
Chapter 7: Randomized computation

A probabilistic TM (PTM) is a TM with an extra read-only tape
which contains a string of uniformly random bits
(∀i : Pr [bi = 0] = Pr [bi = 1] = 1/2).
(Equivalently, at every step picks transition δ0 or δ1 with prob. 1/2).

A PTM M runs in T (n)-time if ∀x : M(x) halts within T (|x |) steps
for every random string (still worst-case...).

If M uses l random bits, then 2l possible uniform random strings R

⇒ PrR [M(x) = 1] = # of Rs that make M(x) = 1
2l

PTM M decides L in time T (n) if

1 M(x) always halts in T (|x |) steps
2 Pr [M(x) correct] ≥ 2/3(?).

L ∈ BPTIME (T (n)) if ∃ PTM M that decides L in O(T (n)) time.

Definition 1

BPP =
⋃

c≥0 BPTIME (nc)
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Chapter 7: Randomized computation

Observations about PTMs (randomized algorithms)

Use of random coins by an algorithm can have two consequences:

1 Running time T (|x |) is a random variable. Then

worst case expected running time = max
|x|=n

{ER [T (|x |)]}

E.g., Quicksort is O(n log n), Median (p. 126) is O(n).
2 M(x) is correct with a certain probability (over random bits R)

In BPTIME (T (n)) definition:

1 T (|x |) is not expected running time, but time upper-bound of
M(x) for all random R. But can be made expected (stay
tuned).

2 We require Pr [M(x) correct] ≥ 2/3. Why 2/3? Why not 3/4?
Or 1− 1/n? Doesn’t matter! (stay tuned)

Randomized algorithms M(x) that are always correct (independently
of random bits R) if, say x ̸∈ L? Yes!
E.g., Primality (p. 128)
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Chapter 7: Randomized computation

Definition 2

L ∈ BPTIME (T (n)) if ∃ PTM M running in O(T (n)) time, and

x ∈ L ⇒ Pr [M(x) = 1] ≥ 2/3

x ̸∈ L ⇒ Pr [M(x) = 0] ≥ 2/3

BPP =
⋃

c≥0 BTIME (nc)

Definition 3

L ∈ RPTIME (T (n)) if ∃ PTM M running in O(T (n)) time, and

x ∈ L ⇒ Pr [M(x) = 1] ≥ 2/3

x ̸∈ L ⇒ Pr [M(x) = 0] = 1

RP =
⋃

c≥0 RPTIME (nc)

Note: Book typo for the x ̸∈ L case!!!
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Definition 4

L ∈ coRPTIME (T (n)) if ∃ PTM M running in O(T (n)) time, and

x ∈ L ⇒ Pr [M(x) = 1] = 1

x ̸∈ L ⇒ Pr [M(x) = 0] ≥ 2/3

coRP =
⋃

c≥0 coRPTIME (nc)

Definition 5

L ∈ ZTIME (T (n)) if ∃ PTM M running in expected O(T (n)) time, and
for input x , whenever M halts, then M(x) is correct.

Note: M(x) for L ∈ ZPP may not even halt for some (infinite length)
random string(s)!
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Relations between classes

P ⊆ BPP ⊆ EXP (run PTM for 2|R|=p(n) possible random strings)

RP ⊆ NP, coRP ⊆ coNP (certificate=random string R that makes
M(x) = 1)

RP, coRP ⊆ BPP (obvious)

Theorem 6

ZPP = RP ∩ coRP

Proof:
L ∈ RP ∩ coRP ⇒ ∃M1 ∈ RP,M2 ∈ coRP running in p1(n), p2(n)
⇒ run M1(x), then M2(x) in p(n) = p1(n) + p2(n) time
⇒ if M1(x) = 1 ∧M2(x) = 1 return 1, if M1(x) = 0 ∧M2(x) = 0 return
0, else repeat
⇒ at each repetition Pr [output L(x)] ≥ 2/3, Pr [output L(x)] = 0,
Pr [repeat] ≤ 1/3

