

Chapter 8: Interactive proofs

Interaction between prover & verifier

- **NP:** Prover sends proof to verifier's certificate tape, then verifier takes over.
- **Oracles:** Prover is an **oracle**; verifier asks questions about **instances of a single problem**, prover answers always **trusted**
- Can we have **more general interactions** between prover & verifier for **cryptography, program checking...**?
- **Deterministic** or **randomized** verifier? **Deterministic** or **randomized** prover?

Our provers will be:

- ① All-powerful
- ② Not trusted
- ③ Deterministic

Chapter 8: Interactive proofs

Deterministic prover & verifier

Protocol 1 Deterministic 3SAT

for each clause $C = (l_1 \vee l_2 \vee l_3)$ do

Verifier: Values l_1, l_2, l_3 ?

Prover: Send l_1, l_2, l_3 to Verifier

Verifier: If (all clauses satisfied) \wedge (all literals consistent) then ACCEPT else REJECT

- If m clauses, then we have **2m rounds** of (alternate) interaction
- We can have only 2 rounds, where verifier asks for **all** clauses simultaneously and prover replies
- The verifier speaks last to accept or reject

Chapter 8: Interactive proofs

Definition 1 (Interaction of deterministic functions)

Let $V, P : \{0, 1\}^* \rightarrow \{0, 1\}^*$ functions. A ***k*-round interaction of V, P on input x** is string sequence a_1, a_2, \dots, a_k s.t.

$$a_1 = V(x)$$

$$a_2 = P(x, a_1)$$

...

$$a_{2i+1} = V(x, a_1, \dots, a_{2i})$$

$$a_{2i+2} = P(x, a_1, \dots, a_{2i+1})$$

...

$$a_k = P(x, a_1, \dots, a_{k-1})$$

The **output of the interaction** is $out_{V,P}(x) = V(x, a_1, \dots, a_k)$ (0 or 1).

Note: Think of a_{2i+1} as Verifier **questions**, and a_{2i+2} as Prover **replies**.

Chapter 8: Interactive proofs

Definition 2 (Deterministic proof system)

L has a **k -round deterministic interactive proof system** if there is TM V s.t. $V(x, a_1, \dots, a_i)$ runs in time $\text{poly}(|x|)$, can have k -round interactions with prover P , and

$$x \in L \Rightarrow \exists P : \text{out}_{V,P}(x) = 1 \quad (\text{Completeness})$$

$$x \notin L \Rightarrow \forall P : \text{out}_{V,P}(x) = 0 \quad (\text{Soundness})$$

Definition 3

$L \in \text{dIP}$ if L has $k(n)$ -round deterministic interactive proof system where $k(n) = \text{poly}(n)$.

Note 1: Both the verifier *and* the number of rounds are **polynomial** on the size of input $|x| = n$.

Note 2: $\exists P$ and $\forall P$ above mean $\exists(a_2, a_4, \dots, a_k)$ and $\forall(a_2, a_4, \dots, a_k)$.

Lemma 4

$dIP = NP$.

Proof:

- $NP \subseteq dIP$: If $L \in NP$ then V is the certifier for L and just asks for a certificate (2 rounds).
- $dIP \subseteq NP$: If $L \in dIP$ then let $a_2, a_4, \dots, a_{k(n)}$ be the prover answers (our certificate). Certifier gets certificate, runs $V(x) \rightarrow a_1$, $V(x, a_1, a_2) \rightarrow a_3, \dots$, and finally checks $V(x, a_1, a_2, \dots, a_{k(n)}) = 1$. Certifier is good because:
 - $x \in L$: \exists Prover answers $a_2, a_4, \dots, a_{k(n)}$ s.t. everything consistent and $V(x, a_1, a_2, \dots, a_{k(n)}) = 1$ (i.e., \exists certificate to make certifier accept)
 - $x \notin L$: \forall Prover answers $a_2, a_4, \dots, a_{k(n)}$, either inconsistent or $V(x, a_1, a_2, \dots, a_{k(n)}) = 0$ (i.e., \forall certificates certifier rejects)

$\Rightarrow L \in NP$

□

Chapter 8: Interactive proofs

What if V is a **probabilistic** TM?

Example: How can colour-blind Arthur (V) figure out whether Merlin (P) wears socks of different colours? If A deterministic, then M easily tricks him. What if A is **probabilistic**?

Definition 5 (Probabilistic verifiers with private coins)

L is in $IP[k]$ if there is **probabilistic** TM V with **private coins** r s.t.

