. If halts, output M(x) else output 0
Mh(x) = { 1. Run M(x) for 3p(|x|) time

2. If halts, output M(x) else output 1
= L € RP because of M; and L € coRP because of M,
0O

Note: M(x) for L € ZPP may not even halt for some random string(s)!

CS 4TH3

Chapter 7: Randomized computation

Relations between classes
@ P C BPP C EXP (run PTM for 2IRI=p(n) possible random strings)

@ RP C NP, coRP C coNP (certificate=random string R that makes
M(x) =1)

@ RP,coRP C BPP (obvious)

ZPP = RP N coRP

?
Open problem: BPP = P, BPP C NEXP

CS 4TH3

Chapter 7: Randomized computation

Some basic probabilities

Lemma 8 (Linearity of expectation)

E[Zixi] = Zi E[Xi]

If X;'s mutual independent E[MN; X;] = M; E[X;]

Lemma 10 (The probabilistic method)

@ If E[X] = then Pr[X > pu] >0

@ [f Pr.[A(r) true] > O then at least one ry makes A(ry) = true.

CS 4TH3

Chapter 7: Randomized computation

Some probability inequalities

Lemma 11 (Markov's)
If X >0, then Pr[X > kE[X]] <

1
k

Lemma 12 (Chebyshev's)
If Var(X) = o, then Pr[|X — E[X]| > ko] < %

Lemma 13 (Chernoff’s)

If X1, Xs,...,X, € {0,1} mutually independent with = E[) . X, for
every 6 >0

65 .
Pr[z Xi > (1+0)u] < [(1+5)1+5]

e 9 g
Pr[z Xi < (1-0)pu] < [(15)15]

CS 4TH3

Chapter 7: Randomized computation

If X1, X5,..., X, € {0, 1} mutually independent with . = E[), Xj], for
every § > 0

Prl| S X — pl > 6p1] < 2e~ min{0*/40/2}n

Lemma 14 (Success boost)

Pr[M(x) correct] > % + |x|¢ can be boosted to
Pr[N(x) correct] > 1 — vl

Proof:
N(x) runs M(x) k := 8|x|?“*9 times, and output majority result
= Let X; = 1 if M(x) correct the i-th time (X; =0 o/w)
= E[X]]| = Pr[X; =1] = 3 + |x|° = p = E[>; Xi] = pk
= Chernoff with § := [x|~</2: Pr[}_; X; < §] < 1— 2=’
O

CS 4TH3

Chapter 7: Randomized computation

Corollary 2 (Chernoff's)

If X1, X5,..., X, € {0, 1} mutually independent with . = E[), Xj], for
every § > 0

Prl| S X — pl > 6p1] < 2e~ min{0*/40/2}n

Lemma 15 (Success boost)

Pr[M(x) correct] > % + |x|¢ can be boosted to
Pr[N(x) correct] > 1 — vl

Lemma 16 (Expected vs. absolute time)

In BPTIME(T (n)), RTIME(T (n)) definitions can have expected (instead
of absolute) time bound T (n).

Proof: Run M(x) for 1007 (|x|) steps. Pr[M(x) no halt] <1/100
(Markov) = Pr[M(x) correct] > 2/3 —1/100 O

CS 4TH3

Chapter 7: Randomized computation

Lemma 17 (Biased coin from unbiased coins)

d PTM that can simulate a biased coin with
Pr[Heads| = p = [0.p1p2ps3 .. .]2 in O(1) expected time.

Proof:
PTM uses its unbiased coins by, bo, ..., b;, ... as follows: At step i

@ If b; < p; then output "heads” & halt (Pr[b; < pi] = pi)
@ If b; > p; then output "tails” & halt
© If b; = p; then go to step i +1 (Pr[(3) happens] = 1/2)
= Pr[reaches i] = 1/2'
Pr[heads] = Z Pr[reaches i A heads at]
= Z Pr[reaches i]Pr[heads at i|reaches /] = %p,- =p

E[running time] = >_.i - Pr[reaches i] = 3, i/2" = O(1) m]

CS 4TH3

Chapter 7: Randomized computation

Lemma 18 (Biased coin from unbiased coins)

3 PTM that can simulate a biased coin with
Pr[Heads| = p = [0.p1p2p3 .. .]2 in O(1) expected time.

Lemma 19 (Unbiased coin from biased coins)

PTM with biased coins (Pr[heads| = p) can simulate an unbiased coin

(Pr[heads| =1/2) in O(ﬁ) expected time.

