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Analysis of algorithms

Worst case analysis We try to estimate the largest possible
running time T (/N) of the algorithm over all inputs of size V.
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Analysis of algorithms

Worst case analysis We try to estimate the largest possible
running time T (/N) of the algorithm over all inputs of size V.

Input size N: Typically the number of "atomic” objects handled
by the algorithm. For example:

@ For searching/sorting an array: N=# of keys n

e For DFS: N=[# of nodes n] + [# of edges m] (adj. list)
OR N=n? (adj. matrix)

@ For integer multiplication alg: N=% of bits

@ etc...
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Analysis of algorithms

Worst case analysis We try to estimate the largest possible
running time T (/N) of the algorithm over all inputs of size V.
Recall the tilde approximation T(N) ~ g(N) from CS 2C03:

T(N)
lim — 2 =1
NlnoogN)
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What does this tell us? That T(N) is actually of the form:
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Analysis of algorithms

Worst case analysis We try to estimate the largest possible
running time T (/N) of the algorithm over all inputs of size V.

Recall the tilde approximation T(N) ~ g(N) from CS 2C03:

lim T(N) =1
N—oo & N)
What does this tell us? That T(N) is actually of the form:
T(N) = g(N) + lower order terms...

so that we will have

. T(N) . g(N) + lower order terms...
lim ——= = |lim
N—oo g(N) N—oo g(N)
14 lim lower order terms... 140-1
N—oco g(N)
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Analysis of algorithms

Worst case analysis We try to estimate the largest possible
running time T (/N) of the algorithm over all inputs of size V.

...i.e., we may not know T (N) exactly, but we need to guess
exactly its highest order component g(N).
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exactly its highest order component g(N). For example, if

T(N) = 3N? 4+ 20v/N — 40N log N,

we need to guess
g(N) = 3N

A guess g(N) = cN?, with some constant ¢ # 3 won’t do!
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Analysis of algorithms

Worst case analysis We try to estimate the largest possible
running time T (/N) of the algorithm over all inputs of size V.

...i.e., we may not know T (N) exactly, but we need to guess
exactly its highest order component g(N). For example, if

T(N) = 3N? 4+ 20v/N — 40N log N,

we need to guess
g(N) = 3N
A guess g(N) = cN?, with some constant ¢ # 3 won’t do!

B l G problem: What if we can guess N2, but not the exact c?
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Analysis of algorithms

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ > 0 and
no > 0 such that for all n > ng we have T(n) < c- f(n).

CS 3AC3



Analysis of algorithms

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ > 0 and
no > 0 such that for all n > ng we have T(n) < c- f(n).

Lower bounds. T(n) is Q(f(n)) if there exist constants ¢ > 0 and
no > 0 such that for all n > ny we have T(n) > c - f(n).

CS 3AC3



Analysis of algorithms

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ > 0 and
no > 0 such that for all n > ng we have T(n) < c- f(n).

Lower bounds. T(n) is Q(f(n)) if there exist constants ¢ > 0 and
no > 0 such that for all n > ny we have T(n) > c - f(n).

Tight bounds. T(n) is ©(f(n)) if it is both O(f(n)) and Q(f(n)).

CS 3AC3



Analysis of algorithms

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ > 0 and
no > 0 such that for all n > ng we have T(n) < c- f(n).

Lower bounds. T(n) is Q(f(n)) if there exist constants ¢ > 0 and
no > 0 such that for all n > ny we have T(n) > c - f(n).

Tight bounds. T(n) is ©(f(n)) if it is both O(f(n)) and Q(f(n)).

e We write T(n) = O(f(n)), T(n) = Q(f(n)), T(n) = O(f(n))
(abuse of notation!).

CS 3AC3



Analysis of algorithms

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ > 0 and
no > 0 such that for all n > ng we have T(n) < c- f(n).

Lower bounds. T(n) is Q(f(n)) if there exist constants ¢ > 0 and
no > 0 such that for all n > ny we have T(n) > c - f(n).

Tight bounds. T(n) is ©(f(n)) if it is both O(f(n)) and Q(f(n)).

e We write T(n) = O(f(n)), T(n) = Q(f(n)), T(n) = O(f(n))
(abuse of notation!).

@ Our analysis is still asymptotic, since it holds for large
enough n (at least as big as np).