⇒ E [T (n)] ≤
∑∞

i=1
ip(n)
3i−1 = O(p(n)) ⇒ L ∈ ZPP
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Chapter 7: Randomized computation

Proof: (cont’d)
L ∈ ZPP ⇒ ∃M running in expected p(n) time
⇒ PrR [|T (x)| ≥ 3p(|x |)] ≤ 1

3 (Markov’s inequality)

M1(x) =

{
1. Run M(x) for 3p(|x |) time
2. If halts, output M(x) else output 0

M2(x) =

{
1. Run M(x) for 3p(|x |) time
2. If halts, output M(x) else output 1

⇒ L ∈ RP because of M1 and L ∈ coRP because of M2

2

CS 4TH3



Chapter 7: Randomized computation

Relations between classes

P ⊆ BPP ⊆ EXP (run PTM for 2|R|=p(n) possible random strings)

RP ⊆ NP, coRP ⊆ coNP (certificate=random string R that makes
M(x) = 1)

RP, coRP ⊆ BPP (obvious)

Theorem 7

ZPP = RP ∩ coRP

Open problem: BPP
?
= P, BPP

?
⊂ NEXP
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Some basic probabilities

Lemma 8 (Linearity of expectation)

E [
∑

i Xi ] =
∑

i E [Xi ]

Lemma 9

If Xi ’s mutually independent E [ΠiXi ] = ΠiE [Xi ]

Lemma 10 (The probabilistic method)

If E [X ] = µ then Pr [X ≥ µ] > 0

If Prr [A(r) true] > 0 then at least one r0 makes A(r0) = true.
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Some probability inequalities

Lemma 11 (Markov’s)

If X ≥ 0, then Pr [X ≥ kE [X ]] ≤ 1
k

Lemma 12 (Chebyshev’s)

If Var(X ) = σ, then Pr [|X − E [X ]| > kσ] ≤ 1
k2

Lemma 13 (Chernoff’s)

If X1,X2, . . . ,Xn ∈ {0, 1} mutually independent with µ = E [
∑

i Xi ], for
every δ > 0

Pr [
∑
i

Xi ≥ (1 + δ)µ] ≤
[

eδ

(1 + δ)1+δ

]µ
Pr [

∑
i

Xi ≤ (1− δ)µ] ≤
[

e−δ

(1− δ)1−δ

]µ
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Corollary 1 (Chernoff’s)

If X1,X2, . . . ,Xn ∈ {0, 1} mutually independent with µ = E [
∑

i Xi ], for
every δ > 0

Pr [|
∑
i

Xi − µ| ≥ δµ] ≤ 2e−min{δ2/4,δ/2}µ

Lemma 14 (Success boost)

Pr [M(x) correct] ≥ 1
2 + |x |−c can be boosted to

Pr [N(x) correct] ≥ 1− 2−|x|d .

Proof:
N(x) runs M(x) k := 8|x |2c+d times, and output majority result
⇒ Let Xi = 1 if M(x) correct the i-th time (Xi = 0 o/w)
⇒ E [Xi ] = Pr [Xi = 1] ≥ 1

2 + |x |−c =: p ⇒ E [
∑

i Xi ] ≥ pk

⇒ Chernoff with δ := |x |−c/2 : Pr [
∑

i Xi ≤ k
2 ] ≤ 2−|x|d

2
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Corollary 2 (Chernoff’s)

If X1,X2, . . . ,Xn ∈ {0, 1} mutually independent with µ = E [
∑

i Xi ], for
every δ > 0

Pr [|
∑
i

Xi − µ| ≥ δµ] ≤ 2e−min{δ2/4,δ/2}µ

Lemma 15 (Success boost)

Pr [M(x) correct] ≥ 1
2 + |x |c can be boosted to

Pr [N(x) correct] ≥ 1− 2−|x|d .

