
Chapter 8: Interactive proofs

Interaction between prover & verifier

NP: Prover sends proof to verifier’s certificate tape, then verifier
takes over.

Oracles: Prover is an oracle; verifier asks questions about instances
of a single problem, prover answers always trusted

Can we have more general interactions between prover & verifier
for cryptography, program checking...?

Deterministic or randomized verifier? Deterministic or
randomized prover?

Our provers will be:

1 All-powerful

2 Not trusted

3 Deterministic

CS 4TH3

Chapter 8: Interactive proofs

Deterministic prover & verifier

Protocol 1 Deterministic 3SAT

for each clause C = (l1 ∨ l2 ∨ l3) do
Verifier: Values l1, l2, l3?
Prover: Send l1, l2, l3 to Verifier

Verifier: If (all clauses satisfied) ∧ (all literals consistent) then ACCEPT else REJECT

If m clauses, then we have 2m rounds of (alternate) interaction

We can have only 2 rounds, where verifier asks for all clauses
simultaneously and prover replies

The verifier speaks last to accept or reject

CS 4TH3

Chapter 8: Interactive proofs

Definition 1 (Interaction of deterministic functions)

Let V ,P : {0, 1}∗ → {0, 1}∗ functions. A k-round interaction of V ,P on
input x is string sequence a1, a2, . . . , ak s.t.

a1 = V (x)

a2 = P(x , a1)

. . .

a2i+1 = V (x , a1, . . . , a2i)

a2i+2 = P(x , a1, . . . , a2i+1)

. . .

ak = P(x , a1, . . . , ak−1)

The output of the interaction is outV ,P(x) = V (x , a1, . . . , ak) (0 or 1).

Note: Think of a2i+1 as Verifier questions, and a2i+2 as Prover replies.

CS 4TH3

Chapter 8: Interactive proofs

Definition 2 (Deterministic proof system)

L has a k-round deterministic interactive proof system if there is TM V
s.t. V (x , a1, . . . , ai) runs in time poly(|x |), can have k-round interactions
with prover P, and

x ∈ L⇒ ∃P : outV ,P(x) = 1 (Completeness)

x ̸∈ L⇒ ∀P : outV ,P(x) = 0 (Soundness)

Definition 3

L ∈ dIP if L has k(n)-round deterministic interactive proof system where
k(n) = poly(n).

Note 1: Both the verifier and the number of rounds are polynomial on
the size of input |x | = n.
Note 2: ∃P and ∀P above mean ∃(a2, a4, . . . , ak) and ∀(a2, a4, . . . , ak).

CS 4TH3

Chapter 8: Interactive proofs

Lemma 4

dIP=NP.

Proof:

NP ⊆ dIP: If L ∈ NP then V is the certifier for L and just asks for a
certificate (2 rounds).

dIP ⊆ NP: If L ∈ dIP then let a2, a4, . . . , ak(n) be the prover
answers (our certificate). Certifier gets certificate, runs
V (x)→ a1,V (x , a1, a2)→ a3, . . ., and finally checks
V (x , a1, a2, . . . , ak(n)) = 1. Certifier is good because:

x ∈ L: ∃ Prover answers a2, a4, . . . , ak(n) s.t. everything
consistent and V (x , a1, a2, . . . , ak(n)) = 1 (i.e., ∃ certificate to
make certifier accept)
x ̸∈ L: ∀ Prover answers a2, a4, . . . , ak(n), either inconsistent or
V (x , a1, a2, . . . , ak(n)) = 0 (i.e., ∀ certificates certifier rejects)

⇒ L ∈ NP 2

CS 4TH3

Chapter 8: Interactive proofs

What if V is a probabilistic TM?

Example: How can colour-blind Arthur (V) figure out whether Merlin
(P) wears socks of different colours? If A deterministic, then M easily
tricks him. What if A is probabilistic?

Definition 5 (Probabilistic verifiers with private coins)

L is in IP[k] if there is probabilistic TM V with private coins r s.t.
V (x , r , a1, . . . , ai) runs in time poly(|x |), can have k-round interactions
with provers P, and

x ∈ L⇒ ∃P : Prr [outV (r),P(x) = 1] ≥ 2/3 (Completeness)

x ̸∈ L⇒ ∀P : Prr [outV (r),P(x) = 1] ≤ 1/3 (Soundness)

Definition 6

IP = ∪c≥0IP[n
c].