CS 3AC3



Analysis of algorithms

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ > 0 and
no > 0 such that for all n > ng we have T(n) < c- f(n).

Lower bounds. T(n) is Q(f(n)) if there exist constants ¢ > 0 and
no > 0 such that for all n > ny we have T(n) > c - f(n).

Tight bounds. T(n) is ©(f(n)) if it is both O(f(n)) and Q(f(n)).

e We write T(n) = O(f(n)), T(n) = Q(f(n)), T(n) = O(f(n))
(abuse of notation!).

@ Our analysis is still asymptotic, since it holds for large
enough n (at least as big as np).

@ For input sizes 0 < n < np we guarantee nothing!
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Asymptotic growth of functions

c28(n)
f(n)
c1g(n)
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Asymptotic analysis of algorithms
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Asymptotic analysis of algorithms

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ > 0 and
no > 0 such that for all n > ng we have T(n) < c- f(n).

Lower bounds. T(n) is Q(f(n)) if there exist constants ¢ > 0 and
no > 0 such that for all n > ny we have T(n) > c - f(n).

Tight bounds. T(n) is ©(f(n)) if it is both O(f(n)) and Q(f(n)).

Ex: T(n) =32n% +17n+ 32.
T(n) is O(n?), O(n®),Q(n?),Q(n), and ©(n?).
T(n) is not O(n),Q(n3),O(n), or B(n).
T(n) = O(1) means T(n)=constant.

CS 3AC3



Asymptotic analysis of algorithms

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ > 0 and
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e T(n) = O(1) means T(n)=constant.
@ Common meaningless statement:” Any comparison-based
sorting algorithm requires at least O(nlog n) comparisons!”
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Upper bounds. T(n) is O(f(n)) if there exist constants ¢ > 0 and
no > 0 such that for all n > ng we have T(n) < c- f(n).
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no > 0 such that for all n > ny we have T(n) > c - f(n).

Tight bounds. T(n) is ©(f(n)) if it is both O(f(n)) and Q(f(n)).

Ex: T(n) =32n% +17n+ 32.
o T(n)is O(n?),0(n%),Q(n?),Q2(n), and ©(n?).
e T(n) is not O(n),Q(n),O(n), or O(n3).
e T(n) = O(1) means T(n)=constant.
@ Common meaningful statement:" Any comparison-based
sorting algorithm requires Q(nlog n) comparisons!”
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Transitivity.
e If f = O(g) and g = O(h) then f = O(h).
o If f =Q(g) and g = Q(h) then f = Q(h).
o If f =0O(g) and g = ©(h) then f = O(h).
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o If f = O(h) and g = O(h) then f + g = O(h).
o If f =Q(h) and g = Q(h) then f + g = Q(h).
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Transitivity.
e If f = O(g) and g = O(h) then f = O(h).
o If f =Q(g) and g = Q(h) then f = Q(h).
o If f =0O(g) and g = ©(h) then f = O(h).

Additivity.
o If f = O(h) and g = O(h) then f + g = O(h).
o If f =Q(h) and g = Q(h) then f + g = Q(h).
o If f =0(h) and g = ©(h) then f + g = O(h).

Other.
o If f = O(c - h) for some constant c then f = O(h).
Same for 2, ©.
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Asymptotic analysis of algorithms

Comparison between O, 2, © estimates and tilde estimates:
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Comparison between O, 2, © estimates and tilde estimates:
@ Both are asymptotic.

o 0,0, O estimates are weaker than tilde estimates:

(2.1) Suppose that for two functions f(n) and g(n) we have:

f(n)

n—oo g(n)

=C

for some constant c. Then f(n) = ©(cg(n)) = ©(g(n)).
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Asymptotic analysis of algorithms

Comparison between O, 2, © estimates and tilde estimates:
@ Both are asymptotic.

o 0,0, O estimates are weaker than tilde estimates:

(2.1) Suppose that for two functions f(n) and g(n) we have:

f(n)

n—oo g(n)

=C

for some constant c. Then f(n) = ©(cg(n)) = ©(g(n)).

Proof: By the definition of lim. O

CS 3AC3



Asymptotic Bounds for Some Common Functions

Polynomials. ag + ain + ...+ agn® = ©(n9) if ag > 0.
Logarithms. O(log, n) = O(logy, n) for any constants a, b > 0.
Logarithms. For every x > 0, logn = O(n*).

