

Chapter 7: Randomized computation

- A **probabilistic TM (PTM)** is a TM with an extra read-only tape which contains a string of uniformly random bits $(\forall i : \Pr[b_i = 0] = \Pr[b_i = 1] = 1/2)$. (Equivalently, at every step picks transition δ_0 or δ_1 with prob. $1/2$).
- A PTM M runs in $T(n)$ -time if $\forall x : M(x)$ halts within $T(|x|)$ steps for **every** random string (still worst-case...).
- If M uses l random bits, then 2^l possible uniform random strings R
 $\Rightarrow \Pr_R[M(x) = 1] = \frac{\text{\# of } R\text{s that make } M(x) = 1}{2^l}$
- PTM M decides L in time $T(n)$ if
 - ① $M(x)$ **always halts** in $T(|x|)$ steps
 - ② $\Pr[M(x) \text{ correct}] \geq 2/3$ (?)
- $L \in \text{BPTIME}(T(n))$ if \exists PTM M that decides L in $O(T(n))$ time.

Definition 1

$$\text{BPP} = \bigcup_{c \geq 0} \text{BPTIME}(n^c)$$

Observations about PTMs (randomized algorithms)

- Use of random coins by an algorithm can have two consequences:
 - ➊ Running time $T(|x|)$ is a random variable. Then
worst case **expected** running time $= \max_{|x|=n} \{ E_R[T(|x|)] \}$
E.g., **QUICKSORT** is $O(n \log n)$, **MEDIAN** (p. 126) is $O(n)$.
 - ➋ $M(x)$ is **correct with a certain probability** (over random bits R)
- In $BPTIME(T(n))$ definition:
 - ➊ $T(|x|)$ is **not** expected running time, but time upper-bound of $M(x)$ **for all** random R . **But** can be made expected (stay tuned).
 - ➋ We require $Pr[M(x) \text{ correct}] \geq 2/3$. Why $2/3$? Why not $3/4$? Or $1 - 1/n$? **Doesn't matter!** (stay tuned)
- Randomized algorithms $M(x)$ that are **always correct** (independently of random bits R) if, say $x \notin L$? **Yes!**
E.g., **PRIMALITY** (p. 128)

Chapter 7: Randomized computation

Definition 2

$L \in \text{BPTIME}(T(n))$ if \exists PTM M running in $O(T(n))$ time, and

$$x \in L \Rightarrow \Pr[M(x) = 1] \geq 2/3$$

$$x \notin L \Rightarrow \Pr[M(x) = 0] \geq 2/3$$

$$\text{BPP} = \bigcup_{c \geq 0} \text{BTIME}(n^c)$$

Definition 3

$L \in \text{RPTIME}(T(n))$ if \exists PTM M running in $O(T(n))$ time, and

$$x \in L \Rightarrow \Pr[M(x) = 1] \geq 2/3$$

$$x \notin L \Rightarrow \Pr[M(x) = 0] = 1$$

$$\text{RP} = \bigcup_{c \geq 0} \text{RPTIME}(n^c)$$

Note: Book typo for the $x \notin L$ case!!!

Chapter 7: Randomized computation

Definition 4

$L \in \text{coRPTIME}(T(n))$ if \exists PTM M running in $O(T(n))$ time, and

$$x \in L \Rightarrow \Pr[M(x) = 1] = 1$$

$$x \notin L \Rightarrow \Pr[M(x) = 0] \geq 2/3$$

$$\text{coRP} = \bigcup_{c \geq 0} \text{coRPTIME}(n^c)$$

Definition 5

$L \in \text{ZTIME}(T(n))$ if \exists PTM M running in **expected** $O(T(n))$ time, and for input x , **whenever M halts**, then $M(x)$ is correct.

Note: $M(x)$ for $L \in \text{ZPP}$ may not even halt for some (infinite length) random string(s)!

