CS/SE 2C03 Data Structures & Algorithms Graduate Attributes and Indicators

George Karakostas

January 12, 2015

1 What the students should know and be able to do

- 1. Students should know and understand
 - (a) Worst case analysis of algorithms
 - (b) Basic searching algorithms (binary search, search trees, hashing)
 - (c) Basic sorting algorithms (elementary sorts, quicksort, mergesort, heapsort)
 - (d) Elementary data structures (stacks, queues, priority queues, search trees, heaps, hash tables, tries, graph representations)
 - (e) Graph representations & algorithms (topological sort, breadth/depth-first-search, strongly connected components, minimum spanning trees, shortest paths)
 - (f) Basic string algorithms
 - (g) FSA's and Regular expressions
- 2. Students should be able to
 - (a) Analyze the running time of algorithms.
 - (b) Identify the time/space trade-offs in designing data structures and algorithms.
 - (c) Given a problem such as searching, sorting, graph and string problems, select from a range of possible algorithms, provide justification for that selection.
 - (d) Understand implementation issues for the algorithms studied.
 - (e) Reduce a given application to (or decompose it into) problems already studied.

2 Mapping to Attributes with their Indicators

A01 Knowledge			
(3) Competence in Engineering Fundamentals	2a, 2b, 2d		
(4) Competence in specialized engineering knowledge	1b–1g		
A02 Analysis			
(5) Ability to identify the essential characteristics of a technical problem,	2b		
including scope			
(6) Ability to identify reasonable assumptions (including identification of un-	2c		
certainties and imprecise information) that could or should be made before a			
solution path is proposed			
(7) Ability to identify a range of suitable engineering fundamentals (including	1a, 2a		
mathematical techniques) that would be potentially useful for analyzing a			
technical problem			
(8) Ability to decompose and organize a problem into manageable sub-	2e		
problems			
(9) Ability to obtain substantiated conclusions as a results of a problem solu-	2d		
tion, including recognizing the limitations of the solutions			
A03 Investigation			
(10) Able to recognize and discuss applicable theory knowledge base	1b–1g		
(11) Capable of selecting appropriate model and methods and identify as-	2c		
sumptions and constraints			
A04 Design			
(17) Recognizes and follows an engineering design process	2d, 2e		
(18) Recognizes and follows engineering design principles	2b, 2c		
(25) Properly documents and communicates processes and outcomes			
A05 Tools			
A06 Work			
A07 Communication			
(37) Demonstrates an ability to respond to technical and non-technical in-	2a		
structions and questions			
(39) Demonstrates appropriate use of technical vocabulary	2a–2e		
(40) Constructs effective written arguments	2a–2c		
A08 Professionalism			
A09 Impact			
A10 Ethics			
A11 Economics			
A12 Learning			
A13 Sustainability			

3 Course work

The course work consists of assignments (15%), one midterm (40%), and a final exam (45%).

4 Prerequisite learning objectives

(All references are to the 2013-2014 versions of the course reports)

- COMP SCI/SFWR ENG 2DM3 (all learning objectives)
- COMP SCI/SFWR ENG 2S03 (2b, 2c, 2d, 2i, 2k)

5	Learning	outcomes	and	indicators	
----------	----------	----------	-----	------------	--

Topic	Below	Marginal	Meets	Exceeds
1a, 2a	cannot under- stand and apply the asymptotic analysis of algorithms	can apply some asymp- totic analysis techniques for simple problems	can apply asymptotic analysis tech- niques to derive approximate running times for an algorithm	can apply complicated mathematical reasoning to develop tighter asymptotic analysis and identify areas for improving the perfor- mance of the algorithm
1b	doesn't know how to algo- rithmically solve searching problems	cannot apply the best avail- able searching algorithm	can apply best available searching al- gorithm out of linear/binary search, binary search trees (balanced and unbalanced), hash tables	can mod- ify available searching al- gorithms to better fit a given problem
1c	doesn't know how to algo- rithmically solve sorting problems	cannot apply the best avail- able sorting algorithm	can apply best available sort- ing algorithm (insertionsort, quicksort, heap- sort, mergesort, etc.)	can modify available sort- ing algorithms to better fit a given problem
1d	doesn't know how to use elementary data structures (stacks, queues, priority queues, search trees, heaps, hash tables, tries)	knows how to use some elementary data structures (stacks, queues, priority queues, search trees, heaps, hash tables, tries)	knows how and when to use stacks, queues, priority queues, search trees, heaps, hash tables, tries	can modify available ele- mentary data structures to better fit a given problem

1e	doesn't know	knows how to	knows how	can modify
	how to use	use some graph	and when to	available graph
	different graph	representations	use graph rep-	representations
	representations	and elemen-	resentations	and elementary
	and elemen-	tary graph	and elemen-	graph algo-
	tary graph	algorithms	tary graph	rithms to better
	algorithms	algorithms		fit a given
				problem
lf	doesn't know how to algorith- mically solve string problems	cannot correctly apply all avail- able string algo- rithms	can apply an appropriate string algo- rithm (brute- force, KMP, Boyer-Moore, Rabin-Karp etc.) to a given problem	can modify available string algorithms to better fit a given problem
1g	doesn't know what FSA's and regular expressions are	can come close to constructing an FSA or reg- ular expression to describe given specs	can construct an FSA or reg- ular expression to describe given specs	can construct very efficient FSA or regular expression to describe given specs

2b	cannot give any bounds for the	can give some trivial bounds	can give good bounds for the	can recom- mend an al-
	use of time and space by algo- rithms	for the use of time and space by algorithms, but cannot identify the trade-off	use of time and space by algorithms, and can identify the trade-off	structure for a specific prob- lem based on space/time tradeoffs
2c	cannot select an algorithm that solves a given problem	can identify an algorithm rele- vant to a given problem, but without satisfy- ing the existing assumptions	can identify an algorithm relevant to a given problem, that also satis- fies the existing assumptions	can identify an algorithm relevant to a given problem, that also satis- fies the existing assumptions, and rigorously justify the selection as best amongst alternatives
2d	cannot give a correct imple- mentation of an algorithm	can give a mostly correct implemen- tation of an algorithm but not necessarily efficient	can give a cor- rect and effi- cient implemen- tation of an al- gorithm	can give the most efficient correct imple- mentation of an algorithm
2e	doesn't know what is a proper way to reduce a given problem to another (or decompose it into subprob- lems) or what intractability means	knows what reducing a given problem to another, or decompo- sition into subproblems, or intractability means	knows what reducing a given problem to another, decomposition into subprob- lems, and intractability mean; can perform simple reductions	knowswhatreducingagivenproblemtoanother,decompositionintosubprob-lems,andintractabilitymean;canperformso-phisticatedreductions