$V(x, r, a_1, \dots, a_i)$ runs in time $poly(|x|)$, can have k -round interactions with provers P , and

$$x \in L \Rightarrow \exists P : \Pr_r[\text{out}_{V(r), P}(x) = 1] \geq 2/3 \quad (\text{Completeness})$$

$$x \notin L \Rightarrow \forall P : \Pr_r[\text{out}_{V(r), P}(x) = 1] \leq 1/3 \quad (\text{Soundness})$$

Definition 6

$$IP = \bigcup_{c \geq 0} IP[n^c].$$

Chapter 8: Interactive proofs

We have:

$$x \in L \Rightarrow \exists P : \Pr_{\mathbf{r}}[\text{out}_{V(\mathbf{r}), P}(x) = 1] \geq 2/3 \quad (\text{Completeness})$$

$$x \notin L \Rightarrow \forall P : \Pr_{\mathbf{r}}[\text{out}_{V(\mathbf{r}), P}(x) = 1] \leq 1/3 \quad (\text{Soundness})$$

Lemma 7 (Probability boosting)

We can replace $2/3$ by $1 - 2^{-n^c}$, and $1/3$ by 2^{-n^c} for any $c > 0$ without changing IP.

Proof: Same as for BPP (repeat interaction protocol m times and V outputs majority of outputs), apply Chernoff...

Objection: P learns from previous interactions! Yes, but (Soundness) works $\forall P$ (even for P that learns)!

□

$2/3$ can be even pushed to 1 , i.e., Perfect Completeness! (Non-trivial proof...) Can we push $1/3$ to 0 , i.e., Perfect Soundness at the same time? If yes, $IP = NP$!

Chapter 8: Interactive proofs

What about a **probabilistic** Prover?

$x \in L \Rightarrow \exists P : \Pr_{r,s}[\text{out}_V(r, P(s))(x) = 1] \geq 2/3$ (Completeness)

$x \notin L \Rightarrow \forall P : \Pr_{r,s}[\text{out}_V(r, P(s))(x) = 1] \leq 1/3$ (Soundness)

It doesn't make any difference (**averaging argument**)...

Lemma 8

$IP \subseteq PSPACE$

Proof:

- Since V runs in $O(n^c)$ time, a_1, a_2, \dots, a_{n^d} are of length $O(n^c)$ each, for a total of $O(n^{c+d})$ space.
- Enumerate all a_1, a_2, \dots, a_{n^d} to find (consistent) one that maximizes $\Pr_r[\text{out}_V(r, P(x)) = 1]$ (how to compute this?). If $\geq 2/3$ then ACCEPT, else REJECT.

Chapter 8: Interactive proofs

Graph Isomorphism (GI)

Input: Graphs $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$

Output: ACCEPT if $\exists \pi$ permutation of V_1 labels, so that $\pi(G_1) = G_2$.

Graph Non-Isomorphism (GNI) = \overline{GI}

Lemma 9

$GI \in NP$ and $GNI \in coNP$

Is $GI \in P$? **OPEN**

Is GI NP-complete? **OPEN**

Lemma 10

$\text{GNI} \in \text{IP}$

Proof:

Protocol 2 Private coin GNI

V: Pick $i \in_R \{1, 2\}$ and random π . Let $H = \pi(G_i)$. Send H to **P**.

P: Identify which of G_1, G_2 generated H , say G_j . Send j to **V**.

V: If $i = j$ then ACCEPT else REJECT

Graphs are socks! If different colour, then **P** always finds correct i , and

$$\Pr_{\textcolor{red}{r}}[\text{out}_{V(\textcolor{red}{r}), P}(x) = 1] = 1$$

If same colour ($G_1 \cong G_2$), then **P** can guess i with probability $1/2$, i.e.,

$$\Pr_{\textcolor{red}{r}}[\text{out}_{V(\textcolor{red}{r}), P}(x) = 1] \leq 1/2.$$

Can reduce $1/2$ to $1/3$ by repetition (Lemma 7).

□

Zero knowledge proofs (ZKP)

Can P persuade V about the truth of a statement, **without revealing any information to V ?**

Without revealing any information to V : Whatever V learns from interaction with P to prove statement x , it could have **computed by itself**, without participating in any interaction.

- Restrict to NP statements, i.e., statements $x \in L$ for $L \in NP$. Let poly-time TM M s.t.

$$x \in L \Leftrightarrow \exists u \in \{0, 1\}^{poly(|x|)} : M(x, u) = 1$$

- ZKP means: P tries to persuade V that it has a **certificate u** s.t. $M(x, u) = 1$
- Can define ZKP for other classes, but NP is enough to demonstrate

Chapter 8: Interactive proofs

Definition 11 (Perfect zero knowledge proof)

Let pair of **poly-time probabilistic algorithms P, V** have interaction $\langle P(x, u), V(x) \rangle$ and $out\langle P(x, u), V(x) \rangle \in \{0, 1\}$ be V 's output at the end.