CS 4TH3

Chapter 8: Interactive proofs

We have:

x ∈ L⇒ ∃P : Prr [outV (r),P(x) = 1] ≥ 2/3 (Completeness)

x ̸∈ L⇒ ∀P : Prr [outV (r),P(x) = 1] ≤ 1/3 (Soundness)

Lemma 7 (Probability boosting)

We can replace 2/3 by 1− 2−nc , and 1/3 by 2−nc for any c > 0 without
changing IP.

Proof: Same as for BPP (repeat interaction protocol m times and V
outputs majority of outputs), apply Chernoff...

Objection: P learns from previous interactions! Yes, but (Soundness)
works ∀P (even for P that learns)!

2

2/3 can be even pushed to 1, i.e., Perfect Completeness! (Non-trivial
proof...) Can we push 1/3 to 0, i.e., Perfect Soundness at the same
time? If yes, IP = NP!

CS 4TH3

Chapter 8: Interactive proofs

What about a probabilistic Prover?

x ∈ L⇒ ∃P : Prr ,s [outV (r),P(s)(x) = 1] ≥ 2/3 (Completeness)

x ̸∈ L⇒ ∀P : Prr ,s [outV (r),P(s)(x) = 1] ≤ 1/3 (Soundness)

It doesn’t make any difference (averaging argument)...

Lemma 8

IP ⊆ PSPACE

Proof:

Since V runs in O(nc) time, a1, a2, . . . , and are of length O(nc)
each, for a total of O(nc+d) space.

Enumerate all a1, a2, . . . , and to find (consistent) one that
maximizes Prr [outV (r),P(x) = 1] (how to compute this?). If ≥ 2/3
then ACCEPT, else REJECT.

CS 4TH3

Chapter 8: Interactive proofs

Graph Isomorphism (GI)
Input: Graphs G1 = (V1,E1),G2 = (V2,E2)
Output: ACCEPT if ∃π permutation of V1 labels, so that π(G1) = G2.

Graph Non-Isomorphism (GNI)=GI

Lemma 9

GI ∈ NP and GNI ∈ coNP

Is GI ∈ P? OPEN
Is GI NP-complete? OPEN

CS 4TH3

Chapter 8: Interactive proofs

Lemma 10

GNI ∈ IP

Proof:
Protocol 2 Private coin GNI

V: Pick i ∈R {1, 2} and random π. Let H = π(Gi). Send H to P.
P: Identify which of G1,G2 generated H, say Gj . Send j to V.
V: If i = j then ACCEPT else REJECT

Graphs are socks! If different colour, then P always finds correct i , and

Prr [outV (r),P(x) = 1] = 1

If same colour (G1
∼= G2), then P can guess i with probability 1/2, i.e.,

Prr [outV (r),P(x) = 1] ≤ 1/2.

Can reduce 1/2 to 1/3 by repetition (Lemma 7).
2

CS 4TH3

Chapter 8: Interactive proofs

Zero knowledge proofs (ZKP)
Can P persuade V about the truth of a statement, without revealing any
information to V?

Without revealing any information to V: Whatever V learns from
interaction with P to prove statement x , it could have computed by
itself, without participating in any interaction.

Restrict to NP statements, i.e., statements x ∈ L for L ∈ NP. Let
poly-time TM M s.t.

x ∈ L⇔ ∃u ∈ {0, 1}poly(|x|) : M(x , u) = 1

ZKP means: P tries to persuade V that it has a certificate u s.t.
M(x , u) = 1

Can define ZKP for other classes, but NP is enough to demonstrate

CS 4TH3

Chapter 8: Interactive proofs

Definition 11 (Perfect zero knowledge proof)

Let pair of poly-time probabilistic algorithms P, V have interaction
⟨P(x , u),V (x)⟩ and out⟨P(x , u),V (x)⟩ ∈ {0, 1} be V’s output at the
end.

Completeness: If x ∈ L and u certificate for x (i.e., M(x , u) = 1),
then

Pr [out⟨P(x , u),V (x)⟩ = 1] ≥ 2/3

Soundness: If x ̸∈ L, then

∀P∗, u : Pr [out⟨P∗(x , u),V (x)⟩ = 1] ≤ 1/3

Perfect ZK: ∀ poly-time probabilistic V ∗, ∃ expected poly-time
simulator S∗ s.t.