Relations between classes

- $P \subseteq BPP \subseteq EXP$ (run PTM for $2^{|R|=p(n)}$ possible random strings)
- $RP \subseteq NP, coRP \subseteq coNP$ (certificate=random string R that makes $M(x) = 1$)
- $RP, coRP \subseteq BPP$ (obvious)

Theorem 6

$$ZPP = RP \cap coRP$$

Proof:

$L \in RP \cap coRP \Rightarrow \exists M_1 \in RP, M_2 \in coRP$ running in $p_1(n), p_2(n)$
 \Rightarrow run $M_1(x)$, then $M_2(x)$ in $p(n) = p_1(n) + p_2(n)$ time
 \Rightarrow if $M_1(x) = 1 \wedge M_2(x) = 1$ return 1, if $M_1(x) = 0 \wedge M_2(x) = 0$ return 0, else repeat
 \Rightarrow at each repetition $Pr[\text{output } L(x)] \geq 2/3$, $Pr[\text{output } \overline{L(x)}] = 0$,
 $Pr[\text{repeat}] \leq 1/3$
 $\Rightarrow E[T(n)] \leq \sum_{i=1}^{\infty} \frac{ip(n)}{3^{i-1}} = O(p(n)) \Rightarrow L \in ZPP$

Chapter 7: Randomized computation

Proof: (cont'd)

$L \in ZPP \Rightarrow \exists M$ running in **expected** $p(n)$ time

$\Rightarrow \Pr_R[|T(x)| \geq 3p(|x|)] \leq \frac{1}{3}$ (Markov's inequality)

$M_1(x) = \begin{cases} 1. \text{ Run } M(x) \text{ for } 3p(|x|) \text{ time} \\ 2. \text{ If halts, output } M(x) \text{ else output } 0 \end{cases}$

$M_2(x) = \begin{cases} 1. \text{ Run } M(x) \text{ for } 3p(|x|) \text{ time} \\ 2. \text{ If halts, output } M(x) \text{ else output } 1 \end{cases}$

$\Rightarrow L \in RP$ because of M_1 and $L \in coRP$ because of M_2

□

Chapter 7: Randomized computation

Relations between classes

- $P \subseteq BPP \subseteq EXP$ (run PTM for $2^{|R|=p(n)}$ possible random strings)
- $RP \subseteq NP, coRP \subseteq coNP$ (certificate=random string R that makes $M(x) = 1$)
- $RP, coRP \subseteq BPP$ (obvious)

Theorem 7

$$ZPP = RP \cap coRP$$

Open problem: $BPP \stackrel{?}{=} P, BPP \stackrel{?}{\subset} NEXP$

Some basic probabilities

Lemma 8 (Linearity of expectation)

$$E[\sum_i X_i] = \sum_i E[X_i]$$

Lemma 9

If X_i 's mutually independent $E[\prod_i X_i] = \prod_i E[X_i]$

Lemma 10 (The probabilistic method)

- *If $E[X] = \mu$ then $Pr[X \geq \mu] > 0$*
- *If $Pr_r[A(r) \text{ true}] > 0$ then at least one r_0 makes $A(r_0) = \text{true}$.*

Chapter 7: Randomized computation

Some probability inequalities

Lemma 11 (Markov's)

If $X \geq 0$, then $\Pr[X \geq kE[X]] \leq \frac{1}{k}$

Lemma 12 (Chebyshev's)

If $\text{Var}(X) = \sigma^2$, then $\Pr[|X - E[X]| > k\sigma] \leq \frac{1}{k^2}$

Lemma 13 (Chernoff's)

If $X_1, X_2, \dots, X_n \in \{0, 1\}$ mutually independent with $\mu = E[\sum_i X_i]$, for every $\delta > 0$

$$\Pr\left[\sum_i X_i \geq (1 + \delta)\mu\right] \leq \left[\frac{e^\delta}{(1 + \delta)^{1+\delta}}\right]^\mu$$

$$\Pr\left[\sum_i X_i \leq (1 - \delta)\mu\right] \leq \left[\frac{e^{-\delta}}{(1 - \delta)^{1-\delta}}\right]^\mu$$