- **Completeness:** If $x \in L$ and u certificate for x (i.e., $M(x, u) = 1$), then

$$\Pr[out\langle P(x, u), V(x) \rangle = 1] \geq 2/3$$

- **Soundness:** If $x \notin L$, then

$$\forall P^*, u : \Pr[out\langle P^*(x, u), V(x) \rangle = 1] \leq 1/3$$

- **Perfect ZK:** \forall poly-time probabilistic V^* , \exists expected poly-time **simulator S^*** s.t.

$$\forall x \in L, u : \Pr[out\langle P(x, u), V^*(x) \rangle = 1] = \Pr[S^*(x) = 1]$$

Chapter 8: Interactive proofs

- Perfect ZK relaxed to small statistical distance \Rightarrow Statistical ZK (SZK)
- Perfect ZK relaxed to computationally indistinguishable \Rightarrow Computational ZK
- People believe $P \subset SZK \subset NP$

Chapter 8: Interactive proofs

Protocol 3 PZK for $GI(G_0, G_1)$

P: Has node label permutation $\pi(G_0) = G_1$ (GI certificate). Picks **random permutation** π_1 . Sends $\pi_1(G_1)$.

V: Choose **random** $b \in \{0, 1\}$. Send b .

P: If $b = 1$ then send π_1 else send $\pi_1 \circ \pi$.

V: $H :=$ first message (graph) received; $\pi_2 =$ second message (permutation) received.

If $H = \pi_2(G_b)$ then return 1 else return 0

Completeness: $G_0 \cong G_1 \Rightarrow \pi(G_0) = G_1$.

- If $b = 1$ then $\pi_2(G_b) = \pi_1(G_1) = H$.
- If $b = 0$ then $\pi_2(G_b) = \pi_1 \circ \pi(G_0) = \pi_1(G_1) = H$

$$\Rightarrow \Pr[\text{out}\langle P(x, u), V(x) \rangle = 1] = 1$$

Soundness: $G_0 \not\cong G_1 \Rightarrow \pi(G_0) \neq G_1$.

- If $b = 1$ as before (**wrong**)
- If $b = 0$ then $\pi_2(G_b) = \pi_1 \circ \pi(G_0) \neq \pi_1(G_1) = H$ (**correct**)

$$\Rightarrow \Pr[\text{out}\langle P(x, u), V(x) \rangle = 1] \leq 1/2$$

Chapter 8: Interactive proofs

Protocol 4 PZK for $GI(G_0, G_1)$

P: Has node label permutation $\pi(G_0) = G_1$ (GI certificate). Picks **random permutation** π_1 . Sends $\pi_1(G_1)$.

V: Choose **random** $b \in \{0, 1\}$. Send b .

P: If $b = 1$ then send π_1 else send $\pi_1 \circ \pi$.

V: $H :=$ first message (graph) received; $\pi_2 =$ second message (permutation) received.

If $H = \pi_2(G_b)$ then return 1 else return 0

Perfect ZK: What does **V** get from **P**?

- Random permutation of G_1 ($\pi_1(G_1)$)
- Either **same random permutation** π_1 (if $b = 1$) or **another random permutation** $\pi_1 \circ \pi$

Crucial fact: A permutation of a **random** permutation is itself a **random permutation**! Does this reminds us of something?

Yes! XOR $x \oplus y$ of a **random** x with a number y is also **random**! (but $x, x \oplus y$ not independent)

AHA! **P** used **random** π_1 to **mask** certificate π !

Chapter 8: Interactive proofs

Protocol 5 PZK for $GI(G_0, G_1)$

P: Has node label permutation $\pi(G_0) = G_1$ (GI certificate). Picks **random permutation** π_1 . Sends $\pi_1(G_1)$.

V: Choose **random** $b \in \{0, 1\}$. Send b .

P: **If** $b = 1$ **then** send π_1 **else** send $\pi_1 \circ \pi$.

V: $H :=$ first message (graph) received; $\pi_2 =$ second message (permutation) received.

If $H = \pi_2(G_b)$ **then return** 1 **else return** 0

Simulator $S^*(G_0, G_1)$:

① Pick random $b' \in_R \{0, 1\}$ and random permutation π_2 .

