Chapter 8: Interactive proofs

Interaction between prover & verifier

@ NP: Prover sends proof to verifier's certificate tape, then verifier
takes over.

@ Oracles: Prover is an oracle; verifier asks questions about instances
of a single problem, prover answers always trusted

@ Can we have more general interactions between prover & verifier
for cryptography, program checking...?

@ Deterministic or randomized verifier? Deterministic or
randomized prover?

Our provers will be:
Q All-powerful
@ Not trusted

© Deterministic

CS 4TH3

Chapter 8: Interactive proofs

Deterministic prover & verifier

Protocol 1 Deterministic 3SAT
for each clause C = (L V h V i3) do
Verifier: Values I, b, 37?
Prover: Send I, b, I3 to Verifier
Verifier: If (all clauses satisfied) A (all literals consistent) then ACCEPT else REJECT

@ If m clauses, then we have 2m rounds of (alternate) interaction

@ We can have only 2 rounds, where verifier asks for all clauses
simultaneously and prover replies

@ The verifier speaks last to accept or reject

CS 4TH3

Chapter 8: Interactive proofs

Definition 1 (Interaction of deterministic functions)
Let V,P:{0,1}* — {0,1}* functions. A k-round interaction of V, P on
input x is string sequence as, ap, . .., ak S.t.

a; = V(x)
a, = P(x,a;)

aziy1 = V(x,a1,...,a2)
dj42 = P(X, Alyeeey 82;+1)
ay = P(X, Glgooog ak_l)

The output of the interaction is outy p(x) = V/(x,a1,...,ak) (0 or 1).

Note: Think of ay; ;1 as Verifier questions, and a2 as Prover replies.

CS 4TH3

Chapter 8: Interactive proofs
Definition 2 (Deterministic proof system)

L has a k-round deterministic interactive proof system if there is TM V
s.t. V(x,a1,...,a;) runs in time poly(|x|), can have k-round interactions
with prover P, and

x € L= 3P:outyp(x)=1 (Completeness)
x & L= VP :outyp(x)=0 (Soundness)

L € dIP if L has k(n)-round deterministic interactive proof system where
K(n) = poly(n).

Note 1: Both the verifier and the number of rounds are polynomial on
the size of input |x| = n.
Note 2: 3P and VP above mean 3(az, as, ..., ax) and V(az, as, . .., ak).

CS 4TH3

Chapter 8: Interactive proofs

dIP=NP.

Proof:

@ NP C dIP: If L € NP then V is the certifier for L and just asks for a
certificate (2 rounds).

@ dIP C NP:If L € dIP then let a3, as, .. ., ax(n) be the prover
answers (our certificate). Certifier gets certificate, runs
V(x) = a1, V(x, a1, a2) — as, ..., and finally checks
V(x,a1,a2,...,akn)) = 1. Certifier is good because:

o x € L: 3 Prover answers as, as, . . ., ax(n) S-t. everything

consistent and V(x, a1, a2, ..., akn)) = 1 (i-e., 3 certificate to
make certifier accept)

o x ¢ L:V Prover answers as, as, . . ., x(n), €ither inconsistent or
V(x,a1,a2,...,akn)) = 0 (i.e., V certificates certifier rejects)
= Le NP

O

CS 4TH3

Chapter 8: Interactive proofs

What if V is a probabilistic TM?

Example: How can colour-blind Arthur (V) figure out whether Merlin
(P) wears socks of different colours? If A deterministic, then M easily
tricks him. What if A is probabilistic?

Definition 5 (Probabilistic verifiers with private coins)

L is in IP[K] if there is probabilistic TM V with private coins r s.t.

V(x,r,a1,...,a;) runs in time poly(|x|), can have k-round interactions
with provers P, and

x € L= 3P : Pr.fouty p(x) =1] > 2/3 (Completeness)
x & L= YP: Prfouty p(x) =1] <1/3 (Soundness)

Definition 6

| .

