- A probabilistic TM (PTM) is a TM with an extra read-only tape which contains a string of uniformly random bits $(\forall i: Pr[b_i = 0] = Pr[b_i = 1] = 1/2)$. (Equivalently, at every step picks transition δ_0 or δ_1 with prob. 1/2).
- A PTM M runs in T(n)-time if $\forall x : M(x)$ halts within T(|x|) steps for every random string (still worst-case...).
- If M uses I random bits, then 2^I possible uniform random strings R $\Rightarrow Pr_R[M(x)=1]=\frac{\# \text{ of } Rs \text{ that } \max M(x)=1}{2^I}$
- PTM M decides L in time T(n) if
 - **1** M(x) always halts in T(|x|) steps
 - ② $Pr[M(x) \text{ correct}] \ge \frac{2}{3}(?)$.
- $L \in BPTIME(T(n))$ if $\exists PTM M$ that decides L in O(T(n)) time.

Definition 1

$$BPP = \bigcup_{c>0} BPTIME(n^c)$$

Observations about PTMs (randomized algorithms)

- Use of random coins by an algorithm can have two consequences:
 - **Quantification** Running time T(|x|) is a random variable. Then worst case expected running time $= \max_{|x|=n} \{ \frac{E_R}{T} [T(|x|)] \}$
 - E.g., QUICKSORT is $O(n \log n)$, MEDIAN (p. 126) is O(n).
 - M(x) is correct with a certain probability (over random bits R)
- In BPTIME(T(n)) definition:
 - ① T(|x|) is not expected running time, but time upper-bound of M(x) for all random R. But can be made expected (stay tuned).
 - We require $Pr[M(x) \text{ correct}] \ge \frac{2}{3}$. Why 2/3? Why not 3/4? Or 1 1/n? **Doesn't matter!** (stay tuned)
- Randomized algorithms M(x) that are always correct (independently of random bits R) if, say x ∉ L? Yes!
 E.g., PRIMALITY (p. 128)

Definition 2

 $L \in BPTIME(T(n))$ if $\exists PTM M$ running in O(T(n)) time, and

$$x \in L \Rightarrow Pr[M(x) = 1] \ge \frac{2}{3}$$

 $x \notin L \Rightarrow Pr[M(x) = 0] \ge \frac{2}{3}$

$$BPP = \bigcup_{c>0} BTIME(n^c)$$

Definition 3

 $L \in RPTIME(T(n))$ if $\exists PTM M$ running in O(T(n)) time, and

$$x \in L \Rightarrow Pr[M(x) = 1] \ge \frac{2}{3}$$

 $x \notin L \Rightarrow Pr[M(x) = 0] = 1$

$$RP = \bigcup_{c \geq 0} RPTIME(n^c)$$

Note: Book typo for the $x \notin L$ case!!!

Definition 4

 $L \in coRPTIME(T(n))$ if $\exists PTM M$ running in O(T(n)) time, and

$$x \in L \Rightarrow Pr[M(x) = 1] = 1$$

 $x \notin L \Rightarrow Pr[M(x) = 0] \ge \frac{2}{3}$

 $coRP = \bigcup_{c \ge 0} coRPTIME(n^c)$

Definition 5

 $L \in \overline{ZTIME}(T(n))$ if \exists PTM M running in expected O(T(n)) time, and for input x, whenever M halts, then M(x) is correct.

Relations between classes

- $P \subseteq BPP \subseteq EXP$ (run PTM for $2^{|R|=p(n)}$ possible random strings)
- $RP \subseteq NP$, $coRP \subseteq coNP$ (certificate=random string R that makes M(x) = 1)
- RP, $coRP \subseteq BPP$ (obvious)

Theorem 6

 $ZPP = RP \cap coRP$

Proof:

```
L \in RP \cap coRP \Rightarrow \exists M_1 \in RP, M_2 \in coRP \text{ running in } p_1(n), p_2(n)

\Rightarrow \text{ run } M_1(x), \text{ then } M_2(x) \text{ in } p(n) = p_1(n) + p_2(n) \text{ time}

\Rightarrow \text{ if } M_1(x) = 1 \land M_2(x) = 1 \text{ return } 1, \text{ if } M_1(x) = 0 \land M_2(x) = 0 \text{ return } 0, \text{ else repeat}

\Rightarrow \text{ at each repetition } Pr[\text{output } L(x)] \geq 2/3, Pr[\text{output } \overline{L(x)}] = 0,

Pr[repeat] \leq 1/3

\Rightarrow E[T(n)] \leq \sum_{i=1}^{\infty} \frac{ip(n)}{2i-1} = O(p(n)) \Rightarrow L \in ZPP
```