$H := \pi_2(G_{b'})$

② $b := V^*(G_0, G_1, H)$

③ **If** $b = b'$ **then return** $V^*(G_0, G_1, H, \pi_2)$ **else rerun** S^*

$$\Rightarrow \Pr[S^*(G_0, G_1) = \text{out}\langle P(x, u), V^*(x) \rangle \text{ in 1 iter}] = \Pr[b = b'] = 1/2$$

$$\Rightarrow E[T(n)] = \sum_{i=1}^{\infty} 2^{-i} V^*(n) = O(V^*(n))$$

Public coins vs. private coins

Definition 12 (AM , MA)

$AM[k] \subseteq IP[k]$ is class of interactive protocols, where V always reveals the random bits it used to P .

- Book says “ V ’s messages to P contain only its random bits”. No need, since if P knows V ’s random bits up to now, then it can figure out the rest of the message V sends.
- Traditionally, computationally-restricted V called **Arthur**, and all-powerful P called **Merlin**. $AM[k]$ if A starts, $MA[k]$ if M starts the interaction.
- $AM[2]$, $MA[2]$ traditionally called AM , MA .
- $AM = BP \cdot NP = \{L : L \leq_r 3SAT\}$ (why?)
- For any constant $k \geq 2$, $AM[k] = AM$ (proof omitted)

Chapter 8: Interactive proofs

Set Lower Bound

Given: Set $S \subseteq \{0, 1\}^n$ that $x \in S$ can be **certified**, i.e., has poly-time TM M s.t. $x \in S \Leftrightarrow \exists u : M(x, u) = 1$ (so $x \in S$ is an **NP** question). Number K with $2^{k-2} < K \leq 2^{k-1}$.

Prover: Tries to persuade V that $|S| \geq K$.

Verifier: Rejects with “good” probability if $|S| \leq \frac{K}{2}$.

What about $\frac{K}{2} < |S| < K$? We don’t care what V answers! Our first example of a **gap** problem.

Hashing detour

- Hash function $h : \{0, 1\}^n \rightarrow \{0, 1\}^k$, usually $n \geq k$
- If $x \neq x'$ and $h(x) = h(x')$ then this is a **collision**
- What is a **good** hash function?
 - We want x 's to be **uniformly** spread (mapped) to y 's, i.e.,
 - We want every $y \in \{0, 1\}^k$ to get the same number of pre-images, i.e., $|\{x : h(x) = y\}| = \frac{2^n}{2^k} = 2^{n-k}$.
 - Equivalently, $\Pr_x[h(x) = y] = \frac{1}{2^k} = 2^{-k}$ (why?).
 - What if I keep x fixed (like y) and I pick a **random** h from a **family** $\mathcal{H}_{n,k}$ of hash functions? If $\Pr_{h \in \mathcal{H}_{n,k}}[h(x) = y] = 2^{-k}$ for every x, y then again I have a **uniform** mapping of x 's to y 's, and the family $\mathcal{H}_{n,k}$ is **good**.

Definition 13 (Pairwise independent hash family)

Hash family $\mathcal{H}_{n,k}$ is **pairwise independent** if

$$\forall x \neq x', \forall y, y' : \Pr_{h \in \mathcal{H}_{n,k}}[h(x) = y \wedge h(x') = y'] = 2^{-2k}$$

Chapter 8: Interactive proofs

Definition 14 (Pairwise independent hash family)

Hash family $\mathcal{H}_{n,k}$ is **pairwise independent** if

$$\forall x \neq x', \forall y, y' : \Pr_{h \in \mathcal{H}_{n,k}}[h(x) = y \wedge h(x') = y'] = 2^{-2k}$$

Corollary 1

If family $\mathcal{H}_{n,k}$ is pairwise independent, then it is also **good**, i.e., $\Pr_{h \in \mathcal{H}_{n,k}}[h(x) = y] = 2^{-k}$.

