
Dynamic Programming (DP)

A typical algorithm:

1 Make some decision(s)

2 Problem is broken into k subproblems (n1, . . . , nk)

3 Solve k subproblems recursively

4 Combine decision(s) from (1) with solutions from (3), to
output solution

CS3AC3



Dynamic Programming (DP)

Greedy:

1 Make greedy choice g

2 Problem is reduced into one subproblem

3 Solve subproblem recursively ⇒ SOLsub
4 Combine choice from (1) with solution from (3), to output

solution SOL

Correctness:

Theorem

If we have that

1 greedy choice g is part of an OPT solution

2 SOL = g ∪ SOLsub is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

CS3AC3



Dynamic Programming (DP)

Greedy:

1 Make greedy choice g

2 Problem is reduced into one subproblem

3 Solve subproblem recursively ⇒ SOLsub
4 Combine choice from (1) with solution from (3), to output

solution SOL

Correctness:

Theorem

If we have that

1 greedy choice g is part of an OPT solution

2 SOL = g ∪ SOLsub is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

CS3AC3



Dynamic Programming (DP)

General:

1 Make choice g

2 Problem is reduced into one subproblem

3 Solve subproblem recursively ⇒ SOLsub
4 Combine choice from (1) with solution from (3), to output

solution SOL

Correctness:

Theorem

If we have that

1 choice g is part of an OPT solution

2 SOL = g ∪ SOLsub is a feasible solution

then SOL is an optimal solution (i.e., general alg is correct).

CS3AC3



Dynamic Programming (DP)

Even-More-General:

1 Make choice g

2 Problem is reduced into k subproblems n1, n2, . . . , nk
3 Solve subproblems recursively ⇒ SOL1,SOL2, . . . ,SOLk
4 Combine choice from (1) with solutions from (3), to output

solution SOL

Correctness:

Theorem

If we have that

1 choice g is part of an OPT solution

2 SOL = g ∪ SOL1 ∪ SOL2 ∪ . . . ∪ SOLk is a feasible solution

then SOL is an optimal solution (i.e., general alg is correct).

CS3AC3



Dynamic Programming (DP)

Even-More-General:

1 Make choice g

2 Problem is reduced into k subproblems n1, n2, . . . , nk
3 Solve subproblems recursively ⇒ SOL1,SOL2, . . . ,SOLk
4 Combine choice from (1) with solutions from (3), to output

solution SOL

Our only problem is...

which choice g to make?
We need to know (an) OPT ... vicious circle!

Note that we had the answer for both D&C (no choice!), and
Greedy (greedy choice both computable and part of OPT ).

Brute force: Try all g ! NOOOOOOOOOOOO!!!

CS3AC3



Dynamic Programming (DP)

Even-More-General:

1 Make choice g

2 Problem is reduced into k subproblems n1, n2, . . . , nk
3 Solve subproblems recursively ⇒ SOL1,SOL2, . . . ,SOLk
4 Combine choice from (1) with solutions from (3), to output

solution SOL

Our only problem is...which choice g to make?

We need to know (an) OPT ... vicious circle!

Note that we had the answer for both D&C (no choice!), and
Greedy (greedy choice both computable and part of OPT ).

Brute force: Try all g ! NOOOOOOOOOOOO!!!

CS3AC3



Dynamic Programming (DP)

Even-More-General:

1 Make choice g

2 Problem is reduced into k subproblems n1, n2, . . . , nk
3 Solve subproblems recursively ⇒ SOL1,SOL2, . . . ,SOLk
4 Combine choice from (1) with solutions from (3), to output

solution SOL

Our only problem is...which choice g to make?
We need to know (an) OPT ... vicious circle!

Note that we had the answer for both D&C (no choice!), and
Greedy (greedy choice both computable and part of OPT ).

Brute force: Try all g ! NOOOOOOOOOOOO!!!

CS3AC3



Dynamic Programming (DP)

Even-More-General:

1 Make choice g

2 Problem is reduced into k subproblems n1, n2, . . . , nk
3 Solve subproblems recursively ⇒ SOL1,SOL2, . . . ,SOLk
4 Combine choice from (1) with solutions from (3), to output

solution SOL

Our only problem is...which choice g to make?
We need to know (an) OPT ... vicious circle!