Proof: (cont'd) $L \in ZPP \Rightarrow \exists M \text{ running in expected } p(n) \text{ time}$ $\Rightarrow Pr_R[|T(x)| \geq 3p(|x|)] \leq \frac{1}{3} \text{ (Markov's inequality)}$ $M_1(x) = \begin{cases} 1. & \text{Run } M(x) \text{ for } 3p(|x|) \text{ time} \\ 2. & \text{If halts, output } M(x) \text{ else output } 0 \end{cases}$ $M_2(x) = \begin{cases} 1. & \text{Run } M(x) \text{ for } 3p(|x|) \text{ time} \\ 2. & \text{If halts, output } M(x) \text{ else output } 1 \end{cases}$ $\Rightarrow L \in RP \text{ because of } M_1 \text{ and } L \in coRP \text{ because of } M_2$

Note: M(x) for $L \in ZPP$ may not even halt for some random string(s)!

Relations between classes

- $P \subseteq BPP \subseteq EXP$ (run PTM for $2^{|R|=p(n)}$ possible random strings)
- $RP \subseteq NP$, $coRP \subseteq coNP$ (certificate=random string R that makes M(x) = 1)
- RP, $coRP \subseteq BPP$ (obvious)

Theorem 7

 $ZPP = RP \cap coRP$

Open problem: $BPP \stackrel{?}{=} P$, $BPP \stackrel{?}{\subset} NEXP$

Some basic probabilities

Lemma 8 (Linearity of expectation)

$$E[\sum_i X_i] = \sum_i E[X_i]$$

Lemma 9

If X_i 's mutual independent $E[\Pi_i X_i] = \Pi_i E[X_i]$

Lemma 10 (The probabilistic method)

- If $E[X] = \mu$ then $Pr[X \ge \mu] > 0$
- If $Pr_r[A(r) \text{ true}] > 0$ then at least one r_0 makes $A(r_0) = \text{true}$.

Some probability inequalities

Lemma 11 (Markov's)

If $X \geq 0$, then $Pr[X \geq kE[X]] \leq \frac{1}{k}$

Lemma 12 (Chebyshev's)

If
$$Var(X) = \sigma$$
, then $Pr[|X - E[X]| > k\sigma] \le \frac{1}{k^2}$

Lemma 13 (Chernoff's)

If $X_1, X_2, \ldots, X_n \in \{0,1\}$ mutually independent with $\mu = E[\sum_i X_i]$, for every $\delta > 0$

$$Pr[\sum_{i} X_{i} \geq (1+\delta)\mu] \leq \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu}$$
$$Pr[\sum_{i} X_{i} \leq (1-\delta)\mu] \leq \left[\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right]^{\mu}$$

Corollary 1 (Chernoff's)

If $X_1, X_2, \dots, X_n \in \{0,1\}$ mutually independent with $\mu = E[\sum_i X_i]$, for every $\delta > 0$

$$Pr[|\sum_{i} X_i - \mu| \ge \delta\mu] \le 2e^{-\min\{\delta^2/4, \delta/2\}\mu}$$

Lemma 14 (Success boost)

 $Pr[M(x) \ correct] \ge \frac{1}{2} + |x|^c$ can be boosted to $Pr[N(x) \ correct] \ge \frac{1}{2} - 2^{-|x|^d}$.

Proof:

N(x) runs M(x) $k := 8|x|^{2c+d}$ times, and output majority result

$$\Rightarrow$$
 Let $X_i = 1$ if $M(x)$ correct the *i*-th time $(X_i = 0 \text{ o/w})$

$$\Rightarrow E[X_i] = Pr[X_i = 1] = \frac{1}{2} + |x|^c =: p \Rightarrow E[\sum_i X_i] = pk$$

$$\Rightarrow$$
 Chernoff with $\delta := |\mathbf{x}|^{-c}/2 : Pr[\sum_i X_i < \frac{k}{2}] \le 1 - 2^{-|\mathbf{x}|^d}$

_

Corollary 2 (Chernoff's)

If $X_1, X_2, \ldots, X_n \in \{0,1\}$ mutually independent with $\mu = E[\sum_i X_i]$, for every $\delta > 0$

$$Pr[|\sum_{i} X_{i} - \mu| \ge \delta\mu] \le 2e^{-\min\{\delta^{2}/4, \delta/2\}\mu}$$

Lemma 15 (Success boost)

 $Pr[M(x) \ correct] \ge \frac{1}{2} + |x|^c$ can be boosted to $Pr[N(x) \ correct] \ge 1 - 2^{-|x|^d}$.