Proof: We use the following simple fact:

If event space $\Omega = \{B_1, B_2, \dots, B_m\}$, then:

$$\begin{aligned} \Pr[A] &= \Pr[A \wedge \Omega] = \Pr[A \wedge (B_1 \vee B_2 \vee \dots \vee B_m)] \\ &= \Pr[(A \wedge B_1) \vee (A \wedge B_2) \vee \dots \vee (A \wedge B_m)] \\ &= \sum_{i=1}^m \Pr[A \wedge B_i] \quad (\text{events } A \wedge B_i \text{ are mutually independent}) \end{aligned}$$

Pick any x' and apply with $A \leftarrow h(x) = y$ and $B_i \leftarrow h(x') = y_i$ for all $m = 2^k$ k -strings y_i . □

Chapter 8: Interactive proofs

Definition 15 (Pairwise independent hash family)

Hash family $\mathcal{H}_{n,k}$ is **pairwise independent** if

$$\forall x \neq x', \forall y, y' : \Pr_{h \in \mathcal{H}_{n,k}} [h(x) = y \wedge h(x') = y'] = 2^{-2k}$$

Corollary 2

If family $\mathcal{H}_{n,k}$ is pairwise independent, then it is also **good**, i.e.,

$$\Pr_{h \in \mathcal{H}_{n,k}} [h(x) = y] = 2^{-k}.$$

Theorem 16

There is a (easily computable) pairwise independent hash family $\mathcal{H}_{n,k}$.

Proof: See Theorem 8.15 in book.

□

Chapter 8: Interactive proofs

Set Lower Bound (SLB)

Given: Set $S \subseteq \{0, 1\}^n$ that $x \in S$ can be **certified**, i.e., has poly-time TM M s.t. $x \in S \Leftrightarrow \exists u : M(x, u) = 1$ (so $x \in S$ is an **NP** question). Number K with $2^{k-2} < K \leq 2^{k-1}$.

Prover: Tries to persuade V that $|S| \geq K$.

Verifier: Rejects with “good” probability if $|S| \leq \frac{K}{2}$.

Protocol 6 Goldwasser-Sipser public-coin protocol for SLB

V: Pick random hash function $h \in_R \mathcal{H}_{n,k}$, pick random $y \in_R \{0, 1\}^k$. Send h, y .

P: Try find $x \in S$ s.t. $h(x) = y$. Send x and **certificate** u of $x \in S$.

V: If $(h(x) = y \wedge M(x, u) = 1)$ then return 1 else return 0

Proof intuition: Let $p^* = K/2^k$. If S is **big** ($|S| \geq K$) then **P** has very good chance ($\geq \frac{3}{4}p^*$) to find $x : h(x) = y$, but if S is **small** ($|S| \leq K/2$) its chances fall a lot ($\leq \frac{1}{2}p^*$)

Chapter 8: Interactive proofs

Lemma 17

$SLB \in AM$.

Proof: Let $p^* = K/2^k$. If S is **big** ($|S| \geq K$) then P has very good chance ($\geq \frac{3}{4}p^*$) to find $x : h(x) = y$, but if S is **small** ($|S| \leq K/2$) its chances fall a lot ($\leq \frac{1}{2}p^*$)

Claim 1

If $|S| \leq \frac{2^k}{2}$ and $p = |S|/2^k$, then

$$p \geq \Pr_{h,y}[\exists x \in S : h(x) = y] \geq \frac{3p}{4}.$$

- If $|S| \leq \frac{K}{2} \leq 2^{k-2}$ then $p \leq 1/4$
- If $|S| \geq K$ then $3p/4 \geq \frac{3}{8}$
- We can boost (Chernoff bound) to $\geq 2/3$: Run protocol constant M times, V accepts if accepting iterations $\geq 5p^*M/8$.
- Can run in parallel in 2 rounds. □

Chapter 8: Interactive proofs

Lemma 18

$SLB \in AM$.

We have AM protocol to decide whether a set is big or small. We can apply it to show

Theorem 19

$GNI \in AM$.

Proof:

$$S = \{H : H \cong G_0 \text{ or } H \cong G_1\}$$

- If $G_0 \not\cong G_1$ then $|S| = 2n!$ (S big)
- If $G_0 \cong G_1$ then $|S| = n!$ (S small)

(not exactly, but this is the main idea)

□

Chapter 8: Interactive proofs

Lemma 20

$SLB \in AM$.

We have AM protocol to decide whether a set is big or small. We can apply it to show

Theorem 21

$GNI \in AM$.

Theorem 22 (Goldwasser-Sipser)

For every $k \geq 2$, $IP[k] = AM[k + 2]$.

Proof idea: There is a gap in the number of private random strings making $IP[k]$ V accept in YES and NO instances. P of $AM[k + 2]$ uses SLB to persuade the $AM[k + 2]$ V that the number is large.

Chapter 8: Interactive proofs

It can be shown that class $AM[k]$ doesn't change if we require **perfect completeness** (probability of success for YES instance is 1). Like $GINI$, every private coin protocol can be transformed to public coin protocol with perfect completeness. We can use this to prove

Theorem 23

If GI is NP-complete, then $\Sigma_2 = \Pi_2$.