Exponentials. For every r > 1 and every d > 0, n? = O(r").
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Examples: Constant time O(1)

@ INSERT(X,A) in an unsorted array A.
e FINDMIN(H) in a heap H.
e FIND(X,S) in a quick-find Union-Find structure S.
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Examples: Logarithmic time O(log n)

@ Binary search in a sorted array.
@ SEARCH(X,T) in a red-black tree T.
e UNION, FIND in a weighted quick-find Union-Find structure.
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Examples: Linear time O(n)

e FINDMAX(A) in an unsorted array A.
@ Search in a hash table with chaining.
e BFS, DFS run in time O(N) = O(n+ m)
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Examples: Linearithmetic time O(nlog n)

@ Sorting. MERGESORT and HEAPSORT make O(nlog n)
comparisons. We have shown that no comparison-based
sorting alg makes fewer than 1/2(nlog n), hence
MERGESORT and HEAPSORT make ©(nlog n) comparisons.

e MST takes O(mlog n) time by Kruskal's or Prim’s alg.
e DIJSTRA runs in O(m + nlog n) time.
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Examples: Quadratic time O(n?)

@ Multiplication of 1 x N vector with N x N matrix takes
O(N?) arithmetic ops.

o QUICKSORT makes O(n?) comparisons in the worst case. It
also requires Q(nlog n) comparisons (notice the gap).
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Examples: Cubic time O(n®)

o BELLMAN-FORD is O(n3).

o (Naive) multiplication of two N x N matrices takes O(N3)
arithmetic ops.
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Examples: Cubic time O(n®)

o BELLMAN-FORD is O(n3).

o (Naive) multiplication of two N x N matrices takes O(N3)
arithmetic ops.

...but can do it with O(N'°%27) ops with Strassen's alg - . -
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Pseudo-polynomial time

Definition

pseudo /'scodd/ adj. not genuine; sham.
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Q: Algorithm: Divide n by 2,3,...,+/n; if non evenly, then 'Yes'.
Is it polynomial?
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Pseudo-polynomial time

Definition

pseudo /'scodd/ adj. not genuine; sham.

Example:
INPUT: Integer n
OutpuT: 'Yes' if nis prime

Q: Algorithm: Divide n by 2,3,...,+/n; if non evenly, then 'Yes'.

Is it polynomial?
A: NO! The input size is s = log, n
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Pseudo-polynomial time

Definition

pseudo /'scodd/ adj. not genuine; sham.

Example:
INPUT: Integer n
OutpuT: 'Yes' if nis prime

Q: Algorithm: Divide n by 2,3,...,+/n; if non evenly, then 'Yes'.
Is it polynomial?

A: NO! The input size is s = log, n, and the running time is
logy n

T(s)=0(y/n)=0(272 )= O(ﬁs), exponential on the size of
the input.
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Pseudo-polynomial time

Definition

pseudo /'scodd/ adj. not genuine; sham.

Example:
INPUT: Integer n
OutpuT: 'Yes' if nis prime

Q: Algorithm: Divide n by 2,3,...,+/n; if non evenly, then 'Yes'.
Is it polynomial?

A: NO! The input size is s = log, n, and the running time is
logy n

T(s)=0(y/n)=0(272 )= O(ﬁs), exponential on the size of
the input.

Bottom line: Always consider the input size! (stay tuned for flow
algorithms, new appreciation for Dijkstra, Kruskal, Prim...)
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Examples: Exponential time

Find a clique of size k in an undirected graph.
INpUT: Graph G = (V, E), an integer k
OuTprPUT: "Yes' if there is a clique with k nodes
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Examples: Exponential time

Find a clique of size k in an undirected graph.
INpUT: Graph G = (V, E), an integer k
OuTprPUT: "Yes' if there is a clique with k nodes

Brute force: Try all (}) subsets of V; if clique found, output 'Yes'
Running time: About O((})) = O(k® - nk/k!) = O(n*).
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Find a clique of size k in an undirected graph.
INpUT: Graph G = (V, E), an integer k
OuTprPUT: "Yes' if there is a clique with k nodes

Brute force: Try all (}) subsets of V; if clique found, output 'Yes'
Running time: About O((})) = O(k® - nk/k!) = O(n*).

