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Analysis of algorithms

Worst case analysis We try to estimate the largest possible
running time T (N) of the algorithm over all inputs of size N.

Other kinds of analysis: average case analysis, amortized
analysis, best case analysis...
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Analysis of algorithms

Worst case analysis We try to estimate the largest possible
running time T (N) of the algorithm over all inputs of size N.

Recall the tilde approximation T (N) ∼ g(N) from CS 2C03:

lim
N→∞

T (N)

g(N)
= 1

What does this tell us? That T (N) is actually of the form:

T (N) = g(N) + lower order terms...

so that we will have

lim
N→∞

T (N)

g(N)
= lim

N→∞

g(N) + lower order terms...

g(N)

= 1 + lim
N→∞

lower order terms...

g(N)
= 1 + 0 = 1

CS 3AC3



Analysis of algorithms

Worst case analysis We try to estimate the largest possible
running time T (N) of the algorithm over all inputs of size N.

Recall the tilde approximation T (N) ∼ g(N) from CS 2C03:

lim
N→∞

T (N)

g(N)
= 1

What does this tell us? That T (N) is actually of the form:

T (N) = g(N) + lower order terms...

so that we will have

lim
N→∞

T (N)

g(N)
= lim

N→∞

g(N) + lower order terms...

g(N)

= 1 + lim
N→∞

lower order terms...

g(N)
= 1 + 0 = 1

CS 3AC3



Analysis of algorithms

Worst case analysis We try to estimate the largest possible
running time T (N) of the algorithm over all inputs of size N.

Recall the tilde approximation T (N) ∼ g(N) from CS 2C03:

lim
N→∞

T (N)

g(N)
= 1

What does this tell us? That T (N) is actually of the form:

T (N) = g(N) + lower order terms...

so that we will have

lim
N→∞

T (N)

g(N)
= lim

N→∞

g(N) + lower order terms...

g(N)

= 1 + lim
N→∞

lower order terms...

g(N)
= 1 + 0 = 1

CS 3AC3



Analysis of algorithms

Worst case analysis We try to estimate the largest possible
running time T (N) of the algorithm over all inputs of size N.

...i.e., we may not know T (N) exactly, but we need to guess
exactly its highest order component g(N).

For example, if

T (N) = 3N2 + 20
√
N − 40N logN,

we need to guess
g(N) = 3N2.

A guess g(N) = cN2, with some constant c ̸= 3 won’t do!

BIG problem: What if we can guess N2, but not the exact c?
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Analysis of algorithms

Upper bounds. T (n) is O(f (n)) if there exist constants c > 0 and
n0 ≥ 0 such that for all n ≥ n0 we have T (n) ≤ c · f (n).

Lower bounds. T (n) is Ω(f (n)) if there exist constants c > 0 and
n0 ≥ 0 such that for all n ≥ n0 we have T (n) ≥ c · f (n).

Tight bounds. T (n) is Θ(f (n)) if it is both O(f (n)) and Ω(f (n)).

We write T (n) = O(f (n)),T (n) = Ω(f (n)),T (n) = Θ(f (n))
(abuse of notation!).

Our analysis is still asymptotic, since it holds for large
enough n (at least as big as n0).

For input sizes 0 ≤ n < n0 we guarantee nothing!

CS 3AC3



Analysis of algorithms

Upper bounds. T (n) is O(f (n)) if there exist constants c > 0 and
n0 ≥ 0 such that for all n ≥ n0 we have T (n) ≤ c · f (n).

Lower bounds. T (n) is Ω(f (n)) if there exist constants c > 0 and
n0 ≥ 0 such that for all n ≥ n0 we have T (n) ≥ c · f (n).

Tight bounds. T (n) is Θ(f (n)) if it is both O(f (n)) and Ω(f (n)).

We write T (n) = O(f (n)),T (n) = Ω(f (n)),T (n) = Θ(f (n))
(abuse of notation!).

Our analysis is still asymptotic, since it holds for large
enough n (at least as big as n0).

For input sizes 0 ≤ n < n0 we guarantee nothing!

CS 3AC3



Analysis of algorithms

Upper bounds. T (n) is O(f (n)) if there exist constants c > 0 and
n0 ≥ 0 such that for all n ≥ n0 we have T (n) ≤ c · f (n).

Lower bounds. T (n) is Ω(f (n)) if there exist constants c > 0 and
n0 ≥ 0 such that for all n ≥ n0 we have T (n) ≥ c · f (n).

Tight bounds. T (n) is Θ(f (n)) if it is both O(f (n)) and Ω(f (n)).

We write T (n) = O(f (n)),T (n) = Ω(f (n)),T (n) = Θ(f (n))
(abuse of notation!).