∀x ∈ L, u : Pr [out⟨P(x , u),V ∗(x)⟩ = 1] = Pr [S∗(x) = 1]

CS 4TH3

Chapter 8: Interactive proofs

Perfect ZK relaxed to small statistical distance ⇒ Statistical ZK
(SZK)

Perfect ZK relaxed to computationally indistinguishable ⇒
Computational ZK

People believe P ⊂ SZK ⊂ NP

CS 4TH3

Chapter 8: Interactive proofs

Protocol 3 PZK for GI (G0,G1)

P: Has node label permutation π(G0) = G1 (GI certificate). Picks random permuta-
tion π1. Sends π1(G1).
V: Choose random b ∈ {0, 1}. Send b.
P: If b = 1 then send π1 else send π1 ◦ π.
V: H := first message (graph) received; π2 = second message (permutation) received.
If H = π2(Gb) then return 1 else return 0

Completeness:G0
∼= G1 ⇒ π(G0) = G1.

If b = 1 then π2(Gb) = π1(G1) = H.

If b = 0 then π2(Gb) = π1 ◦ π(G0) = π1(G1) = H

⇒ Pr [out⟨P(x , u),V (x)⟩ = 1] = 1

Soundness:G0 ̸∼= G1 ⇒ π(G0) ̸= G1.

If b = 1 as before (wrong)

If b = 0 then π2(Gb) = π1 ◦ π(G0) ̸= π1(G1) = H (correct)

⇒ Pr [out⟨P(x , u),V (x)⟩ = 1] ≤ 1/2

CS 4TH3

Chapter 8: Interactive proofs

Protocol 4 PZK for GI (G0,G1)

P: Has node label permutation π(G0) = G1 (GI certificate). Picks random permuta-
tion π1. Sends π1(G1).
V: Choose random b ∈ {0, 1}. Send b.
P: If b = 1 then send π1 else send π1 ◦ π.
V: H := first message (graph) received; π2 = second message (permutation) received.
If H = π2(Gb) then return 1 else return 0

Perfect ZK: What does V get from P?

Random permutation of G1 (π1(G1))

Either same random permutation π1 (if b = 1) or another random
permutation π1 ◦ π

Crucial fact: A permutation of a random permutation is itself a random
permutation! Does this reminds us of something?
Yes! XOR x ⊕ y of a random x with a number y is also random! (but x ,
x ⊕ y not independent)
AHA! P used random π1 to mask certificate π!

CS 4TH3

Chapter 8: Interactive proofs

Protocol 5 PZK for GI (G0,G1)

P: Has node label permutation π(G0) = G1 (GI certificate). Picks random permuta-
tion π1. Sends π1(G1).
V: Choose random b ∈ {0, 1}. Send b.
P: If b = 1 then send π1 else send π1 ◦ π.
V: H := first message (graph) received; π2 = second message (permutation) received.
If H = π2(Gb) then return 1 else return 0

Simulator S∗(G0,G1):

1 Pick random b′ ∈R {0, 1} and random permutation π2.
H := π2(Gb′)

2 b := V ∗(G0,G1,H)

3 If b = b′ then return V ∗(G0,G1,H, π2) else rerun S∗

⇒ Pr [S∗(G0,G1) = out⟨P(x , u),V ∗(x)⟩ in 1 iter] = Pr [b = b′] = 1/2
⇒ E [T (n)] =

∑∞
i=1 2

−iV ∗(n) = O(V ∗(n))

CS 4TH3

Chapter 8: Interactive proofs

Public coins vs. private coins

Definition 12 (AM,MA)

AM[k] ⊆ IP[k] is class of interactive protocols, where V always reveals
the random bits it used to P.

Book says “V’s messages to P contain only its random bits”. No
need, since if P knows V’s random bits up to now, then it can figure
out the rest of the message V sends.

Traditionally, computationally-restricted V called Arthur, and
all-powerful P called Merlin. AM[k] if A starts, MA[k] if M starts
the interaction.

AM[2],MA[2] traditionally called AM,MA.

AM = BP · NP = {L : L ≤r 3SAT} (why?)

For any constant k ≥ 2, AM[k] = AM (proof omitted)

CS 4TH3

Chapter 8: Interactive proofs

Set Lower Bound
Given: Set S ⊆ {0, 1}n that x ∈ S can be certified, i.e., has poly-time

TM M s.t. x ∈ S ⇔ ∃u : M(x , u) = 1 (so x
?
∈ S is an NP question).