In general, our algorithms search a huge (e.g., exponential on the

size of the input) space for a solution; therefore, brute force
searching takes exponential time (worst case).

CS 3AC3



Examples: Exponential time

Find a clique of size k in an undirected graph.
INpUT: Graph G = (V, E), an integer k
OuTprPUT: "Yes' if there is a clique with k nodes

Brute force: Try all (}) subsets of V; if clique found, output 'Yes'
Running time: About O((})) = O(k® - nk/k!) = O(n*).

In general, our algorithms search a huge (e.g., exponential on the
size of the input) space for a solution; therefore, brute force

searching takes exponential time (worst case).

Big complexity problem: For many problems, our currently best
is brute force. Can we do better?
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The complexity class P

Efficient algorithms: Algorithms that run in polynomial time O(n9)
are much better than brute force, and the only practical(?) ones
(especially when the degree d is small, usually smaller than 3).
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Definition
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A complexisy class is a set of problems.

Example: All problems that can be solved by an algorithm belong
to the class of Decidable problems. The HALTING problem
doesn't belong to this class.
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algorithm.
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The complexity class P

Efficient algorithms: Algorithms that run in polynomial time O(n9)
are much better than brute force, and the only practical(?) ones
(especially when the degree d is small, usually smaller than 3).

Definition

A complexisy class is a set of problems.

Example: All problems that can be solved by an algorithm belong
to the class of Decidable problems. The HALTING problem
doesn't belong to this class.

Definition

P is the class of all problems that can be solved by a polynomial
algorithm.

Example: Essentially all the problems we studied in CS 2C03
belong in P.
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The complexity class P

Efficient algorithms: Algorithms that run in polynomial time O(n9)
are much better than brute force, and the only practical(?) ones
(especially when the degree d is small, usually smaller than 3).

Definition

A complexisy class is a set of problems.

Example: All problems that can be solved by an algorithm belong
to the class of Decidable problems. The HALTING problem
doesn't belong to this class.

Definition

P is the class of all problems that can be solved by a polynomial
algorithm.

Example: Essentially all the problems we studied in CS 2C03
belong in P. This is no coincidence: P is the set of problems that
can be solved efficiently.
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Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10%° years, we simply record the algorithm as
taking a very long time.

n nlog, n n? n? 1.5% P n!
n=10 < 1sec < 1 sec < 1 sec < 1sec < 1sec < 1 sec 4 sec
n=30 <1 sec <1lsec <1sec <1 sec <1 sec 18 min  10% years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long
n =100 <lsec <lsec <1sec lsec 12,892 years  10'7 years  very long

n=1,000 < 1sec < 1sec 1 sec 18 min very long  very long very long
n =10,000 < 1sec < 1sec 2 min 12 days very long very long very long
n = 100,000 < 1sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long
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How to analyze algorithms

A typical algorithm:
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How to analyze algorithms
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How to analyze algorithms

A typical algorithm:
@ Algorithm makes some decision(s)
@ Problem is broken into k subproblems (ny, ..., nk)
© Solve k subproblems recursively

@ Algorithm combines decision(s) from (1) with solutions from
(3), to output solution
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How to analyze algorithms

A typical algorithm:
@ Algorithm makes some decision(s)
@ Problem is broken into k subproblems (ny, ..., nk)
© Solve k subproblems recursively

@ Algorithm combines decision(s) from (1) with solutions from
(3), to output solution

k
Recurrence: T(n) = [work done in (1),(2),(4)] + Z T(n;)
i=1
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Divide-and-conquer algorithms

A typical D&C algorithm:
o
@ Divide: Problem is broken into k subproblems (ni, ..., nk)
© Conquer: Solve k subproblems recursively

© Algorithm combines solutions from (3), to output solution
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Divide-and-conquer algorithms

A typical D&C algorithm:
o
@ Divide: Problem is broken into k subproblems (ni, ..., nk)
© Conquer: Solve k subproblems recursively

© Algorithm combines solutions from (3), to output solution

k
Recurrence: T(n) = [work done in (2),(4)] + Z T(nj)
i=1
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Divide-and-conquer algorithms