Chapter 7: Randomized computation

Corollary 1 (Chernoff's)

If $X_1, X_2, \dots, X_n \in \{0, 1\}$ mutually independent with $\mu = E[\sum_i X_i]$, for every $\delta > 0$

$$\Pr\left[\left|\sum_i X_i - \mu\right| \geq \delta\mu\right] \leq 2e^{-\min\{\delta^2/4, \delta/2\}\mu}$$

Lemma 14 (Success boost)

$\Pr[M(x) \text{ correct}] \geq \frac{1}{2} + |x|^{-c}$ can be boosted to

$\Pr[N(x) \text{ correct}] \geq 1 - 2^{-|x|^d}$.

Proof:

$N(x)$ runs $M(x)$ $k := 8|x|^{2c+d}$ times, and output majority result

\Rightarrow Let $X_i = 1$ if $M(x)$ correct the i -th time ($X_i = 0$ o/w)

$\Rightarrow E[X_i] = \Pr[X_i = 1] \geq \frac{1}{2} + |x|^{-c} =: p \Rightarrow E[\sum_i X_i] \geq pk$

\Rightarrow Chernoff with $\delta := |x|^{-c}/2 : \Pr[\sum_i X_i \leq \frac{k}{2}] \leq 2^{-|x|^d}$

□

Chapter 7: Randomized computation

Corollary 2 (Chernoff's)

If $X_1, X_2, \dots, X_n \in \{0, 1\}$ mutually independent with $\mu = E[\sum_i X_i]$, for every $\delta > 0$

$$\Pr\left[\left|\sum_i X_i - \mu\right| \geq \delta\mu\right] \leq 2e^{-\min\{\delta^2/4, \delta/2\}\mu}$$

Lemma 15 (Success boost)

$\Pr[M(x) \text{ correct}] \geq \frac{1}{2} + |x|^c$ can be boosted to

$\Pr[N(x) \text{ correct}] \geq 1 - 2^{-|x|^d}$.

Lemma 16 (Expected vs. absolute time)

In $BPTIME(T(n))$, $RTIME(T(n))$ definitions can have **expected** (instead of absolute) time bound $T(n)$.

Proof: $N(x) :=$ Run $M(x)$ for $100T(|x|)$ steps. If no halt, output 0.

$\Pr[M(x) \text{ no halt}] \leq 1/100$ (Markov) $\Rightarrow \Pr[N(x) \text{ correct}] \geq 2/3 - 1/100$

□

Lemma 17 (Biased coin from unbiased coins)

\exists PTM that can *simulate* a biased coin with
 $\Pr[\text{Heads}] = \rho = [0.\rho_1\rho_2\rho_3\dots]_2$ in $O(1)$ expected time.

Proof:

Note $\rho = [0.\rho_1\rho_2\rho_3\dots]_2 = \sum_{i=1}^{\infty} \frac{1}{2^i} \rho_i$.

PTM uses its *unbiased* coins $b_1, b_2, \dots, b_i, \dots$ as follows: At step i

- ① If $b_i < \rho_i$ then output "heads" & halt ($\Pr[b_i < \rho_i] = \frac{\rho_i}{2}$)
- ② If $b_i > \rho_i$ then output "tails" & halt
- ③ If $b_i = \rho_i$ then go to step $i + 1$ ($\Pr[(3) \text{ happens}] = 1/2$)

$$\Rightarrow \Pr[\text{reaches } i] = 1/2^{i-1}$$

$$\Pr[\text{heads}] = \sum_{i=1}^{\infty} \Pr[\text{reaches } i \wedge \text{heads at } i]$$

$$= \sum_{i=1}^{\infty} \Pr[\text{reaches } i] \Pr[\text{heads at } i | \text{reaches } i] = \sum_{i=1}^{\infty} \frac{1}{2^{i-1}} \cdot \frac{\rho_i}{2} = \rho$$

$$E[\text{running time}] = \sum_i i \cdot \Pr[\text{reaches } i] = \sum_i i/2^i = O(1)$$

Chapter 7: Randomized computation

Lemma 18 (Biased coin from unbiased coins)

\exists PTM that can *simulate* a biased coin with
 $\Pr[\text{Heads}] = \rho = [0.\rho_1\rho_2\rho_3\dots]_2$ in $O(1)$ expected time.