Note that we had the answer for both D&C (no choice!), and
Greedy (greedy choice both computable and part of OPT ).

Brute force: Try all g ! NOOOOOOOOOOOO!!!

CS3AC3



Dynamic Programming (DP)

Even-More-General:

1 Make choice g

2 Problem is reduced into k subproblems n1, n2, . . . , nk
3 Solve subproblems recursively ⇒ SOL1,SOL2, . . . ,SOLk
4 Combine choice from (1) with solutions from (3), to output

solution SOL

Our only problem is...which choice g to make?
We need to know (an) OPT ... vicious circle!

Note that we had the answer for both D&C (no choice!), and
Greedy (greedy choice both computable and part of OPT ).

Brute force: Try all g !

NOOOOOOOOOOOO!!!

CS3AC3



Dynamic Programming (DP)

Even-More-General:

1 Make choice g

2 Problem is reduced into k subproblems n1, n2, . . . , nk
3 Solve subproblems recursively ⇒ SOL1,SOL2, . . . ,SOLk
4 Combine choice from (1) with solutions from (3), to output

solution SOL

Our only problem is...which choice g to make?
We need to know (an) OPT ... vicious circle!

Note that we had the answer for both D&C (no choice!), and
Greedy (greedy choice both computable and part of OPT ).

Brute force: Try all g ! NOOOOOOOOOOOO!!!

CS3AC3



Dynamic Programming (DP)

Brute-Force:
forall choice g do

1 Problem is reduced into k subproblems n1, n2, . . . , nk
2 Solve subproblems recursively ⇒ SOL1,SOL2, . . . ,SOLk
3 Combine choice from (1) with solutions from (3), to output

solution SOL[g ]

endfor

Output min /maxg SOL[g ]

Note than now last step is computable. All you have to do is
solve for all g , store all solutions SOL[g ], and find the min.

NOOOOOOOOOOOO!!!

CS3AC3



Dynamic Programming (DP)

Brute-Force:
forall choice g do

1 Problem is reduced into k subproblems n1, n2, . . . , nk
2 Solve subproblems recursively ⇒ SOL1,SOL2, . . . ,SOLk
3 Combine choice from (1) with solutions from (3), to output

solution SOL[g ]

endfor

Output min /maxg SOL[g ]

Note than now last step is computable. All you have to do is
solve for all g , store all solutions SOL[g ], and find the min.

NOOOOOOOOOOOO!!!

CS3AC3



Dynamic Programming (DP)

Brute-Force:
forall choice g do

1 Problem is reduced into k subproblems n1, n2, . . . , nk
2 Solve subproblems recursively ⇒ SOL1,SOL2, . . . ,SOLk
3 Combine choice from (1) with solutions from (3), to output

solution SOL[g ]

endfor

Output min /maxg SOL[g ]

Note than now last step is computable. All you have to do is
solve for all g , store all solutions SOL[g ], and find the min.

NOOOOOOOOOOOO!!!

CS3AC3



Dynamic Programming (DP)

Brute-Force:
forall choice g do

1 Problem is reduced into k subproblems n1, n2, . . . , nk
2 Solve subproblems recursively ⇒ SOL1,SOL2, . . . ,SOLk
3 Combine choice from (1) with solutions from (3), to output

solution SOL[g ]

endfor

Output min /maxg SOL[g ]

Note than now last step is computable. All you have to do is
solve for all g , store all solutions SOL[g ], and find the min.

NOOOOOOOOOOOO!!!

CS3AC3



Dynamic Programming (DP)

Can we avoid doing too much work in our brute-force recursions?

CS3AC3



Dynamic Programming (DP)

Can we avoid doing too much work in our brute-force recursions?

CS3AC3



Dynamic Programming (DP)

Solving optimization (maximization/minimization) problems

1 Characterize the structure of an optimal solution.

2 Recursively define the value of an optimal solution.

3 Compute the value of an optimal solution.

4 Construct an optimal solution from computed information.

Step 4 is not needed if want only the value of the optimal
solution.

To implement Step 4, just keep track of the best g over all
iterations of the loop.

CS3AC3



Dynamic Programming (DP)

Solving optimization (maximization/minimization) problems

1 Characterize the structure of an optimal solution.

2 Recursively define the value of an optimal solution.

3 Compute the value of an optimal solution.

4 Construct an optimal solution from computed information.

Step 4 is not needed if want only the value of the optimal
solution.