IP = UCZ()IP[HC].

CS 4TH3

Chapter 8: Interactive proofs

We have:

x € L= 3P : Prfouty p(x) =1] >2/3 (Completeness)
1]

x & L= YP: Prfouty p(x) = (Soundness)

Lemma 7 (Probability boosting)

We can replace 2/3 by 1 — 2", and 1/3 by 2="" for any ¢ > 0 without
changing IP.

Proof: Same as for BPP (repeat interaction protocol m times and V
outputs majority of outputs), apply Chernoff...

Objection: P learns from previous interactions! Yes, but (Soundness)
works VP (even for P that learns)!

O
2/3 can be even pushed to 1, i.e., Perfect Completeness! (Non-trivial
proof...) Can we push 1/3 to 0, i.e., Perfect Soundness at the same
time? If yes, IP = NP!

CS 4TH3

Chapter 8: Interactive proofs

What about a probabilistic Prover?

x € L= 3P : Pr, JJouty(y),p)(x) = 1] > 2/3 (Completeness)
x & L= P : Pr, Jouty() ps(x) =1] <1/3 (Soundness)

It doesn't make any difference (averaging argument)...

Lemma 8
IP C PSPACE
Proof:
@ Since V runs in O(n°) time, a1, ag, ..., a,s are of length O(n°)

each, for a total of O(n“*9) space.

@ Enumerate all a1, a,, ..., a, to find (consistent) one that
maximizes Pr,[outy(, p(x) = 1] (how to compute this?). If >2/3
then ACCEPT, else REJECT.

CS 4TH3

Chapter 8: Interactive proofs

Graph Isomorphism (Gl)
Input: Graphs Gy = (V4, E1), G, = (Va, E)
Output: ACCEPT if 37 permutation of V; labels, so that 7(Gy) = G.

Graph Non-Isomorphism (GNI)=G/

Gl € NP and GNI € coNP

Is GI € P? OPEN
Is GI NP-complete? OPEN

CS 4TH3

Chapter 8: Interactive proofs

GNI € IP

Proof:

Protocol 2 Private coin GNI
V: Pick i €g {1,2} and random 7. Let H = 7(G;j). Send H to P.
P: Identify which of G, Go generated H, say G;. Send j to V.
V: If i = j then ACCEPT else REJECT

Graphs are socks! If different colour, then P always finds correct i, and
Pr.fouty(,p(x) =1] =1
If same colour (G; & G;), then P can guess i with probability 1/2, i.e.,
Pr.[outy(y,p(x) = 1] < 1/2.

Can reduce 1/2 to 1/3 by repetition (Lemma 7).
O

CS 4TH3

Chapter 8: Interactive proofs

Zero knowledge proofs (ZKP)
Can P persuade V about the truth of a statement, without revealing any
information to V?

Without revealing any information to V: Whatever V learns from
interaction with P to prove statement x, it could have computed by
itself, without participating in any interaction.

@ Restrict to NP statements, i.e., statements x € L for L € NP. Let
poly-time TM M s.t.

x € Le 3ue{0,1}PVID M(x,u) =1
@ ZKP means: P tries to persuade V that it has a certificate u s.t.
M(x,u) =1

@ Can define ZKP for other classes, but NP is enough to demonstrate

CS 4TH3

Chapter 8: Interactive proofs

Definition 11 (Perfect zero knowledge proof)

Let pair of poly-time probabilistic algorithms P, V have interaction
(P(x,u), V(x)) and out(P(x, u), V(x)) € {0,1} be V's output at the
end.

@ Completeness: If x € L and u certificate for x (i.e., M(x, u) = 1),
then
Prlout(P(x, u), V(x)) =1] > 2/3

@ Soundness: If x & L, then

VP* u: Prlout(P*(x,u), V(x)) =1] <1/3

@ Perfect ZK: V poly-time probabilistic V*, 3 expected poly-time
simulator $* s.t.