Proof: Omitted

Chapter 8: Interactive proofs

Polynomials

- Polynomials defined over fields, e.g., $GF(p) = \{0, 1, 2, \dots, p-1\}$ for a prime p (same as *modulo p* arithmetic). $GF(2)$ =*binary*.
- Univariate polynomial $p(x) = 3x^5 + x^3 - 0.5x - 1$ with $\deg(p) = 5$
- Multivariate polynomial
 $p(X_1, X_2, X_3, X_4) = 5X_1^3X_3X_4 - X_2^2X_3^2X_4^2 + X_2^5 - 3$ with $\deg(p) = 6$.
- If $\deg(p_1) = d_1$ and $\deg(p_2) = d_2$ then $\deg(p_1p_2) = d_1 + d_2$
- Univariate polynomial of $\deg(p) = d$ has *at most d roots*, i.e. solutions of $p(x) = 0 \Rightarrow$ at most d solutions of $p(x) = K$.
- If $p \gg d$ for a univariate polynomial of $\deg(p) = d$ over $GF(p)$, then *very difficult to guess a root*, i.e.,

$$\Pr_{s \in GF(p)}[p(s) = K] \leq \frac{d}{p}$$

Idea: Use this to catch *lying provers*! If \mathbf{V} has $p_1(x)$ and \mathbf{P} sends $p_2(x)$, then $p_1(x) = p_2(x)$ *only on d points*.

Chapter 8: Interactive proofs

Sumcheck

Given: Polynomial $g(X_1, X_2, \dots, X_n)$ over $GF(p)$ for prime p and $\deg(g) = d$, integer K .

Prover: Tries to persuade V that

$$\sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \cdots \sum_{b_n \in \{0,1\}} g(b_1, b_2, \dots, b_n) = K. \quad (1)$$

Verifier: Rejects with “good” probability if (1) not true.

Assumption: Polynomial $g(\cdot)$ has a $\text{poly}(n)$ representation, and V can evaluate $g(x_1, x_2, \dots, x_n)$ in $\text{poly}(n)$ time.

- Fully expanded g can have $\exp(n)$ number of terms!
- If we set $X_i := b_i$, $i = 2, 3, \dots, n$ then we get univariate polynomial $g(X_1, b_2, \dots, b_n)$ with $\deg(p) = d$. Define

$$h(X_1) := \sum_{b_2 \in \{0,1\}} \cdots \sum_{b_n \in \{0,1\}} g(X_1, b_2, \dots, b_n)$$

Then (1) $\Leftrightarrow h(0) + h(1) = K$.

Chapter 8: Interactive proofs

Sumcheck

Given: Polynomial $g(X_1, X_2, \dots, X_n)$ over $GF(p)$ for prime p and $\deg(g) = d$, integer K .

Prover: Tries to persuade V that

$$h(0) + h(1) = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_n \in \{0,1\}} g(b_1, b_2, \dots, b_n) = K.$$

Protocol 7 Sumcheck IP

V: If $n = 1$ then accept only if $g(0) + g(1) = K$. Else ($n \geq 2$) ask P to send $h(X_1)$.

P: Send polynomial $s(X_1)$. (P can “cheat” by sending $s(X_1) \neq h(x_1)$)

V: If $(s(0) + s(1) \neq K)$ then return 0 else pick random $a \in_R GF(p)$. Recursively check that

$$s(a) \stackrel{?}{=} h(a) = \sum_{b_2 \in \{0,1\}} \dots \sum_{b_n \in \{0,1\}} g(a, b_2, \dots, b_n)$$

- **Completeness:** If $h(0) + h(1) = K$ then $s(X_1) = h(X_1)$ and $Pr[V \text{ accepts}] = 1$
- **Soundness:** If $h(0) + h(1) \neq K$ then $Pr[V \text{ accepts}] \leq 1 - (1 - \frac{d}{p})^n$.

Chapter 8: Interactive proofs

Protocol 8 Sumcheck IP

V: If $n = 1$ then accept only if $g(0) + g(1) = K$. Else ($n \geq 2$) ask **P** to send $h(X_1)$.

P: Send polynomial $s(X_1)$. (**P** can “cheat” by sending $s(X_1) \neq h(x_1)$)

V: If $(s(0) + s(1) \neq K)$ then return 0 else pick random $a \in_R GF(p)$. Recursively check that

$$s(a) \stackrel{?}{=} h(a) = \sum_{b_2 \in \{0,1\}} \cdots \sum_{b_n \in \{0,1\}} g(a, b_2, \dots, b_n)$$

- **Soundness:** If $h(0) + h(1) \neq K$ then $Pr[V \text{ accepts}] \leq 1 - (1 - \frac{d}{p})^n$.