Lemma 19 (Unbiased coin from biased coins)

PTM with biased coins ($\Pr[\text{heads}] = \rho$) can *simulate* an unbiased coin
($\Pr[\text{heads}] = 1/2$) in $O(\frac{1}{\rho(1-\rho)})$ expected time.

Proof:

PTM tosses two coins: $\text{HT}=\text{heads}$, $\text{TH}=\text{tails}$, $\text{HH}=\text{repeat}$.

$\Rightarrow \Pr[\text{heads}] = \Pr[\text{tails}] = \rho(1 - \rho)$, $\Pr[\text{repeat}] = 1 - 2\rho(1 - \rho)$
 $E[\text{running time}] = \sum_i [i(1 - 2\rho(1 - \rho))^{i-1}(2\rho(1 - \rho))] = O(\frac{1}{\rho(1-\rho)})$

□

Theorem 20

$$BPP \subseteq \Sigma_2^P \cap \Pi_2^P$$

Proof: Some preliminary observations

- Since $BPP = coBPP$, enough to show $BPP \subseteq \Sigma_2^P$
- Set $S \subset \{0, 1\}^m$ can be "shifted" by $u \in \{0, 1\}^m$ by bit-wise XOR: $S \oplus u = \{x \oplus u : x \in S\}$. Also $r = s \oplus u \Leftrightarrow r \oplus u = s$.
- If S is **big** then \exists few shifts u_1, u_2, \dots, u_k that can cover **all** $\{0, 1\}^m$ strings with $S \oplus u_1, S \oplus u_2, \dots, S \oplus u_k$.
- If S is **small** then \nexists few shifts u_1, u_2, \dots, u_k that can cover **all** $\{0, 1\}^m$ strings with $S \oplus u_1, S \oplus u_2, \dots, S \oplus u_k$.

Theorem 21

$$BPP \subseteq \Sigma_2^P \cap \Pi_2^P$$

Proof: Some preliminary observations

- Since $BPP = coBPP$, enough to show $BPP \subseteq \Sigma_2^P$
- Set $S \subset \{0, 1\}^m$ can be "shifted" by $u \in \{0, 1\}^m$ by bit-wise XOR: $S + u = \{x \oplus u : x \in S\}$. Also $r = s \oplus u \Leftrightarrow r \oplus u = s$
- $|S| \geq (1 - 2^{-n})2^m$, $k = \lceil \frac{m}{n} \rceil + 1 \Rightarrow \exists u_1, \dots, u_k : \bigcup_i (S \oplus u_i) = \{0, 1\}^m$

Proof: Pick random u 's. Show $Pr_u[\bigcup_i (S \oplus u_i) = \{0, 1\}^m] > 0$

Bad for r : $B_r^i = 1$ if $r \notin S \oplus u_i \Rightarrow B_r = \bigwedge_i B_r^i$

$$Pr_u[B_r] = \prod_{i=1}^k Pr_{u_i}[B_r^i] = \prod_{i=1}^k Pr_{u_i}[r \notin S \oplus u_i] = \prod_{i=1}^k Pr_{u_i}[r \oplus u_i \notin S] \quad (1)$$

If u_i uniformly random $\Rightarrow r \oplus u_i$ uniformly random

$$(1) \Rightarrow Pr_u[B_r] \leq \prod_{i=1}^k \left(1 - \frac{|S|}{2^m}\right) \leq 2^{-nk} < 2^{-m}$$

$$\Rightarrow Pr_u[\bigcup_i (S \oplus u_i) \neq \{0, 1\}^m] = Pr[r : B_r] < 2^m 2^{-m} = 1$$