Lemma 16 (Expected vs. absolute time)

In BPTIME (T (n)),RTIME (T (n)) definitions can have expected (instead
of absolute) time bound T (n).

Proof: N(x):=Run M(x) for 100T (|x |) steps. If no halt, output 0.
Pr [M(x) no halt] ≤ 1/100 (Markov) ⇒ Pr [N(x) correct] ≥ 2/3− 1/100

2
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Chapter 7: Randomized computation

Lemma 17 (Biased coin from unbiased coins)

∃ PTM that can simulate a biased coin with
Pr [Heads] = ρ = [0.ρ1ρ2ρ3 . . .]2 in O(1) expected time.

Proof:
Note ρ = [0.ρ1ρ2ρ3 . . .]2 =

∑∞
i=1

1
2i ρi .

PTM uses its unbiased coins b1, b2, . . . , bi , . . . as follows: At step i

1 If bi < ρi then output ”heads” & halt (Pr [bi < ρi ] =
ρi

2 )

2 If bi > ρi then output ”tails” & halt

3 If bi = ρi then go to step i + 1 (Pr [(3) happens] = 1/2)

⇒ Pr [reaches i ] = 1/2i−1

Pr [heads] =
∞∑
i=1

Pr [reaches i ∧ heads at i ]

=
∞∑
i=1

Pr [reaches i ]Pr [heads at i |reaches i ] =
∞∑
i=1

1

2i−1
· ρi
2

= ρ

E [running time] =
∑

i i · Pr [reaches i ] =
∑

i i/2
i = O(1) 2
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Lemma 18 (Biased coin from unbiased coins)

∃ PTM that can simulate a biased coin with
Pr [Heads] = ρ = [0.ρ1ρ2ρ3 . . .]2 in O(1) expected time.

Lemma 19 (Unbiased coin from biased coins)

PTM with biased coins (Pr [heads] = ρ) can simulate an unbiased coin
(Pr [heads] = 1/2) in O( 1

ρ(1−ρ) ) expected time.

Proof:
PTM tosses two coins: HT=heads, TH=tails, HH, TT=repeat.
⇒ Pr [heads] = Pr [tails] = ρ(1− ρ),Pr [repeat] = 1− 2ρ(1− ρ)
E [running time] =

∑
i

[
i(1− 2ρ(1− ρ))i−1(2ρ(1− ρ))

]
= O( 1

ρ(1−ρ) )
2
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Theorem 20

BPP ⊆ Σp
2 ∩ Πp

2

Proof: Some preliminary observations

Since BPP = coBPP, enough to show BPP ⊆ Σp
2

Set S ⊂ {0, 1}m can be ”shifted” by u ∈ {0, 1}m by bit-wise XOR:
S ⊕ u = {x ⊕ u : x ∈ S}. Also r = s ⊕ u ⇔ r ⊕ u = s.

If S is big then ∃ few shifts u1, u2, . . . , uk that can cover all {0, 1}m
strings with S ⊕ u1,S ⊕ u2, . . . ,S ⊕ uk .

If S is small then ̸ ∃ few shifts u1, u2, . . . , uk that can cover all
{0, 1}m strings with S ⊕ u1,S ⊕ u2, . . . ,S ⊕ uk .
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Theorem 21

BPP ⊆ Σp
2 ∩ Πp

2

Proof: Some preliminary observations

Since BPP = coBPP, enough to show BPP ⊆ Σp
2

Set S ⊂ {0, 1}m can be ”shifted” by u ∈ {0, 1}m by bit-wise XOR:
S + u = {x ⊕ u : x ∈ S}. Also r = s ⊕ u ⇔ r ⊕ u = s

|S | ≥ (1−2−n)2m, k = ⌈m
n ⌉+1 ⇒ ∃u1, . . . , uk : ∪i (S⊕ui ) = {0, 1}m

Proof: Pick random u’s. Show Pru[∪i (S ⊕ ui ) = {0, 1}m] > 0
Bad for r : B i

r = 1 if r ̸∈ S ⊕ ui ⇒ Br = ∧iB
i
r

Pru[Br ] =
k∏

i=1

Prui [B
i
r ] =

k∏
i=1

Prui [r ̸∈ S ⊕ ui ] =
k∏

i=1

Prui [r ⊕ ui ̸∈ S ]