Vx € L,u: Prlout{P(x, u), V*(x)) = 1] = Pr[S*(x) = 1]

CS 4TH3

Chapter 8: Interactive proofs

@ Perfect ZK relaxed to small statistical distance = Statistical ZK
(5ZK)

@ Perfect ZK relaxed to computationally indistinguishable =
Computational ZK

@ People believe P C SZK C NP

CS 4TH3

Chapter 8: Interactive proofs

Protocol 3 PZK for GI(Go, G1)

P: Has node label permutation 7(Gg) = G (Gl certificate). Picks random permuta-
tion 1. Sends 71'1(G1).

V: Choose random b € {0,1}. Send b.

P: If b =1 then send 7 else send 7 o 7.

V: H := first message (graph) received; m = second message (permutation) received.
If H = m(Gp) then return 1 else return 0

Completeness: Gy = G; = 7(Gy) = Gy.
o If b=1 then m(Gy) = m1(Gy) = H.
o If b =0 then m(Gp) = m 0 7(Go) = m(G1) = H
= Prlout(P(x,u),V(x))=1] =1
Soundness: Gy % G; = 7(Gy) # Gy.
@ If b =1 as before (wrong)
@ If b =0 then m(Gp) = m o w(Gy) # m1(G1) = H (correct)
= Prlout(P(x,u),V(x))=1] <1/2

CS 4TH3

Chapter 8: Interactive proofs

Protocol 4 PZK for GI(Go, G1)

P: Has node label permutation 7(Gg) = G (Gl certificate). Picks random permuta-
tion 71. Sends 71(Gy).

V: Choose random b € {0,1}. Send b.

P: If b =1 then send 7 else send 7 o 7.

V: H := first message (graph) received; m = second message (permutation) received.
If H = m(Gp) then return 1 else return 0

Perfect ZK: What does V get from P?
@ Random permutation of G; (m1(G1))

@ Either same random permutation 7y (if b = 1) or another random
permutation my o 7

Crucial fact: A permutation of a random permutation is itself a random
permutation! Does this reminds us of something?

Yes! XOR x @ y of a random x with a number y is also random! (but x,
x @ y not independent)

AHA! P used random m; to mask certificate !

CS 4TH3

Chapter 8: Interactive proofs

Protocol 5 PZK for GI(Gp, G1)

P: Has node label permutation 7(Gg) = G (Gl certificate). Picks random permuta-
tion 1. Sends 71'1(G1).

V: Choose random b € {0,1}. Send b.

P: If b =1 then send 7 else send 7 o 7.

V: H := first message (graph) received; m = second message (permutation) received.
If H = m(Gp) then return 1 else return 0

Simulator $*(Go, Gy):

@ Pick random b’ €g {0,1} and random permutation 7.
H .= 7T2(Gb/)

e b= V*(Go7 Gl, H)
© If b= b then return V*(Gy, G, H,) else rerun S5*

= Pr[$*(Go, G1) = out(P(x, u), V*(x)) in 1 iter] = Pr[b = b'] = 1/2
= E[T(n)] =372, 27'V*(n) = O(V*(n))

CS 4TH3

Chapter 8: Interactive proofs

Public coins vs. private coins

Definition 12 (AM, MA)

AMI[k] C IP[k] is class of interactive protocols, where V always reveals
the random bits it used to P.

@ Book says “V's messages to P contain only its random bits". No
need, since if P knows V's random bits up to now, then it can figure
out the rest of the message V sends.