Number K with 2k−2 < K ≤ 2k−1.
Prover: Tries to persuade V that |S | ≥ K .
Verifier: Rejects with “good” probability if |S | ≤ K

2 .

What about K
2 < |S | < K? We don’t care what V answers! Our first

example of a gap problem.

CS 4TH3

Chapter 8: Interactive proofs

Hashing detour

Hash function h : {0, 1}n → {0, 1}k , usually n ≥ k

If x ̸= x ′ and h(x) = h(x ′) then this is a collision

What is a good hash function?

We want x ’s to be uniformly spread (mapped) to y ’s, i.e.,
We want every y ∈ {0, 1}k to get the same number of
pre-images, i.e., |{x : h(x) = y}| = 2n

2k
= 2n−k .

Equivalently, Prx [h(x) = y] = 1
2k

= 2−k (why?).
What if I keep x fixed (like y) and I pick a random h from a
family Hn,k of hash functions? If Prh∈Hn,k

[h(x) = y] = 2−k for
every x , y then again I have a uniform mapping of x ’s to y ’s,
and the family Hn,k is good.

Definition 13 (Pairwise independent hash family)

Hash family Hn,k is pairwise independent if

∀x ̸= x ′,∀y , y ′ : Prh∈Hn,k
[h(x) = y ∧ h(x ′) = y ′] = 2−2k

CS 4TH3

Chapter 8: Interactive proofs

Definition 14 (Pairwise independent hash family)

Hash family Hn,k is pairwise independent if

∀x ̸= x ′,∀y , y ′ : Prh∈Hn,k
[h(x) = y ∧ h(x ′) = y ′] = 2−2k

Corollary 1

If family Hn,k is pairwise independent, then it is also good, i.e.,
Prh∈Hn,k

[h(x) = y] = 2−k .

Proof: We use the following simple fact:
If event space Ω = {B1,B2, . . . ,Bm}, then:

Pr [A] = Pr [A ∧ Ω] = Pr [A ∧ (B1 ∨ B2 ∨ . . . ∨ Bm)]

= Pr [(A ∧ B1) ∨ (A ∧ B2) ∨ . . . ∨ (A ∧ Bm)]

=
m∑
i=1

Pr [A ∧ B1] (events A ∧ Bi are mutually independent)

Pick any x ′ and apply with A← h(x) = y and Bi ← h(x ′) = yi for all
m = 2k k-strings yi . 2

CS 4TH3

Chapter 8: Interactive proofs

Definition 15 (Pairwise independent hash family)

Hash family Hn,k is pairwise independent if

∀x ̸= x ′,∀y , y ′ : Prh∈Hn,k
[h(x) = y ∧ h(x ′) = y ′] = 2−2k

Corollary 2

If family Hn,k is pairwise independent, then it is also good, i.e.,
Prh∈Hn,k

[h(x) = y] = 2−k .

Theorem 16

There is a (easily computable) pairwise independent hash family Hn,k .

Proof: See Theorem 8.15 in book. 2

CS 4TH3

Chapter 8: Interactive proofs

Set Lower Bound (SLB)
Given: Set S ⊆ {0, 1}n that x ∈ S can be certified, i.e., has poly-time

TM M s.t. x ∈ S ⇔ ∃u : M(x , u) = 1 (so x
?
∈ S is an NP question).

Number K with 2k−2 < K ≤ 2k−1.
Prover: Tries to persuade V that |S | ≥ K .
Verifier: Rejects with “good” probability if |S | ≤ K

2 .

Protocol 6 Goldwasser-Sipser public-coin protocol for SLB

V: Pick random hash function h ∈R Hn,k , pick random y ∈R {0, 1}k . Send h, y .
P: Try find x ∈ S s.t. h(x) = y . Send x and certificate u of x ∈ S.
V: If (h(x) = y ∧M(x , u) = 1) then return 1 else return 0

Proof intuition: Let p∗ = K/2k . If S is big (|S | ≥ K) then P has very
good chance (≥ 3

4p
∗) to find x : h(x) = y , but if S is small (|S | ≤ K/2)

its chances fall a lot (≤ 1
2p

∗)

CS 4TH3

Chapter 8: Interactive proofs

Lemma 17

SLB ∈ AM.