(1)
If ui uniformly random ⇒ r ⊕ ui uniformly random

(1)⇒ Pru[Br ] ≤
∏k

i=1(1−
|S|
2m ) ≤ 2−nk < 2−m

⇒ Pru[∪i (S ⊕ ui ) ̸= {0, 1}m] = Pr [∃r : Br ] < 2m2−m = 1 2
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Theorem 22

BPP ⊆ Σp
2 ∩ Πp

2

Proof: Some preliminary observations

Since BPP = coBPP, enough to show BPP ⊆ Σp
2

Set S ⊂ {0, 1}m can be ”shifted” by u ∈ {0, 1}m by bit-wise XOR:
S + u = {x ⊕ u : x ∈ S}. Also r = s ⊕ u ⇔ r ⊕ u = s

|S | ≥ (1−2−n)2m, k = ⌈m
n ⌉+1 ⇒ ∃u1, . . . , uk : ∪i (S⊕ui ) = {0, 1}m

|S | ≤ 2m−n, k = ⌈m
n ⌉+ 1 ⇒ ∀u1, . . . , uk : ∪i (S ⊕ ui ) ̸= {0, 1}m

Proof:
|S ⊕ ui | = |S | ⇒ | ∪k

i=1 (S ⊕ ui )| ≤
∑k

i=1 |S ⊕ ui | = k|S | < 2m

⇒ ∃r ∈ {0, 1}m : r ̸∈ ∪k
i=1(S ⊕ ui ) 2
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Proof: (cont’d)
L ∈ BPP ⇒ PTM M uses m = poly(n) random bits and (boosting)

x ∈ L ⇒ Prr [M(x , r) = 1] ≥ 1− 2−n

x ̸∈ L ⇒ Prr [M(x , r) = 1] ≤ 2−n

If Sx are the random strings r that make M(x , r) = 1, then

x ∈ L ⇒ |Sx | ≥ (1− 2−n)2m

x ̸∈ L ⇒ |Sx | ≤ 2−n2m

x ∈ L ⇔ ∃u1, . . . , uk ∀r ∈ {0, 1}m : r ∈ ∪k
i=1(Sx ⊕ ui )

x ∈ L ⇔ ∃u1, . . . , uk ∀r ∈ {0, 1}m :
∨k

i=1(r ⊕ ui ∈ Sx)

x ∈ L ⇔ ∃u1, . . . , uk ∀r ∈ {0, 1}m :
∨k

i=1[M(x , r ⊕ ui ) = 1]
x ∈ L ⇔ ∃u1, . . . , uk ∀r ∈ {0, 1}m : N(x , u1, . . . , uk , r) = 1
where N(x , u1, . . . , uk , r) is a deterministic TM!

2
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Chapter 7: Randomized computation

Are there BPP-complete problems?
Syntactic classes (e.g., P,NP,PSPACE ) vs. Semantic classes (e.g.,
BPP,RP)

Time hierarchy theorem for BPTIME?
Same problem as before...
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Definition 23 (Randomized reductions)

B ≤r C if ∃ PTM M s.t. ∀x : Prr [C (M(x , r)) = B(x)] ≥ 2/3.

CAREFUL: Book has a typo in Definition 7.16!!!

Definition 24

BP · NP = {L : L ≤r 3SAT}
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Definition 25

BPL,RL defined similarly to BPP,RP but now use O(log n) space.

Theorem 26

UPATH ∈ RL
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