□

Theorem 22

$$BPP \subseteq \Sigma_2^P \cap \Pi_2^P$$

Proof: Some preliminary observations

- Since $BPP = coBPP$, enough to show $BPP \subseteq \Sigma_2^P$
- Set $S \subset \{0, 1\}^m$ can be "shifted" by $u \in \{0, 1\}^m$ by bit-wise XOR: $S + u = \{x \oplus u : x \in S\}$. Also $r = s \oplus u \Leftrightarrow r \oplus u = s$
- $|S| \geq (1 - 2^{-n})2^m$, $k = \lceil \frac{m}{n} \rceil + 1 \Rightarrow \exists u_1, \dots, u_k : \bigcup_i (S \oplus u_i) = \{0, 1\}^m$
- $|S| \leq 2^{m-n}$, $k = \lceil \frac{m}{n} \rceil + 1 \Rightarrow \forall u_1, \dots, u_k : \bigcup_i (S \oplus u_i) \neq \{0, 1\}^m$

Proof:

$$\begin{aligned} |S \oplus u_i| &= |S| \Rightarrow |\bigcup_{i=1}^k (S \oplus u_i)| \leq \sum_{i=1}^k |S \oplus u_i| = k|S| < 2^m \\ \Rightarrow \exists r \in \{0, 1\}^m : r &\notin \bigcup_{i=1}^k (S \oplus u_i) \end{aligned}$$

□

Chapter 7: Randomized computation

Proof: (cont'd)

$L \in BPP \Rightarrow$ PTM M uses $m = \text{poly}(n)$ random bits and (boosting)

$$x \in L \Rightarrow \Pr_r[M(x, r) = 1] \geq 1 - 2^{-n}$$

$$x \notin L \Rightarrow \Pr_r[M(x, r) = 1] \leq 2^{-n}$$

If S_x are the random strings r that make $M(x, r) = 1$, then

$$x \in L \Rightarrow |S_x| \geq (1 - 2^{-n})2^m$$

$$x \notin L \Rightarrow |S_x| \leq 2^{-n}2^m$$

$$x \in L \Leftrightarrow \exists u_1, \dots, u_k \ \forall r \in \{0, 1\}^m : r \in \bigcup_{i=1}^k (S_x \oplus u_i)$$

$$x \in L \Leftrightarrow \exists u_1, \dots, u_k \ \forall r \in \{0, 1\}^m : \bigvee_{i=1}^k (r \oplus u_i \in S_x)$$

$$x \in L \Leftrightarrow \exists u_1, \dots, u_k \ \forall r \in \{0, 1\}^m : \bigvee_{i=1}^k [M(x, r \oplus u_i) = 1]$$

$$x \in L \Leftrightarrow \exists u_1, \dots, u_k \ \forall r \in \{0, 1\}^m : N(x, u_1, \dots, u_k, r) = 1$$

where $N(x, u_1, \dots, u_k, r)$ is a **deterministic** TM!

□

Chapter 7: Randomized computation

Are there *BPP*-complete problems?

Syntactic classes (e.g., P , NP , $PSPACE$) vs. **Semantic** classes (e.g., BPP , RP)

Time hierarchy theorem for *BPTIME*?

Same problem as before...

Chapter 7: Randomized computation

Definition 23 (Randomized reductions)

$B \leq_r C$ if \exists PTM M s.t. $\forall x : \Pr_r[C(M(x, r))] = B(x)] \geq 2/3$.

CAREFUL: Book has a **typo** in Definition 7.16!!!

Definition 24

$BP \cdot NP = \{L : L \leq_r 3SAT\}$

Definition 25

BPL, RL defined similarly to BPP, RP but now use $O(\log n)$ space.

Theorem 26

$UPATH \in RL$