Proof: Let p∗ = K/2k . If S is big (|S | ≥ K) then P has very good
chance (≥ 3

4p
∗) to find x : h(x) = y , but if S is small (|S | ≤ K/2) its

chances fall a lot (≤ 1
2p

∗)

Claim 1

If |S | ≤ 2k

2 and p = |S |/2k , then
p ≥ Prh,y [∃x ∈ S : h(x) = y] ≥ 3p

4
.

If |S | ≤ K
2 ≤ 2k−2 then p ≤ 1/4

If |S | ≥ K then 3p/4 ≥ 3
8

We can boost (Chernoff bound) to ≥ 2/3: Run protocol constant
M times, V accepts if accepting iterations ≥ 5p∗M/8.

Can run in parallel in 2 rounds. 2

CS 4TH3

Chapter 8: Interactive proofs

Lemma 18

SLB ∈ AM.

We have AM protocol to decide whether a set is big or small. We can
apply it to show

Theorem 19

GNI ∈ AM.

Proof:
S = {H : H ∼= G0 or H ∼= G1}

If G0 ̸∼= G1 then |S | = 2n! (S big)

If G0
∼= G1 then |S | = n! (S small)

(not exactly, but this is the main idea) 2

CS 4TH3

Chapter 8: Interactive proofs

Lemma 20

SLB ∈ AM.

We have AM protocol to decide whether a set is big or small. We can
apply it to show

Theorem 21

GNI ∈ AM.

Theorem 22 (Goldwasser-Sipser)

For every k ≥ 2, IP[k] = AM[k + 2].

Proof idea:There is a gap in the number of private random strings
making IP[k] V accept in YES and NO instances. P of AM[k + 2] uses
SLB to persuade the AM[k + 2] V that the number is large.

CS 4TH3

Chapter 8: Interactive proofs

It can be shown that class AM[k] doesn’t change if we require perfect
completeness (probability of success for YES instance is 1). Like GNI ,
every private coin protocol can be transformed to public coin protocol
with perfect completeness. We can use this to prove

Theorem 23

If GI is NP-complete, then Σ2 = Π2.

Proof: Omitted

CS 4TH3

Chapter 8: Interactive proofs

Polynomials

Polynomials defined over fields, e.g., GF (p) = {0, 1, 2, . . . , p − 1}
for a prime p (same as modulo p arithmetic). GF (2) =binary.

Univariate polynomial p(x) = 3x5 + x3 − 0.5x − 1 with deg(p) = 5

Multivariate polynomial
p(X1,X2,X3,X4) = 5X 3

1X3X4 −X 2
2X

2
3X

2
4 +X 5

2 − 3 with deg(p) = 6.

If deg(p1) = d1 and deg(p2) = d2 then deg(p1p2) = d1 + d2

Univariate polynomial of deg(p) = d has at most d roots, i.e.
solutions of p(x) = 0 ⇒ at most d solutions of p(x) = K .

If p ≫ d for a univariate polynomial of deg(p) = d over GF (p),
then very difficult to guess a root, i.e.,

Prs∈GF (p)[p(s) = K] ≤ d

p

Idea: Use this to catch lying provers! If V has p1(x) and P sends
p2(x), then p1(x) = p2(x) only on d points.

CS 4TH3

Chapter 8: Interactive proofs

Sumcheck
Given: Polynomial g(X1,X2, . . . ,Xn) over GF (p) for prime p and
deg(g) = d , integer K .
Prover: Tries to persuade V that∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bn∈{0,1}

g(b1, b2, . . . , bn) = K . (1)

Verifier: Rejects with “good” probability if (1) not true.

Assumption: Polynomial g(·) has a poly(n) representation, and V can
evaluate g(x1, x2, . . . , xn) in poly(n) time.

Fully expanded g can have exp(n) number of terms!

If we set Xi := bi , i = 2, 3, . . . , n then we get univariate polynomial
g(X1, b2, . . . , bn) with deg(p) = d . Define

h(X1) :=
∑

b2∈{0,1}

· · ·
∑

bn∈{0,1}

g(X1, b2, . . . , bn)

Then (1)⇔ h(0) + h(1) = K .

CS 4TH3

Chapter 8: Interactive proofs

Sumcheck
Given: Polynomial g(X1,X2, . . . ,Xn) over GF (p) for prime p and
deg(g) = d , integer K .
Prover: Tries to persuade V that

h(0) + h(1) =
∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bn∈{0,1}

g(b1, b2, . . . , bn) = K .

