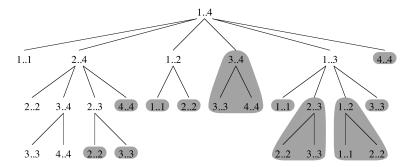
Have we being doing too much work in our recursions?



Have we being doing too much work in our recursions?



## Solving optimization (maximization or minimization) problems

• Characterize the structure of an optimal solution.



- Characterize the structure of an optimal solution.
- **2** Recursively define the value of an optimal solution.



- Characterize the structure of an optimal solution.
- **②** Recursively define the value of an optimal solution.
- Sompute the value of an optimal solution.

- Characterize the structure of an optimal solution.
- **②** Recursively define the value of an optimal solution.
- Sompute the value of an optimal solution.
- **One Second Seco**

# Solving optimization (maximization or minimization) problems

- Characterize the structure of an optimal solution.
- **②** Recursively define the value of an optimal solution.
- Sompute the value of an optimal solution.
- **One Second Seco**

Step 4 is **not needed** if want only the value of the optimal solution.

Characterize the structure of an optimal solution.



## Characterize the structure of an optimal solution.

Divide-and-conquer algorithms:

- **I** No choice to define subproblems (e.g. split in halves).
- Optimal solution of (the many) subproblems.
- **③** A theorem that combines (2)  $\Rightarrow$  Optimal solution.

#### Characterize the structure of an optimal solution. Greedy algorithms:

- **Greedy** choice (out of many) defines subproblem.
- **②** Optimal solution of (the one) subproblem.
- **3** A theorem that combines  $(1) + (2) \Rightarrow$  Optimal solution.

#### Characterize the structure of an optimal solution. Dynamic Programming:

- Best choice (out of many) defines subproblems.
- Optimal solution of (the many) subproblems.
- **3** A theorem that combines  $(1) + (2) \Rightarrow$  Optimal solution.

Recursively define the value of an optimal solution.



Characterize the structure of an optimal solution.

Recursively define the value of an optimal solution.

Divide-and conquer:

e.g. 
$$OPT(P) = OPT(P/2) \uplus OPT(P/2)$$



Characterize the structure of an optimal solution.

Recursively define the value of an optimal solution.

Greedy:

OPT(P) = cost(g) + OPT(SP(g)), for greedy choice g.

Characterize the structure of an optimal solution.

Recursively define the value of an optimal solution.

DP:

 $OPT(P) = cost(b) + OPT(SP_1(b)) + \ldots + OPT(SP_k(b))$ , for best b.



Characterize the structure of an optimal solution.

Recursively define the value of an optimal solution.

DP:

 $OPT(P) = cost(b) + OPT(SP_1(b)) + \ldots + OPT(SP_k(b))$ , for best b.

**Q:** Wait a minute...which choice is the best choice b???

Recursively define the value of an optimal solution.

DP:

 $OPT(P) = cost(b) + OPT(SP_1(b)) + \ldots + OPT(SP_k(b))$ , for best b.

**Q:** Wait a minute...which choice is the best choice *b*??? **A:** *I* don't know!

Recursively define the value of an optimal solution.

DP:

 $OPT(P) = cost(b) + OPT(SP_1(b)) + \ldots + OPT(SP_k(b))$ , for best b.

**Q:** Wait a minute...which choice is the best choice *b*??? **A:** *I* don't know! Try them all and pick the one that gives you the best solution !

Characterize the structure of an optimal solution.

Recursively define the value of an optimal solution.

DP:

$$OPT(P) = \min_{b} \{ cost(b) + OPT(SP_1(b)) + \ldots + OPT(SP_k(b)) \}$$

Recursively define the value of an optimal solution.



Recursively define the value of an optimal solution.

**Compute** the value of an optimal solution.



Recursively define the value of an optimal solution.

**Compute** the value of an optimal solution.

Solution 1: We have the recursion, implement recursive (or iterative) algorithm.



Recursively define the value of an optimal solution.

Compute the value of an optimal solution.

Solution 1: We have the recursion, implement recursive (or iterative) algorithm.

Solution 2 (only for DP): Implement recursive algorithm but also use a **table** with optimal values of subproblems we have already solved.

Recursively define the value of an optimal solution.

**Compute** the value of an optimal solution.

**Construct** an optimal solution from computed information.

Recursively define the value of an optimal solution.