@ Traditionally, computationally-restricted V called Arthur, and
all-powerful P called Merlin. AM[K] if A starts, MA[K] if M starts
the interaction.

o AM[2], MA[2] traditionally called AM, MA.
@ AM=BP-NP ={L:L<,35AT} (why?)
@ For any constant k > 2, AM[k] = AM (proof omitted)

CS 4TH3

Chapter 8: Interactive proofs

Set Lower Bound
Given: Set S C {0,1}" that x € S can be certified, i.e., has poly-time

TM Mst. xe€S < Ju: M(x,u)=1 (so x é S is an NP question).
Number K with 26=2 < K < 2k—1,

Prover: Tries to persuade V that |S| > K.
Verifier: Rejects with “good” probability if |S| < %

What about § < |S| < K? We don't care what V answers! Our first
example of a gap problem.

CS 4TH3

Chapter 8: Interactive proofs

Hashing detour
@ Hash function h: {0,1}" — {0, 1}, usually n > k
@ If x # x" and h(x) = h(x’) then this is a collision
@ What is a good hash function?

o We want x's to be uniformly spread (mapped) to y's, i.e.,

o We want every y € {07 1}* to get the same number of
pre-images, i.e., (x) = y}\ 2k = 2n—k,

e Equivalently, Pr,[h(x) y] = 2 =27 (why?).

o What if | keep x fixed (like y) and | pick a random h from a
family H, x of hash functions? If Prycy,, , [h(x) = y] =27 for
every x, y then again | have a uniform mapping of x's to y's,
and the family H, is good.

Definition 13 (Pairwise independent hash family)

Hash family H, x is pairwise independent if
Vx # X'\ Vy,y' : Prycyy, Jh(x) =y A h(x') = y'] =272

CS 4TH3

Chapter 8: Interactive proofs

Definition 14 (Pairwise independent hash family)

Hash family H, x is pairwise independent if
Vx # X' Yy, y' : Pricy, [h(x) =y Ah(X') = y'] =2

If family H, « is pairwise independent, then it is also good, i.e.,
Procy, [h(x) = y] =27

Proof: We use the following simple fact:
If event space Q = {By, B, ..., By}, then:
PrlAl = PrIANQ] = Pr[AA(B1V By V...V Bp)]

=Pr[(AAB))V(AAB) V...V (AABy)]

= Z Pr[A A B;1] (events A A B; are mutually independent)
i=1
Pick any x” and apply with A < h(x) =y and B; + h(x’) = y; for all
m = 2K k-strings y;.]

CS 4TH3

Chapter 8: Interactive proofs
Definition 15 (Pairwise independent hash family)

Hash family H, « is pairwise independent if
Vx # X' Yy, y" : Procy, [h(x) =y ANh(x") = y'] = 272k

Y
If family H, i is pairwise independent, then it is also good, i.e.,
Pryen, [h(x) = y] = 27X

Theorem 16

There is a (easily computable) pairwise independent hash family H, k.

Proof: See Theorem 8.15 in book. O

CS 4TH3

Chapter 8: Interactive proofs

Set Lower Bound (SLB)
Given: Set S C {0,1}" that x € S can be certified, i.e., has poly-time

TM Mst. xe€S < Ju: M(x,u)=1 (so x é S is an NP question).
Number K with 26=2 < K < 2k—1,

Prover: Tries to persuade V that |S| > K.

Verifier: Rejects with “good” probability if |S| < %

Protocol 6 Goldwasser-Sipser public-coin protocol for SLB

V: Pick random hash function h €g H, x, pick random y €g {0,1}*. Send h, y.
P: Try find x € S s.t. h(x) = y. Send x and certificate u of x € S.
V: If (h(x) =y A M(x, u) = 1) then return 1 else return 0

Proof intuition: Let p* = K /2. If S is big (|S| > K) then P has very
good chance (> 2p*) to find x : h(x) =y, but if S is small (|S| < K/2)
its chances fall a lot (< 1p*)

CS 4TH3

Chapter 8: Interactive proofs

SLB € AM.