To implement Step 4, just keep track of the best g over all
iterations of the loop.

CS3AC3



Dynamic Programming (DP)

Solving optimization (maximization/minimization) problems

1 Characterize the structure of an optimal solution.

2 Recursively define the value of an optimal solution.

3 Compute the value of an optimal solution.

4 Construct an optimal solution from computed information.

Step 4 is not needed if want only the value of the optimal
solution.

To implement Step 4, just keep track of the best g over all
iterations of the loop.

CS3AC3



Dynamic Programming (DP)

Solving optimization (maximization/minimization) problems

1 Characterize the structure of an optimal solution.

2 Recursively define the value of an optimal solution.

3 Compute the value of an optimal solution.

4 Construct an optimal solution from computed information.

Step 4 is not needed if want only the value of the optimal
solution.

To implement Step 4, just keep track of the best g over all
iterations of the loop.

CS3AC3



Dynamic Programming (DP)

Solving optimization (maximization/minimization) problems

1 Characterize the structure of an optimal solution.

2 Recursively define the value of an optimal solution.

3 Compute the value of an optimal solution.

4 Construct an optimal solution from computed information.

Step 4 is not needed if want only the value of the optimal
solution.

To implement Step 4, just keep track of the best g over all
iterations of the loop.

CS3AC3



Dynamic Programming (DP)

Solving optimization (maximization/minimization) problems

1 Characterize the structure of an optimal solution.

2 Recursively define the value of an optimal solution.

3 Compute the value of an optimal solution.

4 Construct an optimal solution from computed information.

Step 4 is not needed if want only the value of the optimal
solution.

To implement Step 4, just keep track of the best g over all
iterations of the loop.

CS3AC3



Dynamic Programming (DP)

Solving optimization (maximization/minimization) problems

1 Characterize the structure of an optimal solution.

2 Recursively define the value of an optimal solution.

3 Compute the value of an optimal solution.

4 Construct an optimal solution from computed information.

Step 4 is not needed if want only the value of the optimal
solution.

To implement Step 4, just keep track of the best g over all
iterations of the loop.

CS3AC3



Dynamic Programming (DP)

1. Characterize the structure of an optimal solution.

Divide-and-conquer:

1 No choice to define subproblems (e.g. split in halves).

2 Optimal solution of (the many) subproblems.

3 A theorem that combines (2) ⇒ Optimal solution.

CS3AC3



Dynamic Programming (DP)

1. Characterize the structure of an optimal solution.
Divide-and-conquer:

1 No choice to define subproblems (e.g. split in halves).

2 Optimal solution of (the many) subproblems.

3 A theorem that combines (2) ⇒ Optimal solution.

CS3AC3



Dynamic Programming (DP)

1. Characterize the structure of an optimal solution.
Greedy:

1 Greedy choice (out of many) defines subproblem.

2 Optimal solution of (the one) subproblem.

3 A theorem that combines (1) + (2) ⇒ Optimal solution.

CS3AC3



Dynamic Programming (DP)

1. Characterize the structure of an optimal solution.
DP & Brute-force:

1 Best choice (out of many) defines subproblems.

2 Optimal solution of (the many) subproblems.

3 A theorem that combines (1) + (2) ⇒ Optimal solution.

CS3AC3



Dynamic Programming (DP)

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

Divide-and conquer:

e.g . OPT (P) = OPT (P/2) + OPT (P/2)

CS3AC3



Dynamic Programming (DP)

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

Divide-and conquer:

e.g . OPT (P) = OPT (P/2) + OPT (P/2)

CS3AC3



Dynamic Programming (DP)

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

Greedy:

OPT (P) = cost(g) + SOLsub, for greedy choice g .

CS3AC3



Dynamic Programming (DP)

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

DP & Brute-force:

OPT (P) = min
g
{cost(g) + SOL1(g) + . . . + SOLk(g)}

CS3AC3



Dynamic Programming (DP)

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution.

We have the recursion, implement recursive (or iterative)
algorithm.

(only for DP) Use a table with optimal values of subproblems
we have already solved.

CS3AC3



Dynamic Programming (DP)

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution.

We have the recursion, implement recursive (or iterative)
algorithm.

(only for DP) Use a table with optimal values of subproblems
we have already solved.