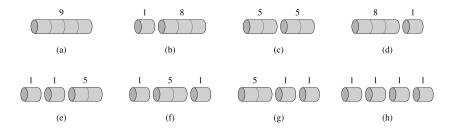
**Compute** the value of an optimal solution.

**Construct** an optimal solution from computed information.

Solution: Keep track of the best choice *b* in the recursion every time you find it!

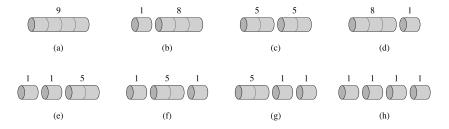
#### Example: ROD-CUTTING

| length <i>i</i> | 1 | 2 | 3 | 4 | 5  | 6  | 7  | 8  | 9  | 10 |
|-----------------|---|---|---|---|----|----|----|----|----|----|
| price $p_i$     | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |



#### Example: ROD-CUTTING

| length <i>i</i> | 1 | 2 | 3 | 4 | 5  | 6  | 7  | 8  | 9  | 10 |
|-----------------|---|---|---|---|----|----|----|----|----|----|
| price $p_i$     | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |



**Note:** There are  $2^{n-1}$  ways to cut a rod of length *n*.

#### Step 1: Characterize the structure of an optimal solution.

Optimal break:  $i_1 + i_2 + \ldots + i_k = n$ Optimal revenue:  $p_{i_1} + p_{i_2} + \ldots + p_{i_k} = r_n$ 



#### Step 1: Characterize the structure of an optimal solution.

Optimal break:  $i_1 + i_2 + \ldots + i_k = n$ Optimal revenue:  $p_{i_1} + p_{i_2} + \ldots + p_{i_k} = r_n$ 

 $\Rightarrow$  Best first cut of length *i* + optimal cutting of rest *n* - *i* 



#### Step 1: Characterize the structure of an optimal solution.

- Optimal break:  $i_1 + i_2 + \ldots + i_k = n$ Optimal revenue:  $p_{i_1} + p_{i_2} + \ldots + p_{i_k} = r_n$
- $\Rightarrow$  Best first cut of length *i* + optimal cutting of rest *n i*

Step 2: Recursively define the value of an optimal solution.

$$r_0 = 0, \quad r_n = \max_{1 \le i \le n} \{p_i + r_{n-i}\}$$

#### Step 3: Compute the value of an optimal solution.

```
CUT-ROD(p, n)

if n == 0

return 0

q = -\infty

for i = 1 to n

q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))

return q
```

\_\_\_\_ ▶

#### Step 3: Compute the value of an optimal solution.

```
CUT-ROD(p, n)

if n == 0

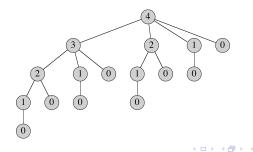
return 0

q = -\infty

for i = 1 to n

q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))

return q
```



#### Step 3: Compute the value of an optimal solution.

CUT-ROD(p, n)if n == 0return 0  $q = -\infty$ for i = 1 to n  $q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))$ return q

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j)$$

- ∢ ⊒ →

▲ 同 ▶ ▲ 三 ▶

э

#### Step 3: Compute the value of an optimal solution.

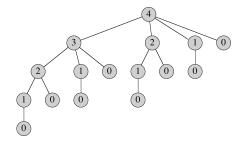
CUT-ROD(p, n)if n == 0return 0  $q = -\infty$ for i = 1 to n  $q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))$ return q

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j) \Rightarrow T(n) = 2^n$$

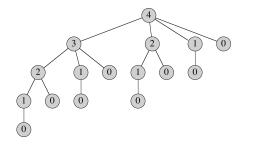
- ∢ ⊒ →

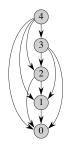
▲ 同 ▶ ▲ 三 ▶

э



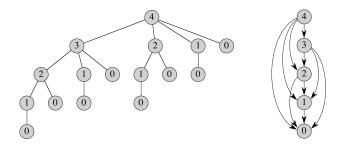






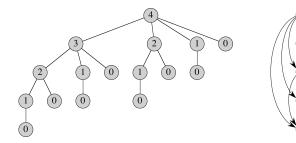
・ 「 「 」 ・ 「 日 ト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日 ト

#### CS/SE2C03



MEMOIZED-CUT-ROD-AUX(p, n, r)if  $r[n] \geq 0$ return r[n]MEMOIZED-CUT-ROD(p, n)**if** n == 0let r[0...n] be a new array q = 0for i = 0 to nelse  $q = -\infty$  $r[i] = -\infty$ for i = 1 to n**return** MEMOIZED-CUT-ROD-AUX(p, n, r) $q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))$ r[n] = qreturn q <ロト < 同ト < 三ト ∃ > э