Proof: Induction on n . For $n = 1$ $Pr[V \text{ accepts}] = 0$. True for $n = k$. For $n = k + 1$:

$$\begin{aligned} Pr[V \text{ accepts}] &= Pr[(V \text{ accepts round 3}) \wedge (V \text{ accepts recursively})] \\ &= Pr_a[h(a) = s(a)] \cdot Pr[V \text{ accepts recursively} | h(a) = s(a)] \\ &\leq \frac{d}{p} \cdot (1 - (1 - \frac{d}{p})^k) \\ &\leq (1 - (1 - \frac{d}{p}))^{k+1} \end{aligned}$$

□

Chapter 8: Interactive proofs

Arithmetization

Why bother with **polynomials**? We have seen protocols for problems on graphs, sets, algebra... what about **logic**? **Idea:** Transform **logic** to **algebra** via **arithmetization**.

Given 3CNF formula $\phi(x_1, x_2, \dots, x_n)$:

- Binary var $x_1 \rightarrow X_1$ variable in $GF(p)$
- Literal $x_i \rightarrow X_i$ and $\bar{x}_i \rightarrow 1 - X_i$
- $x_i \wedge x_j \rightarrow X_i \cdot X_j$
- $x_i \vee x_j \rightarrow 1 - (1 - X_i)(1 - X_j)$

Example:

$C_I = (x_i \vee \bar{x}_j \vee x_k) \rightarrow p_I(X_1, X_2, \dots, X_n) = 1 - X_j(1 - X_i)(1 - X_k)$
with $\deg(p_I) = 3$ (book is **wrong** on this example!)

$\Rightarrow P_\phi(X_1, X_2, \dots, X_n) = \prod_{i=1}^m p_i(X_1, X_2, \dots, X_n),$
with $\deg(P_\phi) \leq 3m$ and representation size $O(m)$ (don't expand!)

Chapter 8: Interactive proofs

3SAT

$$\phi(x_1, x_2, \dots, x_n) \in 3SAT \Leftrightarrow \exists b_i \in \{0, 1\}, i = 1, 2, \dots, n : P_\phi(b_1, b_2, \dots, b_n) = 1$$

#SAT

$$\#SAT = \{ \langle \phi, K \rangle : \text{3CNF formula } \phi \text{ has exactly } K \text{ satisfying assignments} \}$$

Note $\overline{3SAT} \leq_P \#SAT$ (What about 3SAT?)

$$\langle \phi, K \rangle \in \#SAT \Leftrightarrow \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_n \in \{0,1\}} P_\phi(b_1, b_2, \dots, b_n) = K$$

...but this is the **Sumcheck** problem! Apply Protocol 8 to show

Theorem 24

$\#SAT \in IP$

Chapter 8: Interactive proofs

Theorem 25

$$NP, coNP \subseteq IP \subseteq PSPACE$$

Proof:

- $\overline{3SAT} \leq_P \#SAT \Rightarrow \overline{3SAT} \in IP$. (We already know $NP \subseteq IP$.)
- All IP interaction and V computations are polynomial time. Go over **all** possible P answers, to discover optimal P , i.e., maximizes V acceptance probability (once a set of P replies is fixed, V acceptance probability calculated going over all its possible random bits). If best acceptance probability achieved $\geq 2/3$ then ACCEPT, else REJECT.

□

Theorem 26

$$IP = PSPACE$$

Proof: We show that $\overline{TQBF} \in IP$ (we have $PSPACE \subseteq IP$)
Proof uses exactly the same ideas that show $\#SAT \in IP$.

Chapter 8: Interactive proofs

Arithmetization for formula $\Psi = \forall x_1 \exists x_2 \forall x_3 \dots \exists x_n \phi(x_1, \dots, x_n)$ implies

$$\Psi \in \overline{TQBF} \Leftrightarrow \prod_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \prod_{b_n \in \{0,1\}} P_\phi(b_1, b_2, \dots, b_n) = 0$$

This will produce $h(\cdot)$ polynomials of degree 2^n in Protocol 8!