Our analysis is still asymptotic, since it holds for large
enough n (at least as big as n0).

For input sizes 0 ≤ n < n0 we guarantee nothing!

CS 3AC3



Analysis of algorithms

Upper bounds. T (n) is O(f (n)) if there exist constants c > 0 and
n0 ≥ 0 such that for all n ≥ n0 we have T (n) ≤ c · f (n).

Lower bounds. T (n) is Ω(f (n)) if there exist constants c > 0 and
n0 ≥ 0 such that for all n ≥ n0 we have T (n) ≥ c · f (n).

Tight bounds. T (n) is Θ(f (n)) if it is both O(f (n)) and Ω(f (n)).

We write T (n) = O(f (n)),T (n) = Ω(f (n)),T (n) = Θ(f (n))
(abuse of notation!).

Our analysis is still asymptotic, since it holds for large
enough n (at least as big as n0).

For input sizes 0 ≤ n < n0 we guarantee nothing!

CS 3AC3



Analysis of algorithms

Upper bounds. T (n) is O(f (n)) if there exist constants c > 0 and
n0 ≥ 0 such that for all n ≥ n0 we have T (n) ≤ c · f (n).

Lower bounds. T (n) is Ω(f (n)) if there exist constants c > 0 and
n0 ≥ 0 such that for all n ≥ n0 we have T (n) ≥ c · f (n).

Tight bounds. T (n) is Θ(f (n)) if it is both O(f (n)) and Ω(f (n)).

We write T (n) = O(f (n)),T (n) = Ω(f (n)),T (n) = Θ(f (n))
(abuse of notation!).

Our analysis is still asymptotic, since it holds for large
enough n (at least as big as n0).

For input sizes 0 ≤ n < n0 we guarantee nothing!

CS 3AC3



Analysis of algorithms

Upper bounds. T (n) is O(f (n)) if there exist constants c > 0 and
n0 ≥ 0 such that for all n ≥ n0 we have T (n) ≤ c · f (n).

Lower bounds. T (n) is Ω(f (n)) if there exist constants c > 0 and
n0 ≥ 0 such that for all n ≥ n0 we have T (n) ≥ c · f (n).

Tight bounds. T (n) is Θ(f (n)) if it is both O(f (n)) and Ω(f (n)).

We write T (n) = O(f (n)),T (n) = Ω(f (n)),T (n) = Θ(f (n))
(abuse of notation!).

Our analysis is still asymptotic, since it holds for large
enough n (at least as big as n0).

For input sizes 0 ≤ n < n0 we guarantee nothing!

CS 3AC3



Asymptotic growth of functions
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Asymptotic analysis of algorithms

Upper bounds. T (n) is O(f (n)) if there exist constants c > 0 and
n0 ≥ 0 such that for all n ≥ n0 we have T (n) ≤ c · f (n).

Lower bounds. T (n) is Ω(f (n)) if there exist constants c > 0 and
n0 ≥ 0 such that for all n ≥ n0 we have T (n) ≥ c · f (n).

Tight bounds. T (n) is Θ(f (n)) if it is both O(f (n)) and Ω(f (n)).

Ex: T (n) = 32n2 + 17n + 32.

T (n) is O(n2),O(n3),Ω(n2),Ω(n), and Θ(n2).

T (n) is not O(n),Ω(n3),Θ(n), or Θ(n3).

T (n) = O(1) means T (n)=constant.

Common meaningless statement:”Any comparison-based
sorting algorithm requires at least O(n log n) comparisons!”
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Properties

Transitivity.

If f = O(g) and g = O(h) then f = O(h).

If f = Ω(g) and g = Ω(h) then f = Ω(h).

If f = Θ(g) and g = Θ(h) then f = Θ(h).

Additivity.

If f = O(h) and g = O(h) then f + g = O(h).

If f = Ω(h) and g = Ω(h) then f + g = Ω(h).

If f = Θ(h) and g = Θ(h) then f + g = Θ(h).

Other.

If f = O(c · h) for some constant c then f = O(h).
Same for Ω,Θ.
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Asymptotic analysis of algorithms

Comparison between O,Ω,Θ estimates and tilde estimates:

Both are asymptotic.

O,Ω,Θ estimates are weaker than tilde estimates:

Theorem

(2.1) Suppose that for two functions f (n) and g(n) we have:

lim
n→∞

f (n)

g(n)
= c

for some constant c. Then f (n) = Θ(cg(n)) = Θ(g(n)).

Proof: By the definition of lim. □
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Asymptotic Bounds for Some Common Functions

Polynomials. a0 + a1n + . . .+ adn
d = Θ(nd) if ad > 0.