Example of D&C: MERGESORT
o
@ MERGESORT(A[L..7]), MERGESORT(A[7..n])
© MERGE(A[L..n/2], A[n/2..n])
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Divide-and-conquer algorithms

Example of D&C: MERGESORT

o
@ MERGESORT(A[L..7]), MERGESORT(A[7..n])
© MERGE(A[L..n/2], A[n/2..n])

Recurrence: T(n)=cn+2T(n/2),T(1)=0
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Solving recurrences

First method: unrolling the recurrence
Try to find the recurrence pattern by unrolling it:

T(n) =cn+2T(n/2) (level 1)
=cn+(2¢(n/2)+4T(n/4)) =2cn+4T(n/4) (level 2)
= 2cn + (4¢c(n/4) +8T(n/8)) = 3cn+8T(n/8) (level 3)
— ken +2KT(n/2k) (level k)
- .(Iog n)cn 4 2'°8"T(n/2'°8") = cnlog n (level log n)
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Solving recurrences

First method: unrolling the recurrence
Try to find the recurrence pattern by unrolling it:

T(n) =cn+2T(n/2) (level 1)
=cn+(2¢(n/2)+4T(n/4)) =2cn+4T(n/4) (level 2)
= 2cn + (4¢c(n/4) +8T(n/8)) = 3cn+8T(n/8) (level 3)
— ken +2KT(n/2k) (level k)
- .(Iog n)cn 4 2'°8"T(n/2'°8") = cnlog n (level log n)

T(n) = O(nlogn)
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Solving recurrences

Second method: substitution
@ Try to guess the recurrence solution

@ Prove that substituting your guess for the recurrence verifies
the guess
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Second method: substitution
@ Try to guess the recurrence solution

@ Prove that substituting your guess for the recurrence verifies
the guess

Example: T(n)=cn+2T(n/2),T(1)=0
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Solving recurrences

Second method: substitution
@ Try to guess the recurrence solution

@ Prove that substituting your guess for the recurrence verifies
the guess

Example: T(n) =cn+2T(n/2), T(1)=0
@ We guess that T(n) = O(nlogn), i.e., T(n) < knlog n for
some constant k=(?)
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Solving recurrences

Second method: substitution
@ Try to guess the recurrence solution

@ Prove that substituting your guess for the recurrence verifies
the guess

Example: T(n) =cn+2T(n/2), T(1)=0
@ We guess that T(n) = O(nlogn), i.e., T(n) < knlog n for
some constant k=(?)

2]
T(n)=cn+2T(n/2)
< cn+ 2k(n/2)log(n/2)
= cn+ kn(logn — 1)
= knlogn+ cn— kn
< knlogn

...provided we pick a k > c.



Solving recurrences

Theorem (Master Theorem)
Let a>1,b > 1 be constants, and

T(n) = aT(n/b) + f(n)

@ 7(n) = O(n'°82=%) for constant ¢ > 0 = T(n) = ©(n'°8>7)
@ f(n) = O(n'°8t?) = T(n) = O(n'°8»? log n)
Q f(n) = Q(n'°8:2+) for constant ¢ > 0 and af (n/b) < cf(n)
for some constant ¢ < 1= T(n) = ©(f(n))
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Solving recurrences

Theorem (Master Theorem)
Let a>1,b > 1 be constants, and

T(n) = aT(n/b) + f(n)

@ 7(n) = O(n'°82=%) for constant ¢ > 0 = T(n) = ©(n'°8>7)
@ f(n) = O(n'°8t?) = T(n) = O(n'°8»? log n)
Q f(n) = Q(n'°8:2+) for constant ¢ > 0 and af (n/b) < cf(n)
for some constant ¢ < 1= T(n) = ©(f(n))

Examples
e T(n)=2T(n/2)+ ©O(n)
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Solving recurrences

Theorem (Master Theorem)
Let a>1,b > 1 be constants, and

T(n) = aT(n/b) + f(n)

@ 7(n) = O(n'°82=%) for constant ¢ > 0 = T(n) = ©(n'°8>7)
@ f(n) = O(n'°8t?) = T(n) = O(n'°8»? log n)
Q f(n) = Q(n'°8:2+) for constant ¢ > 0 and af (n/b) < cf(n)
for some constant ¢ < 1= T(n) = ©(f(n))