Lemma 16 (Expected vs. absolute time)

In BPTIME(T(n)), RTIME(T(n)) definitions can have expected (instead of absolute) time bound T(n).

Proof: Run
$$M(x)$$
 for $100T(|x|)$ steps. $Pr[M(x) \text{ no halt}] \le 1/100$ (Markov) $\Rightarrow Pr[M(x) \text{ correct}] \ge 2/3 - 1/100$

Lemma 17 (Biased coin from unbiased coins)

 \exists PTM that can simulate a biased coin with $Pr[Heads] = \rho = [0.\rho_1\rho_2\rho_3...]_2$ in O(1) expected time.

Proof:

PTM uses its unbiased coins $b_1, b_2, \dots, b_i, \dots$ as follows: At step i

1 If
$$b_i < \rho_i$$
 then output "heads" & halt $(Pr[b_i < \rho_i] = \rho_i)$

② If
$$b_i > \rho_i$$
 then output "tails" & halt

3 If
$$b_i = \rho_i$$
 then go to step $i + 1$ $(Pr[(3) \text{ happens}] = 1/2)$

$$\Rightarrow Pr[\text{reaches } i] = 1/2^i$$

$$\begin{aligned} ⪻[\mathsf{heads}] = \sum_{i} Pr[\mathsf{reaches}\ i \land \mathsf{heads}\ \mathsf{at}\ i] \\ &= \sum_{i} Pr[\mathsf{reaches}\ i] Pr[\mathsf{heads}\ \mathsf{at}\ i | \mathsf{reaches}\ i] = \sum_{i} \frac{1}{2^{i}} \rho_{i} = \rho \end{aligned}$$

$$E[\text{running time}] = \sum_{i} i \cdot Pr[\text{reaches } i] = \sum_{i} i/2^{i} = O(1)$$

Lemma 18 (Biased coin from unbiased coins)

 \exists PTM that can simulate a biased coin with $Pr[Heads] = \rho = [0.\rho_1\rho_2\rho_3...]_2$ in O(1) expected time.

Lemma 19 (Unbiased coin from biased coins)

PTM with biased coins $(Pr[heads] = \rho)$ can simulate an unbiased coin (Pr[heads] = 1/2) in $O(\frac{1}{\rho(1-\rho)})$ expected time.

Proof:

PTM tosses two coins: HT=heads, TH=tails, HH, TT=repeat. $\Rightarrow Pr[\text{heads}] = Pr[\text{tails}] = \rho(1-\rho), Pr[\text{repeat}] = 1-2\rho(1-\rho)$ $E[\text{running time}] = \sum_i \left[i(1-2\rho(1-\rho))^{i-1}(2\rho(1-\rho))\right] = O(\frac{1}{\rho(1-\rho)})$

Theorem 20

$$BPP \subseteq \Sigma_2^p \cap \Pi_2^p$$

Proof: Some preliminary observations

- Since BPP = coBPP, enough to show $BPP \subseteq \Sigma_2^p$
- Set $S \subset \{0,1\}^m$ can be "shifted" by $u \in \{0,1\}^m$ by bit-wise XOR: $S + u = \{x \oplus u : x \in S\}$. Also $r = s \oplus u \Leftrightarrow r \oplus u = s$.
- If S is big then \exists few shifts u_1, u_2, \ldots, u_k that can cover all $\{0, 1\}^m$ strings with $S \oplus u_1, S \oplus u_2, \ldots, S \oplus u_k$.
- If S is small then $\not\supseteq$ few shifts u_1, u_2, \ldots, u_k that can cover all $\{0,1\}^m$ strings with $S \oplus u_1, S \oplus u_2, \ldots, S \oplus u_k$.