Protocol 7 Sumcheck IP

V: If n = 1 then accept only if g(0) + g(1) = K . Else (n ≥ 2) ask P to send h(X1).
P: Send polynomial s(X1). (P can “cheat” by sending s(X1) ̸= h(x1))
V: If (s(0) + s(1) ̸= K) then return 0 else pick random a ∈R GF (p). Recursively
check that

s(a)
?
= h(a) =

∑
b2∈{0,1}

· · ·
∑

bn∈{0,1}
g(a, b2, . . . , bn)

Completeness: If h(0) + h(1) = K then s(X1) = h(X1) and
Pr [V accepts] = 1

Soundness: If h(0) + h(1) ̸= K then Pr [V accepts] ≤ 1− (1− d
p)

n.

CS 4TH3

Chapter 8: Interactive proofs

Protocol 8 Sumcheck IP

V: If n = 1 then accept only if g(0) + g(1) = K . Else (n ≥ 2) ask P to send h(X1).
P: Send polynomial s(X1). (P can “cheat” by sending s(X1) ̸= h(x1))
V: If (s(0) + s(1) ̸= K) then return 0 else pick random a ∈R GF (p). Recursively
check that

s(a)
?
= h(a) =

∑
b2∈{0,1}

· · ·
∑

bn∈{0,1}
g(a, b2, . . . , bn)

Soundness: If h(0) + h(1) ̸= K then Pr [V accepts] ≤ 1− (1− d
p)

n.

Proof: Induction on n. For n = 1 Pr [V accepts] = 0. True for
n = k . For n = k + 1:

Pr [V accepts] = Pr [(V accepts round 3) ∧ (V accepts recursively)]

= Pra[h(a) = s(a)] · Pr [V accepts recursively|h(a) = s(a)]

≤ d

p
· (1− (1− d

p
)k)

≤ (1− (1− d

p
))k+1

2

CS 4TH3

Chapter 8: Interactive proofs

Arithmetization
Why bother with polynomials? We have seen protocols for problems on
graphs, sets, algebra... what about logic? Idea: Transform logic to
algebra via arithmetaization.

Given 3CNF formula ϕ(x1, x2, . . . , xn):

Binary var x1 → X1 variable in GF (p)

Literal xi → Xi and x̄i → 1− Xi

xi ∧ xj → Xi · Xj

xi ∨ xj → 1− (1− Xi)(1− Xj)

Example:
Cl = (xi ∨ x̄j ∨ xk)→ pl(X1,X2, . . . ,Xn) = 1− Xj(1− Xi)(1− Xk)
with deg(pl) = 3 (book is wrong on this example!)

⇒ Pϕ(X1,X2, . . . ,Xn) = Πm
i=1pi (X1,X2, . . . ,Xn),

with deg(Pϕ) ≤ 3m and representation size O(m) (don’t expand!)

CS 4TH3

Chapter 8: Interactive proofs

3SAT

ϕ(x1.x2, . . . , xn) ∈ 3SAT ⇔ ∃bi ∈ {0, 1}, i = 1, 2, . . . , n : Pϕ(b1, b2, . . . , bn) = 1

#SAT

#SAT = {⟨ϕ,K ⟩ : 3CNF formula ϕ has exactly K satisfying assignments}

Note 3SAT ≤P #SAT (What about 3SAT?)

⟨ϕ,K ⟩ ∈ #SAT ⇔
∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bn∈{0,1}

Pϕ(b1, b2, . . . , bn) = K

...but this is the Sumcheck problem! Apply Protocol 8 to show

Theorem 24

#SAT ∈ IP

CS 4TH3

Chapter 8: Interactive proofs

Theorem 25

NP, coNP ⊆ IP ⊆ PSPACE

Proof:

3SAT ≤P #SAT ⇒ 3SAT ∈ IP. (We already know NP ⊆ IP.)

All IP interaction and V computations are polynomial time. Go over
all possible P answers, to discover optimal P, i.e., maximizes V
acceptance probability (once a set of P replies is fixed, V acceptance
probability calculated going over all its possible random bits). If best
acceptance probability achieved ≥ 2/3 then ACCEPT, else REJECT.

2

Theorem 26

IP = PSPACE

Proof: We show that TQBF ∈ IP (we have PSPACE ⊆ IP)
Proof uses exactly the same ideas that show #SAT ∈ IP.