Examples
e T(n)=2T(n/2)+ ©O(n)
a=2,b=2f(n)=O(n) = O(n"e?)
= T(n) = ©(n'*822 log n) = O(nlog n) (Case 2)
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Solving recurrences

Theorem (Master Theorem)
Let a>1,b > 1 be constants, and

T(n) = aT(n/b) + f(n)

@ 7(n) = O(n'°82=%) for constant ¢ > 0 = T(n) = ©(n'°8>7)
@ f(n) = O(n'°8t?) = T(n) = O(n'°8»? log n)
Q f(n) = Q(n'°8:2+) for constant ¢ > 0 and af (n/b) < cf(n)
for some constant ¢ < 1= T(n) = ©(f(n))

Examples
e T(n)=T(2n/3)+0©(1)
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Solving recurrences

Theorem (Master Theorem)
Let a>1,b > 1 be constants, and

T(n) = aT(n/b) + f(n)

@ 7(n) = O(n'°82=%) for constant ¢ > 0 = T(n) = ©(n'°8>7)
@ f(n) = O(n'°8t?) = T(n) = O(n'°8»? log n)
Q f(n) = Q(n'°8:2+) for constant ¢ > 0 and af (n/b) < cf(n)
for some constant ¢ < 1= T(n) = ©(f(n))

Examples
o T(n) = T(2n/3)+0(1)
a=1,b=3/2,f(n)=0(1) = O(n'8s1)
= T(n) = ©(n"&/2Llog n) = O(log n) (Case 2)
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Solving recurrences

Theorem (Master Theorem)
Let a>1,b > 1 be constants, and

T(n) = aT(n/b) + f(n)

@ 7(n) = O(n'°82=%) for constant ¢ > 0 = T(n) = ©(n'°8>7)
@ f(n) = O(n'°8t?) = T(n) = O(n'°8»? log n)
Q f(n) = Q(n'°8:2+) for constant ¢ > 0 and af (n/b) < cf(n)
for some constant ¢ < 1= T(n) = ©(f(n))

Examples
e T(n)=3T(n/4)+ O(nlogn)
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Solving recurrences

Theorem (Master Theorem)
Let a>1,b > 1 be constants, and

T(n) = aT(n/b) + f(n)

f(n) = O(n'°8>3=¢) for constant € > 0 = T(n) = ©(n'°8»?)
f(n) = ©(n'°8s2) = T(n) = ©(n'°%s2 log n)
(n

f(n) = Q(n'°8:2+) for constant ¢ > 0 and af(n/b) < cf(n)
for some constant ¢ <1 = T(n) = ©(f(n))

Examples

e T(n)=3T(n/4)+©O(nlogn) a=3,
g(n

,f(n) =nlogn=
Q(n'8+3+02) af (n/b) = 3(n/4)lo

b—4
/4) < nlogn=1-f(n)
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Solving recurrences

Theorem (Master Theorem)
Let a>1,b > 1 be constants, and

T(n) = aT(n/b) + f(n)

f(n) = O(n'°8>3=¢) for constant € > 0 = T(n) = ©(n'°8»?)
f(n) = ©(n'°8s2) = T(n) = ©(n'°%s2 log n)
(n

f(n) = Q(n'°8:2+) for constant ¢ > 0 and af(n/b) < cf(n)
for some constant ¢ <1 = T(n) = ©(f(n))

Examples
e T(n)=3T(n/4)+ O(nlogn) a=3,
g(n

Q(n'843+02), af (n/b) = 3(n/4) lo
= T(n) = ©(nlogn) (Case 3)

b=4,f(n)=nlogn=
/4) < nlogn=1-f(n)
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Divide-and-conquer algorithms

A typical D&C algorithm:
o
@ Divide: Problem is broken into k subproblems (ni, ..., nk)
© Conquer: Solve k subproblems recursively

© Algorithm combines solutions from (3), to output solution
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Divide-and-conquer algorithms

A typical D&C algorithm:
o
@ Divide: Problem is broken into k subproblems (ni, ..., nk)
© Conquer: Solve k subproblems recursively

© Algorithm combines solutions from (3), to output solution

Other examples of D&C: QUICKSORT, counting inversions, integer
multiplication, closest points, ...
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