Theorem 21

$$BPP \subseteq \Sigma_2^p \cap \Pi_2^p$$

Proof: Some preliminary observations

- Since BPP = coBPP, enough to show $BPP \subseteq \Sigma_2^p$
- Set $S \subset \{0,1\}^m$ can be "shifted" by $u \in \{0,1\}^m$ by bit-wise XOR: $S + u = \{x \oplus u : x \in S\}$. Also $r = s \oplus u \Leftrightarrow r \oplus u = s$
- $|S| \ge (1-2^{-n})2^m$, $k = \lceil \frac{m}{n} \rceil + 1 \Rightarrow \exists u_1, \dots, u_k : \cup_i (S \oplus u_i) = \{0, 1\}^m$ **Proof:** Pick random u's. Show $Pr_u[\cup_i (S \oplus u_i) = \{0, 1\}^m] > 0$ Bad for $r: \underset{k}{B_r^i} = 1$ if $r \notin S \oplus u_i \Rightarrow B_r = \wedge_i B_r^i$

$$Pr_{u}[B_{r}] \prod_{i=1}^{k} Pr_{u_{i}}[B_{r}^{i}] = \prod_{i=1}^{k} Pr_{u_{i}}[r \notin S \oplus u_{i}] = \prod_{i=1}^{k} Pr_{u_{i}}[r \oplus u_{i} \notin S]$$
 (1)

If u_i uniformly random $\Rightarrow r \oplus u_i$ uniformly random

$$(1) \Rightarrow Pr_{u}[B_{r}] \leq \prod_{i=1}^{k} (1 - \frac{|S|}{2^{m}}) \leq 2^{-nk} < 2^{-m}$$

$$\Rightarrow 1 - Pr_{u}[\bigcup_{i} (S \oplus u_{i}) = \{0, 1\}^{m}] = Pr[\exists r : B_{r}] < 2^{m}2^{-m} = 1$$

Theorem 22

$$BPP \subseteq \Sigma_2^p \cap \Pi_2^p$$

Proof: Some preliminary observations

- Since BPP = coBPP, enough to show $BPP \subseteq \Sigma_2^p$
- Set $S \subset \{0,1\}^m$ can be "shifted" by $u \in \{0,1\}^m$ by bit-wise XOR: $S + u = \{x \oplus u : x \in S\}$. Also $r = s \oplus u \Leftrightarrow r \oplus u = s$
- $\bullet |S| \geq (1-2^{-n})2^m, k = \lceil \frac{m}{n} \rceil + 1 \Rightarrow \exists u_1, \ldots, u_k : \cup_i (S \oplus u_i) = \{0, 1\}^m$
- $|S| \leq 2^{m-n}, k = \lceil \frac{m}{n} \rceil + 1 \Rightarrow \forall u_1, \dots, u_k : \cup_i (S \oplus u_i) \neq \{0, 1\}^m$ Proof:

$$|S \oplus u_i| = |S| \Rightarrow |\cup_{i=1}^k (S \oplus u_i)| \le \sum_{i=1}^k |S \oplus u_i| \le k|S| < 2^m$$

\Rightarrow \exists r \in (0, 1)^m : r \notin \cdot_{i=1}^k (S \oplus u_i)

Proof: (cont'd)

 $L \in BPP \Rightarrow PTM M \text{ uses } m = poly(n) \text{ random bits and (boosting)}$

$$x \in L \Rightarrow Pr_r[M(x,r) = 1] \ge 1 - 2^{-n}$$

 $x \notin L \Rightarrow Pr_r[M(x,r) = 1] \le 2^{-n}$

If S_x are the random strings r that make M(x, r) = 1, then

$$x \in L \Rightarrow |S_x| \ge (1 - 2^{-n})2^m$$

 $x \notin L \Rightarrow |S_x| \le 2^{-n}2^m$

$$x \in L \Rightarrow \exists u_1, \dots, u_k \ \forall r \in \{0, 1\}^m : r \in \cup_{i=1}^k (S_x \oplus u_i)$$

$$x \in L \Rightarrow \exists u_1, \dots, u_k \ \forall r \in \{0, 1\}^m : \bigvee_{i=1}^k (r \oplus u_i \in S_x)$$

$$x \in L \Rightarrow \exists u_1, \dots, u_k \ \forall r \in \{0, 1\}^m : \bigvee_{i=1}^k [M(x, r \oplus u_i) = 1]$$

ш

Are there BPP-complete problems?

Syntactic classes (e.g., P, NP, PSPACE) vs. Semantic classes (e.g., BPP, RP)

Time hierarchy theorem for BPTIME?

Same problem as before...

Definition 23 (Randomized reductions)

 $B \leq_r C$ if $\exists PTM M \text{ s.t. } \forall x : Pr_r[C(M(x,r)) = B(x)] \geq 2/3$.

CAREFUL: Book has a typo in Definition 7.16!!!

Definition 24

 $BP \cdot NP = \{L : L \leq_r 3SAT\}$

Definition 25

BPL, RL defined similarly to BPP, RP but now use $O(\log n)$ space.

Theorem 26

UPATH ∈ **RL**