We expand arithmetization:

$$\begin{aligned} \forall X_i \ p(X_1, \dots, X_n) &= p(X_1, \dots, X_{i-1}, 0, X_{i+1}, \dots, X_n) \\ &\quad \cdot p(X_1, \dots, X_{i-1}, 1, X_{i+1}, \dots, X_n) \end{aligned}$$

$$\begin{aligned} \exists X_i \ p(X_1, X_2, \dots, X_n) &= p(X_1, \dots, X_{i-1}, 0, X_{i+1}, \dots, X_n) \\ &\quad + p(X_1, \dots, X_{i-1}, 1, X_{i+1}, \dots, X_n) \end{aligned}$$

$$\begin{aligned} \mathcal{L}X_i \ p(X_1, X_2, \dots, X_n) &= X_i \cdot p(X_1, \dots, X_{i-1}, 1, X_{i+1}, \dots, X_n) \\ &\quad + (1 - X_i) \cdot p(X_1, \dots, X_{i-1}, 0, X_{i+1}, \dots, X_n) \end{aligned}$$

$\mathcal{L}X_i$ is a linearization operator that replaces $X_i^k \rightarrow X_i$, since $X_i^k = X_i$ if $X_i \in \{0, 1\}$.

Chapter 8: Interactive proofs

Use expanded arithmetization to compute polynomials for the following formula:

$$\forall x_1 \mathcal{L}_1 \exists x_2 \mathcal{L}_1 \mathcal{L}_2 \forall x_3 \mathcal{L}_1 \mathcal{L}_2 \mathcal{L}_3 \dots \exists x_n \mathcal{L}_1 \mathcal{L}_2 \dots \mathcal{L}_n \phi(x_1, \dots, x_n)$$

Note that now

$$h(X_1) = \sum_{b_2 \in \{0,1\}} \dots \prod_{b_n \in \{0,1\}} P_\phi(X_1, b_2, \dots, b_n)$$

has degree $k > 1$ because of the \prod 's. That's why we linearize X_1 next! (using \mathcal{L}_1). As we go down in the recursion, we will need to also linearize X_2, X_3, \dots

Read 8.3.3 in text

Chapter 8: Interactive proofs

What is the power of using multiple Provers (*MIP*)? Play one prover against the other to force **non-adaptability**...

Theorem 27

$$MIP = NEXP$$

If we define a **proof**=a table with all Prover answers to Verifier questions, then

Definition 28

$PCP[r, q]$ is set of languages that are accepted by a Verifier that makes q queries to a table of size 2^r .

Theorem 29 (Theorem 27)

$$NEXP = PCP[poly(n), poly(n)]$$

Theorem 30 (The *PCP* theorem)

$$NP = PCP[O(\log n), O(1)]$$

Chapter 8: Interactive proofs

Program checkers

Program verification problem, i.e. design algorithm C s.t. $C(P) = 1$ iff program P for computation task T is **always** correct, is **undecidable**.

Program checking on an input problem, i.e. design algorithm C^P with access to code P s.t. $C^P(x) = 1$ iff $P(x)$ is correct ($P(x) = T(x)$) is **surprisingly easy** if we also allow randomness!

Definition 31 (Blum-Khanna)

A **checker** for computational task T is a probabilistic poly-time TM C that, given any **program** P for T and any **input** x :

- $P(x) = T(x) \Rightarrow \Pr[C^P \text{ accepts } P(x)] \geq 2/3$ (boosting $1 - n^{-k}$)
- $P(x) \neq T(x) \Rightarrow \Pr[C^P \text{ accepts } P(x)] \leq 1/3$ (boosting n^{-k})

...Do such animals even exist?

Chapter 8: Interactive proofs

Program checker for GNI (or GI)

- If $P(G_1, G_2) = 1$ (i.e., P says $G_1 \not\cong G_2$) then C runs:

Protocol 9 Private coin GNI

V: Pick $i \in_R \{1, 2\}$ and random π . Let $H = \pi(G_i)$. Send H to **P**.

P: Identify which of G_1, G_2 generated H , say G_j . Send j to **V**.

V: If $i = j$ then ACCEPT else REJECT

...but using code P instead of **P**.

- If $P(G_1, G_2) = 0$ (i.e., P says $G_1 \cong G_2$) then C runs:

for each $i \in V_1$ do

for each $j \in V_2$ do

 Delete i, j to get G'_1, G'_2

 if $P(G'_1, G'_2) = 0$ then

$j := \pi(i)$

 Move to next i

 else

 Check correctness of $P(G'_1, G'_2) = 1$

 Move to next j

 if $G_1 = \pi(G_2)$ then

 Return ACCEPT

 else

 Return REJECT

Chapter 8: Interactive proofs

Program checkers

We can use IPs to design program checkers in general:

Theorem 32

GI, #SAT, TQBF have checkers.

Theorem 33

P-complete problems have “easy” checkers.