Proof:
PTM tosses two coins: HT=heads, TH=tails, HH, TT=repeat.
= Prlheads] = Prltails] = p(1 — p), Prrepeat] =1 — 2p(1 — p)

E[running time] = 3=, [i(1 — 2p(1 — p))~(2p(1 — p))] = O(p(ll—ﬂ))
Od

CS 4TH3

Chapter 7: Randomized computation

Theorem 20
BPP CY8nNNg

Proof: Some preliminary observations

@ Since BPP = coBPP, enough to show BPP C 2’2’

@ Set S C {0,1}™ can be "shifted” by v € {0,1}" by bit-wise XOR:
SH+u={x@u:xeS}. Asor=sdusrdu=s.

@ If S is big then 3 few shifts vy, uy, ..., uk that can cover all {0,1}"
strings with S ® v, S P Uz, ..., S D ug.

@ If S is small then A few shifts vy, uo, ..., ux that can cover all
{0,1}™ strings with S B u1,S® tp, ..., S B .

CS 4TH3

Chapter 7: Randomized computation

BPP C SN2

Proof: Some preliminary observations

@ Since BPP = coBPP, enough to show BPP C 2’2’
@ Set S C {0,1}™ can be "shifted” by u e {0,1}" by bit-wise XOR:
S+u={x@u:xeS}. Asor=sdusrdu=s

@ |S|>(1-27")2mk_(14+1=Fur,...,u: U(Sdu;) = {0,1}™
Proof: Pick random u's. Show Pr,JUi(S @ u,) ={0,1}"] >0
Bad for r: B’:llfr%S@u,ﬁB = A;B!

Pr,[B/] H Pr,[Bi] = H Pr.[r & S u] = H Pr.[r&u ¢S] (1)

i=1 i=1 i=1

If u; uniformly random = r & u; uniformly random
()= Pr[B] < [T, (1— B <27 <27
=1—Pr,JUi(S®u)={0,1}"] = Pr[3r: B] <2m2m =1 O

CS 4TH3

Chapter 7: Randomized computation

BPP C SN2

Proof: Some preliminary observations

@ Since BPP = coBPP, enough to show BPP C 2’2’

@ Set S C {0,1}™ can be "shifted” by u e {0,1}" by bit-wise XOR:
S+u={x@u:xeS}. Asor=sdusrdu=s

o |5| > (1—2_")2m,k = ’—%-H-l = Juy, ..., Uk U;(S@u;) = {O,I}m
@ |S|<2m k= (%1 +1=Vuy, ..., ue:Ui(S®) #{0,1}™

Proof:
S @ ul = || = UL, (S& u)| < S04 1S @] < K|S <27
= 3Ire {0,1}": rg U (S®) O

CS 4TH3

Chapter 7: Randomized computation

Proof: (cont’d)
L € BPP = PTM M uses m = poly(n) random bits and (boosting)

xel=Pr[Mx,r)y=1>1-27"
x¢gL= Pr[M(x,r)=1]<27"

If Sy are the random strings r that make M(x,r) =1, then

x€L=|S]>(1—2"")2"
x &L= S| <2 nmm

x € L= Tup,...,u Vre{0,1}™:re Uk (5@ u)
x€Ll=3u,... ux VrE{O‘,l}m:\/le(r@u,-ESX)
x€L=Fu,...,uVre {O,I}m:\/ﬁ;l[l\/l(x,r@ up) =1]

CS 4TH3

Chapter 7: Randomized computation

Are there BPP-complete problems?
Syntactic classes (e.g., P, NP, PSPACE) vs. Semantic classes (e.g.,
BPP, RP)

Time hierarchy theorem for BPTIME?
Same problem as before...

CS 4TH3

Chapter 7: Randomized computation

Definition 23 (Randomized reductions)

B <, Cif 3PTM M s.t. Vx: Pr,[C(M(x,r)) = B(x)] > 2/3.

CAREFUL: Book has a typo in Definition 7.16!!!

Definition 24
BP-NP ={L:L<,3SAT}

Definition 25
BPL, RL defined similarly to BPP, RP but now use O(log n) space.

Theorem 26
UPATH € RL

CS 4TH3