CS3AC3



Dynamic Programming (DP)

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution.

We have the recursion, implement recursive (or iterative)
algorithm.

(only for DP) Use a table with optimal values of subproblems
we have already solved.

CS3AC3



Dynamic Programming (DP)

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution.

We have the recursion, implement recursive (or iterative)
algorithm.

(only for DP) Use a table with optimal values of subproblems
we have already solved.

CS3AC3



Dynamic Programming (DP)

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution.

4. Construct an optimal solution from computed information.

(DP & Brute-force) Keep track of the best choice g over all
for-loop iterations.

CS3AC3



Dynamic Programming (DP)

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution.

4. Construct an optimal solution from computed information.

(DP & Brute-force) Keep track of the best choice g over all
for-loop iterations.

CS3AC3



Dynamic Programming (DP)

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution.

4. Construct an optimal solution from computed information.

(DP & Brute-force) Keep track of the best choice g over all
for-loop iterations.

CS3AC3



Dynamic Programming (DP)

Example: Rod-Cutting

Note: There are 2n−1 ways to cut a rod of length n.

CS3AC3



Dynamic Programming (DP)

Example: Rod-Cutting

Note: There are 2n−1 ways to cut a rod of length n.

CS3AC3



Dynamic Programming (DP)

Step 1: Characterize the structure of an optimal solution.

Optimal break: i1 + i2 + . . . + ik = n
Optimal revenue: pi1 + pi2 + . . . + pik = rn

⇒ Best first cut of length i ∪ optimal cutting of rest n − i

Step 2: Recursively define the value of an optimal solution.

r0 = 0, rn = max
1≤i≤n

{pi + rn−i}

CS3AC3



Dynamic Programming (DP)

Step 1: Characterize the structure of an optimal solution.

Optimal break: i1 + i2 + . . . + ik = n
Optimal revenue: pi1 + pi2 + . . . + pik = rn

⇒ Best first cut of length i ∪ optimal cutting of rest n − i

Step 2: Recursively define the value of an optimal solution.

r0 = 0, rn = max
1≤i≤n

{pi + rn−i}

CS3AC3



Dynamic Programming (DP)

Step 1: Characterize the structure of an optimal solution.

Optimal break: i1 + i2 + . . . + ik = n
Optimal revenue: pi1 + pi2 + . . . + pik = rn

⇒ Best first cut of length i ∪ optimal cutting of rest n − i

Step 2: Recursively define the value of an optimal solution.

r0 = 0, rn = max
1≤i≤n

{pi + rn−i}

CS3AC3



Dynamic Programming (DP)

Step 3: Compute the value of an optimal solution.

CS3AC3



Dynamic Programming (DP)

Step 3: Compute the value of an optimal solution.

CS3AC3



Dynamic Programming (DP)

Step 3: Compute the value of an optimal solution.

T (n) = 1 +
n−1∑
j=0

T (j)

⇒ T (n) = 2n

CS3AC3



Dynamic Programming (DP)

Step 3: Compute the value of an optimal solution.

T (n) = 1 +
n−1∑
j=0

T (j)⇒ T (n) = 2n

CS3AC3



Dynamic Programming (DP)

CS3AC3



Dynamic Programming (DP)

CS3AC3



Dynamic Programming (DP)

CS3AC3



Dynamic Programming (DP)

CS3AC3



Dynamic Programming (DP)

CS3AC3



Dynamic Programming (DP)

Step 4: Construct an optimal solution from computed
information.

i 0 1 2 3 4 5 6 7 8 9 10

r [i ] 0 1 5 8 10 13 17 18 22 25 30
s[i ] 0 1 2 3 2 2 6 1 2 3 10

CS3AC3



Dynamic Programming (DP)

Step 4: Construct an optimal solution from computed
information.

i 0 1 2 3 4 5 6 7 8 9 10

r [i ] 0 1 5 8 10 13 17 18 22 25 30
s[i ] 0 1 2 3 2 2 6 1 2 3 10

CS3AC3



Dynamic Programming (DP)

Step 4: Construct an optimal solution from computed
information.

i 0 1 2 3 4 5 6 7 8 9 10

r [i ] 0 1 5 8 10 13 17 18 22 25 30
s[i ] 0 1 2 3 2 2 6 1 2 3 10

CS3AC3


