Theory of Computation

George Karakostas, Rm. ITB/218, karakos@mcmaster.ca

Computability vs Complexity

- Computability: Problems that can be solved by algorithms (or impossibility of an algorithm).
- Complexity: Most efficient algorithm for a computable problem (or impossibility of a better algorithm).

Computability vs Complexity

- Computability: Problems that can be solved by algorithms (or impossibility of an algorithm).
- Complexity: Most efficient algorithm for a computable problem (or impossibility of a better algorithm).

In this course we will focus on Computational Complexity.

Basic complexity questions

1 Can we do better than exhaustive search? (cf. $P \neq NP$)

- **1** Can we do better than exhaustive search? (cf. $P \neq NP$)
- ② Does randomness help? (cf. pseudorandom generators)

- **1** Can we do better than exhaustive search? (cf. $P \neq NP$)
- 2 Does randomness help? (cf. pseudorandom generators)
- Are there efficient approximation algorithms? (cf. Independent Set)

- **1** Can we do better than exhaustive search? (cf. $P \neq NP$)
- 2 Does randomness help? (cf. pseudorandom generators)
- Are there efficient approximation algorithms? (cf. Independent Set)
- Can we exploit problem hardness? (cf. cryptography)

- **1** Can we do better than exhaustive search? (cf. $P \neq NP$)
- 2 Does randomness help? (cf. pseudorandom generators)
- Are there efficient approximation algorithms? (cf. Independent Set)
- Can we exploit problem hardness? (cf. cryptography)
- Are quantum computers more powerful than classical computers? (cf. Shor's algorithm)

- **1** Can we do better than exhaustive search? (cf. $P \neq NP$)
- 2 Does randomness help? (cf. pseudorandom generators)
- Are there efficient approximation algorithms? (cf. Independent Set)
- Can we exploit problem hardness? (cf. cryptography)
- Are quantum computers more powerful than classical computers? (cf. Shor's algorithm)
- **6** Can proofs be efficiently produced automatically? (cf. $P \neq NP$)

- **1** Can we do better than exhaustive search? (cf. $P \neq NP$)
- 2 Does randomness help? (cf. pseudorandom generators)
- Are there efficient approximation algorithms? (cf. Independent Set)
- Can we exploit problem hardness? (cf. cryptography)
- Are quantum computers more powerful than classical computers? (cf. Shor's algorithm)
- **o** Can proofs be efficiently produced automatically? (cf. $P \neq NP$)
- Can check a proof reading only a few bits of it? (cf. PCP theorem)

- **1** Can we do better than exhaustive search? (cf. $P \neq NP$)
- 2 Does randomness help? (cf. pseudorandom generators)
- Are there efficient approximation algorithms? (cf. Independent Set)
- Can we exploit problem hardness? (cf. cryptography)
- Are quantum computers more powerful than classical computers? (cf. Shor's algorithm)
- **o** Can proofs be efficiently produced automatically? (cf. $P \neq NP$)
- Can check a proof reading only a few bits of it? (cf. PCP theorem)
- Are proofs produced by prover/verifier dialogue more powerful ? (cf. interactive proofs)