Proof: Let p* = K /2%, If S is big (|S| > K) then P has very good
chance (> 2p*) to find x : h(x) = y, but if S is small (|S| < K/2) its
chances fall a lot (< 3p*)

If|S| < & and p = |S|/2*, then
p > Pryy[3x€S:h(x)=y] >

o If S| <K <2k 2thenp<1/4
® If |S| > K then 3p/4 > 3

@ We can boost (Chernoff bound) to > 2/3: Run protocol constant
M times, V accepts if accepting iterations > 5p* M/8.

@ Can run in parallel in 2 rounds. m|

CS 4TH3

Chapter 8: Interactive proofs

Lemma 18
SLB € AM.

We have AM protocol to decide whether a set is big or small. We can
apply it to show

Theorem 19
GNI € AM.

Proof:

SZ{HZHgG()OI’H%Gl}

@ If Gy 2 G then |S| = 2n! (S big)
@ If Gy = Gy then |S| = n! (S small)

(not exactly, but this is the main idea) m

CS 4TH3

Chapter 8: Interactive proofs

SLB € AM.

We have AM protocol to decide whether a set is big or small. We can
apply it to show

GNI € AM.

Theorem 22 (Goldwasser-Sipser)
For every k > 2, IP[k] = AM[k + 2].

Proof idea:There is a gap in the number of private random strings
making IP[k] V accept in YES and NO instances. P of AM[k + 2] uses
SLB to persuade the AM[k + 2] V that the number is large.

CS 4TH3

Chapter 8: Interactive proofs

It can be shown that class AM[k] doesn’t change if we require perfect
completeness (probability of success for YES instance is 1). Like GNI,
every private coin protocol can be transformed to public coin protocol
with perfect completeness. We can use this to prove

If Gl is NP-complete, then Y5 = Tl,.

Proof: Omitted

CS 4TH3

Chapter 8: Interactive proofs

Polynomials

@ Polynomials defined over fields, e.g., GF(p) = {0,1,2,...,p— 1}
for a prime p (same as modulo p arithmetic). GF(2) =binary.

@ Univariate polynomial p(x) = 3x® + x3 — 0.5x — 1 with deg(p) =5
@ Multivariate polynomial

p(X1, Xa, X3, Xa) = BXE X3 Xy — XZX2XZ + X3 — 3 with deg(p) = 6.
o If deg(p1) = di and deg(p2) = d> then deg(p1p2) = di + d>

@ Univariate polynomial of deg(p) = d has at most d roots, i.e.
solutions of p(x) = 0 = at most d solutions of p(x) = K.

@ If p > d for a univariate polynomial of deg(p) = d over GF(p),

then very difficult to guess a root, i.e., J
PrsGGF(p)[p(S) = K] < ;

Idea: Use this to catch lying provers! If V has p;(x) and P sends
p2(x), then pi1(x) = p2(x) only on d points.

CS 4TH3

Chapter 8: Interactive proofs

Sumcheck

Given: Polynomial g(Xi, Xz, ..., X,) over GF(p) for prime p and
deg(g) = d, integer K.

Prover: Tries to persuade V that

S>> o Y glbiby... b)) =K. (1)
b1€{0,1} b€{0,1} b,€{0,1}

Verifier: Rejects with “good” probability if (1) not true.

Assumption: Polynomial g(-) has a poly(n) representation, and V can
evaluate g(xi, x2, ..., X,) in poly(n) time.

@ Fully expanded g can have exp(n) number of terms!

@ If weset Xj:=b;, i=2,3,...,n then we get univariate polynomial
g(X1,b2,...,b) with deg(p) = d. Define

= > - Y g(Xuby ... by)
be{0,1} b,e{0,1}
Then (1) & h(0) + h(1) =

CS 4TH3

Chapter 8: Interactive proofs

Sumcheck

Given: Polynomial g(Xi, Xz, ..., X,) over GF(p) for prime p and
deg(g) = d, integer K.