CS 4TH3

Chapter 8: Interactive proofs

Arithmetization for formula Ψ = ∀x1∃x2∀x3 . . . ∃xnϕ(x1, . . . , xn) implies

Ψ ∈ TQBF ⇔
∏

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∏

bn∈{0,1}

Pϕ(b1, b2, . . . , bn) = 0

This will produce h(·) polynomials of degree 2n in Protocol 8!
We expand arithmetization:

∀Xi p(X1, . . . ,Xn) = p(X1, . . . ,Xi−1, 0,Xi+1, . . . ,Xn)

· p(X1, . . . ,Xi−1, 1,Xi+1, . . . ,Xn)

∃Xi p(X1,X2, . . . ,Xn) = p(X1, . . . ,Xi−1, 0,Xi+1, . . . ,Xn)

+ p(X1, . . . ,Xi−1, 1,Xi+1, . . . ,Xn)

LXi p(X1,X2, . . . ,Xn) = Xi · p(X1, . . . ,Xi−1, 1,Xi+1, . . . ,Xn)

+ (1− Xi) · p(X1, . . . ,Xi−1, 0,Xi+1, . . . ,Xn)

LXi is a linearization operator that replaces X k
i → Xi , since X k

i = Xi if
Xi ∈ {0, 1}.

CS 4TH3

Chapter 8: Interactive proofs

Use expanded arithmetization to compute polynomials for the following
formula:

∀x1L1∃x2L1L2∀x3L1L2L3 . . . ∃xnL1L2 . . .Lnϕ(x1, . . . , xn)

Note that now

h(X1) =
∑

b2∈{0,1}

· · ·
∏

bn∈{0,1}

Pϕ(X1, b2, . . . , bn)

has degree k > 1 because of the
∏
’s. That’s why we linearize X1 next!

(using L1). As we go down in the recursion, we will need to also linearize
X2,X3, . . .

Read 8.3.3 in text

CS 4TH3

Chapter 8: Interactive proofs

What is the power of using multiple Provers (MIP)? Play one prover
agains the other to force non-adaptability...

Theorem 27

MIP = NEXP

If we define a proof=a table with all Prover answers to Verifier questions,
then

Definition 28

PCP[r , q] is set of languages that are accepted by a Verifier that makes q
queries to a table of size 2r .

Theorem 29 (Theorem 27)

NEXP = PCP[poly(n), poly(n)]

Theorem 30 (The PCP theorem)

NP = PCP[O(logn),O(1)]

CS 4TH3

Chapter 8: Interactive proofs

Program checkers
Program verification problem, i.e. design algorithm C s.t. C (P) = 1 iff
program P for computation task T is always correct, is undecidable.
Program checking on an input problem, i.e. design algorithm CP with
access to code P s.t. CP(x) = 1 iff P(x) is correct (P(x) = T (x)) is
surprisingly easy if we also allow randomness!

Definition 31 (Blum-Khanna)

A checker for computational task T is a probabilistic poly-time TM C
that, given any program P for T and any input x :

P(x) = T (x)⇒ Pr [CP accepts P(x)] ≥ 2/3 (boosting 1− n−k)

P(x) ̸= T (x)⇒ Pr [CP accepts P(x)] ≤ 1/3 (boosting n−k)

...Do such animals even exist?

CS 4TH3

Chapter 8: Interactive proofs

Program checker for GNI (or GI)

If P(G1,G2) = 1 (i.e., P says G1 ̸∼= G2) then C runs:

Protocol 9 Private coin GNI

V: Pick i ∈R {1, 2} and random π. Let H = π(Gi). Send H to P.
P: Identify which of G1,G2 generated H, say Gj . Send j to V.
V: If i = j then ACCEPT else REJECT

...but using code P instead of P.

If P(G1,G2) = 0 (i.e., P says G1
∼= G2) then C runs:

for each i ∈ V1 do
for each j ∈ V2 do

Delete i , j to get G ′
1,G

′
2

if P(G ′
1,G

′
2) = 0 then

j := π(i)
Move to next i

else
Check correctness of P(G ′

1,G
′
2) = 1

Move to next j

if G1 = π(G2) then
Return ACCEPT

else
Return REJECT

CS 4TH3

Chapter 8: Interactive proofs

Program checkers
We can use IPs to design program checkers in general:

Theorem 32

GI ,#SAT ,TQBF have checkers.

Theorem 33

P-complete problems have “easy” checkers.

CS 4TH3