Logarithms. O(loga n) = O(logb n) for any constants a, b > 0.

Logarithms. For every x > 0, log n = O(nx).

Exponentials. For every r > 1 and every d > 0, nd = O(rn).
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Examples: Constant time O(1)

Insert(x,A) in an unsorted array A.

FindMin(H) in a heap H.

Find(x,S) in a quick-find Union-Find structure S.
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Examples: Logarithmic time O(log n)

Binary search in a sorted array.

Search(x,T) in a red-black tree T.

Union, Find in a weighted quick-find Union-Find structure.
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Examples: Linear time O(n)

FindMax(A) in an unsorted array A.

Search in a hash table with chaining.

BFS, DFS run in time O(N) = O(n +m)
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Examples: Linearithmetic time O(n log n)

Sorting. MergeSort and HeapSort make O(n log n)
comparisons. We have shown that no comparison-based
sorting alg makes fewer than 1/2(n log n), hence
MergeSort and HeapSort make Θ(n log n) comparisons.

MST takes O(m log n) time by Kruskal’s or Prim’s alg.

Dijstra runs in O(m + n log n) time.
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Examples: Quadratic time O(n2)

Multiplication of 1× N vector with N × N matrix takes
O(N2) arithmetic ops.

Quicksort makes O(n2) comparisons in the worst case. It
also requires Ω(n log n) comparisons (notice the gap).
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Examples: Cubic time O(n3)

Bellman-Ford is O(n3).

(Naive) multiplication of two N × N matrices takes O(N3)
arithmetic ops.

...but can do it with O(N log2 7) ops with Strassen’s alg !!!
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Pseudo-polynomial time

Definition

pseudo /′sōodô/ adj. not genuine; sham.

Example:
Input: Integer n
Output: ’Yes’ if n is prime

Q: Algorithm: Divide n by 2, 3, . . . ,
√
n; if non evenly, then ’Yes’.

Is it polynomial?
A: NO! The input size is s = log2 n, and the running time is

T (s) = O(
√
n) = O(2

log2 n
2 ) = O(

√
2
s
), exponential on the size of

the input.

Bottom line: Always consider the input size! (stay tuned for flow
algorithms, new appreciation for Dijkstra, Kruskal, Prim...)
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Examples: Exponential time

Find a clique of size k in an undirected graph.
Input: Graph G = (V ,E ), an integer k
Output: ’Yes’ if there is a clique with k nodes

Brute force: Try all
(n
k

)
subsets of V ; if clique found, output ’Yes’

Running time: About O(
(n
k

)
) = O(k2 · nk/k!) = O(nk).

In general, our algorithms search a huge (e.g., exponential on the
size of the input) space for a solution; therefore, brute force
searching takes exponential time (worst case).

Big complexity problem: For many problems, our currently best
is brute force. Can we do better?
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The complexity class P

Efficient algorithms: Algorithms that run in polynomial time O(nd)
are much better than brute force, and the only practical(?) ones
(especially when the degree d is small, usually smaller than 3).

Definition

A complexisy class is a set of problems.

Example: All problems that can be solved by an algorithm belong
to the class of Decidable problems. The Halting problem
doesn’t belong to this class.

Definition

P is the class of all problems that can be solved by a polynomial
algorithm.

Example: Essentially all the problems we studied in CS 2C03
belong in P. This is no coincidence: P is the set of problems that
can be solved efficiently.
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Why it matters
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How to analyze algorithms

A typical algorithm:

1 Algorithm makes some decision(s)

2 Problem is broken into k subproblems (n1, . . . , nk)

3 Solve k subproblems recursively

4 Algorithm combines decision(s) from (1) with solutions from
(3), to output solution

Recurrence: T (n) = [work done in (1),(2),(4)] +
k∑

i=1

T (ni )
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Divide-and-conquer algorithms

A typical D&C algorithm:

1 Algorithm makes some decision(s)

2 Divide: Problem is broken into k subproblems (n1, . . . , nk)

3 Conquer: Solve k subproblems recursively

4 Algorithm combines solutions from (3), to output solution

Recurrence: T (n) = [work done in (2),(4)] +
k∑

i=1

T (ni )
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Divide-and-conquer algorithms

Example of D&C: MergeSort

1 Algorithm makes some decision(s)

2 MergeSort(A[1..n2 ]), MergeSort(A[n2 ..n])

3 Merge(A[1..n/2],A[n/2..n])

Recurrence: T (n) = cn + 2T (n/2),T (1) = 0
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Solving recurrences

First method: unrolling the recurrence
Try to find the recurrence pattern by unrolling it:

T (n) = cn + 2T (n/2) (level 1)
= cn + (2c(n/2) + 4T (n/4)) = 2cn + 4T (n/4) (level 2)
= 2cn + (4c(n/4) + 8T (n/8)) = 3cn + 8T (n/8) (level 3)
. . .
= kcn + 2kT (n/2k) (level k)
. . .
= (log n)cn + 2log nT (n/2log n) = cn log n (level log n)

Theorem

T (n) = O(n log n)
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Solving recurrences

Second method: substitution

1 Try to guess the recurrence solution
2 Prove that substituting your guess for the recurrence verifies

the guess

Example: T (n) = cn + 2T (n/2),T (1) = 0

1 We guess that T (n) = O(n log n), i.e., T (n) ≤ kn log n for
some constant k=(?)

2

T (n) = cn + 2T (n/2)

≤ cn + 2k(n/2) log(n/2)

= cn + kn(log n − 1)

= kn log n + cn − kn

≤ kn log n

...provided we pick a k ≥ c .

CS 3AC3



Solving recurrences

Second method: substitution

1 Try to guess the recurrence solution
2 Prove that substituting your guess for the recurrence verifies

the guess

Example: T (n) = cn + 2T (n/2),T (1) = 0

1 We guess that T (n) = O(n log n), i.e., T (n) ≤ kn log n for
some constant k=(?)

2

T (n) = cn + 2T (n/2)

≤ cn + 2k(n/2) log(n/2)

= cn + kn(log n − 1)

= kn log n + cn − kn

≤ kn log n

...provided we pick a k ≥ c .

CS 3AC3



Solving recurrences

Second method: substitution

1 Try to guess the recurrence solution
2 Prove that substituting your guess for the recurrence verifies

the guess

Example: T (n) = cn + 2T (n/2),T (1) = 0

1 We guess that T (n) = O(n log n), i.e., T (n) ≤ kn log n for
some constant k=(?)

2

T (n) = cn + 2T (n/2)

≤ cn + 2k(n/2) log(n/2)

= cn + kn(log n − 1)

= kn log n + cn − kn

≤ kn log n

...provided we pick a k ≥ c .

CS 3AC3



Solving recurrences

Second method: substitution

1 Try to guess the recurrence solution
2 Prove that substituting your guess for the recurrence verifies

the guess

Example: T (n) = cn + 2T (n/2),T (1) = 0

1 We guess that T (n) = O(n log n), i.e., T (n) ≤ kn log n for
some constant k=(?)

2

T (n) = cn + 2T (n/2)

≤ cn + 2k(n/2) log(n/2)

= cn + kn(log n − 1)

= kn log n + cn − kn

≤ kn log n

...provided we pick a k ≥ c .

CS 3AC3



Solving recurrences

Theorem (Master Theorem)

Let a ≥ 1, b > 1 be constants, and

T (n) = aT (n/b) + f (n)

1 f (n) = O(nlogb a−ε) for constant ε > 0 ⇒ T (n) = Θ(nlogb a)

2 f (n) = Θ(nlogb a) ⇒ T (n) = Θ(nlogb a log n)

3 f (n) = Ω(nlogb a+ε) for constant ε > 0 and af (n/b) ≤ cf (n)
for some constant c < 1 ⇒ T (n) = Θ(f (n))

Examples

T (n) = 2T (n/2) + Θ(n)
a = 2, b = 2, f (n) = Θ(n) = Θ(nlog22)
⇒ T (n) = Θ(nlog22 log n) = Θ(n log n) (Case 2)
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Examples

T (n) = 3T (n/4) + Θ(n log n)

a = 3, b = 4, f (n) = n log n =
Ω(nlog43+0.2), af (n/b) = 3(n/4) log(n/4) < n log n = 1 · f (n)
⇒ T (n) = Θ(n log n) (Case 3)
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Divide-and-conquer algorithms

A typical D&C algorithm:

1 Algorithm makes some decision(s)

2 Divide: Problem is broken into k subproblems (n1, . . . , nk)

3 Conquer: Solve k subproblems recursively

4 Algorithm combines solutions from (3), to output solution

Other examples of D&C: QuickSort, counting inversions, integer
multiplication, closest points, ...

CS 3AC3



Divide-and-conquer algorithms

A typical D&C algorithm:

1 Algorithm makes some decision(s)

2 Divide: Problem is broken into k subproblems (n1, . . . , nk)

3 Conquer: Solve k subproblems recursively

4 Algorithm combines solutions from (3), to output solution

Other examples of D&C: QuickSort, counting inversions, integer
multiplication, closest points, ...

CS 3AC3