Prover: Tries to persuade V that

hO)+h(1)= > > - > glby,b... b)) =K.

b1€{0,1} h€{01} bn€{0,1}

Protocol 7 Sumcheck IP

V: If n =1 then accept only if g(0) + g(1) = K. Else (n > 2) ask P to send h(X1).
P: Send polynomial s(X1). (P can “cheat” by sending s(X1) # h(x1))
V: If (s(0) 4+ s(1) # K) then return 0 else pick random a €g GF(p). Recursively

check that s(a);h(a): Z Z gla, b, ..., bn)

bye{0,1} b,€{0,1}

@ Completeness: If h(0) + h(1) = K then s(X1) = h(X1) and
Pr[V accepts] =1

@ Soundness: If h(0) 4+ h(1) # K then Pr[V accepts] <1 — (1 — %)”.

CS 4TH3

Chapter 8: Interactive proofs

Protocol 8 Sumcheck IP

V: If n =1 then accept only if g(0) + g(1) = K. Else (n > 2) ask P to send h(X1).
P: Send polynomial s(X;). (P can “cheat” by sending s(X1) # h(x1))
V: If (s(0) + s(1) # K) then return 0 else pick random a €g GF(p). Recursively

check that s(a) L h(a) = Z Z g(a, ba,. .., bn)

bye{0,1} b,€{0,1}

. d\n
@ Soundness: If h(0) + h(1) # K then Pr[V accepts] <1 — (1— 7)".

Proof: Induction on n. For n =1 Pr[V accepts| = 0. True for
n=k. Forn=k+1:

Pr[V accepts] = Pr[(V accepts round 3) A (V accepts recursively)]
= Pr,[h(a) = s(a)] - Pr[V accepts recursively|h(a) = s(a)]
d d

—_ —_ _7k
==

IN

O
CS 4TH3

Chapter 8: Interactive proofs

Arithmetization
Why bother with polynomials? We have seen protocols for problems on
graphs, sets, algebra... what about logic? Idea: Transform logic to
algebra via arithmetaization.
Given 3CNF formula ¢(x1, X2, . .., Xs):

@ Binary var x; — Xj variable in GF(p)

@ Literal x;, =& X;and x; = 1 — X;

@ i Axj—= Xi- X;

@ X; VX — 17(17X,‘)(17)<j)

Example:
G = (X,' \Y)?J \/Xk) — p/(X17X2, .. ,X,,) =1-)<J(1 — X,)(]. — Xk)
with deg(p;) = 3 (book is wrong on this example!)

= Pq“)(XI;XZa cee 7Xn) - rl?;]pi(XlaX27 cee 7Xn)y
with deg(Ps) < 3m and representation size O(m) (don't expand!)

CS 4TH3

Chapter 8: Interactive proofs

3SAT
d(x1.x2,...,xn) € 3SAT & 3b; € {0,1},i=1,2,...,n: Pg(by,bo,...,by) =1

#SAT
#SAT = {{(¢, K) : 3CNF formula ¢ has exactly K satisfying assignments}

Note 3SAT <p #SAT (What about 3SAT?)

(6, K) € #SAT & Y > o > Py(bi,by,..., b)) =K
bi€{0,1} h€{0.1} bn€{0,1}
...but this is the Sumcheck problem! Apply Protocol 8 to show
Theorem 24

#SAT € IP

CS 4TH3

Chapter 8: Interactive proofs

NP, coNP C [P C PSPACE

Proof:
@ 3S5AT <p #SAT = 35AT € IP. (We already know NP C IP.)

@ All /P interaction and V computations are polynomial time. Go over
all possible P answers, to discover optimal P, i.e., maximizes V
acceptance probability (once a set of P replies is fixed, V acceptance
probability calculated going over all its possible random bits). If best
acceptance probability achieved > 2/3 then ACCEPT, else REJECT.

O

Theorem 26

IP = PSPACE

Proof: We show that TQBF € IP (we have PSPACE C IP)
Proof uses exactly the same ideas that show #SAT € IP.

CS 4TH3

Chapter 8: Interactive proofs

Arithmetization for formula W = Vx;3xVx3 . .. 3x,d(x1, . . ., x,) implies

bi€{0,1} h€{0.1} by€{0,1}

This will produce h(-) polynomials of degree 2" in Protocol 8!
We expand arithmetization:
VX p(X1, .., Xn) = p(X1y ooy Xi21,0, Xigr, o, Xa)
p(Xyy ooy Xic1, 1, Xigay o0, X5)

X p(X1, X, .o, Xn) = p(Xay oo, Xiz1,0, Xigr, oo, X)

+p(Xy,. .o, Xiz1, 1, Xiga, oo, Xn)

LX; p(X1, Xay ..o, Xo) = Xi - p(X1y ooy Xiz1, 1, Xiga, oo, Xa)
(1=X) - p(Xuy.ooy Xic1,0, Xig1, -0, Xn)

+

LX; is a linearization operator that replaces X} — X;, since X} = X; if
X; € {0, 1}.

CS 4TH3

Chapter 8: Interactive proofs

Use expanded arithmetization to compute polynomials for the following
formula:

VX1£15|X2£1£2VX3[,1£2£3 . ﬂx,,ﬁlﬁz e E,,qb(xl, . ,X,,)

Note that now

hX)= Y - J[Pe(Xi b2 bn)

be{0,1} b,e{0,1}
has degree k > 1 because of the [['s. That's why we linearize X; next!
(using L1). As we go down in the recursion, we will need to also linearize
X2, X3, . ..

Read 8.3.3 in text

CS 4TH3

Chapter 8: Interactive proofs

What is the power of using multiple Provers (MIP)? Play one prover
agains the other to force non-adaptability...

MIP = NEXP

If we define a proof=a table with all Prover answers to Verifier questions,
then

Definition 28

PCP]r, q] is set of languages that are accepted by a Verifier that makes g
queries to a table of size 2".

Theorem 29 (Theorem 27)
NEXP = PCP[poly(n), poly(n)]

Theorem 30 (The PCP theorem)
NP = PCP[O(logn), O(1)]

CS 4TH3

Chapter 8: Interactive proofs

Program checkers

Program verification problem, i.e. design algorithm C s.t. C(P) =1 iff
program P for computation task T is always correct, is undecidable.
Program checking on an input problem, i.e. design algorithm C” with
access to code P s.t. CP(x) = 1iff P(x) is correct (P(x) = T(x)) is
surprisingly easy if we also allow randomness!

Definition 31 (Blum-Khanna)

A checker for computational task T is a probabilistic poly-time TM C
that, given any program P for T and any input x:

@ P(x) = T(x) = Pr[CP accepts P(x)] > 2/3 (boosting 1 — n=¥)
@ P(x) # T(x) = Pr[CP accepts P(x)] < 1/3 (boosting n—)

...Do such animals even exist?

CS 4TH3

Chapter 8: Interactive proofs

Program checker for GNI (or GI)
o If P(G1,Gy) =1 (i.e., Psays G; 2 Gy) then C runs:

Protocol 9 Private coin GNI

V: Pick i €g {1,2} and random 7. Let H = 7(G;j). Send H to P.
P: Identify which of G, Go generated H, say G;. Send j to V.
V: If i = j then ACCEPT else REJECT

...but using code P instead of P.

@ If P(G1,Gp) =0 (i.e., P says G; = Gy) then C runs:
for each i € V; do
for each j € V> do
Delete i,/ to get G, G}
if P(G/, G}) =0 then
j = (i)
Move to next i
else
Check correctness of P(G{,G}) =1
Move to next j
if Gi = 7T(G2) then
Return ACCEPT
else
Return REJECT

CS 4TH3

Chapter 8: Interactive proofs

Program checkers
We can use IPs to design program checkers in general:

Gl, #SAT, TQBF have checkers.
P-complete problems have “easy” checkers.

CS 4TH3