#### CS/SE2C03



```
MEMOIZED-CUT-ROD-AUX(p, n, r)

if r[n] \ge 0

return r[n]

if n = 0

q = 0

else q = -\infty

for i = 1 to n

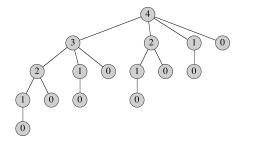
q = \max(q, p[i] + MEMOIZED-CUT-ROD-AUX(p, n - i, r))

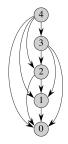
r[n] = q

return q
```

< □ > <

э

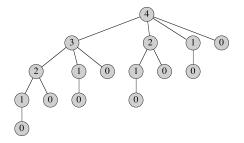


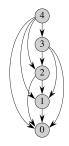


< 同 ▶

æ

Ξ.





MEMOIZED-CUT-ROD-AUX(p, n, r)BOTTOM-UP-CUT-ROD(p, n)if  $r[n] \geq 0$ let r[0..n] be a new array return r[n]r[0] = 0**if** n == 0for j = 1 to nq = 0 $q = -\infty$ else  $q = -\infty$ for i = 1 to jfor i = 1 to n $q = \max(q, p[i] + r[j - i])$  $q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))$ r[j] = qr[n] = qreturn r[n] return q < □ > < 同 > < 回 > 

Step 4: **Construct** an optimal solution from computed information.



# Step 4: **Construct** an optimal solution from computed information.

BOTTOM-UP-CUT-ROD(p, n)let r[0 . . n] be a new array r[0] = 0for j = 1 to n  $q = -\infty$ for i = 1 to j  $q = \max(q, p[i] + r[j - i])$  r[j] = qreturn r[n]

EXTENDED-BOTTOM-UP-CUT-ROD (p, n)let r[0 ...n] and s[0 ...n] be new arrays r[0] = 0for j = 1 to n  $q = -\infty$ for i = 1 to jif q < p[i] + r[j - i] q = p[i] + r[j - i] s[j] = i r[j] = qreturn r and s

# Step 4: **Construct** an optimal solution from computed information.

EXTENDED-BOTTOM-UP-CUT-ROD(p, n)BOTTOM-UP-CUT-ROD(p, n)let  $r[0 \dots n]$  and  $s[0 \dots n]$  be new arrays let r[0...n] be a new array r[0] = 0r[0] = 0for j = 1 to nfor j = 1 to n $a = -\infty$  $q = -\infty$ for i = 1 to jfor i = 1 to j**if** q < p[i] + r[j - i] $q = \max(q, p[i] + r[j - i])$ q = p[i] + r[j - i]s[i] = ir[j] = q**return** *r*[*n*] r[j] = qreturn r and s 1 2 3 4 5 i 0 6 7 8 9 10 0 1 5 8 10 13 17 18 22 25 30 r[i]1 s[i]2 3 2 2 0 6 1 2 3 10

### Assumption

No negative cycles



-<⊡> <≣>

문 문 문

#### Assumption

No negative cycles

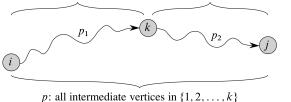
**Input:** Directed G = (V, E),  $n \times n$  weights matrix  $W = [w_{ij}]$ **Output:**  $n \times n$  **distance** matrix  $D = [d_{i,j}]$ , and **predecessor** matrix  $\Pi = [\pi_{ij}]$ 



Step 1: Structure of shortest paths.

#### Step 1: Structure of shortest paths.

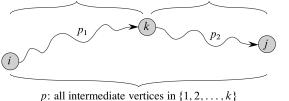
all intermediate vertices in  $\{1, 2, ..., k - 1\}$  all intermediate vertices in  $\{1, 2, ..., k - 1\}$ 





#### Step 1: Structure of shortest paths.

all intermediate vertices in  $\{1, 2, ..., k - 1\}$  all intermediate vertices in  $\{1, 2, ..., k - 1\}$ 



Step 2: Recursively define the value of an optimal solution.

$$egin{aligned} d_{ij}^{(0)} &= w_{ij} \ d_{ij}^{(k)} &= \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}, \ \ k \geq 1 \end{aligned}$$

### Step 3: Compute the value of an optimal solution.

FLOYD-WARSHALL(W, n)  

$$D^{(0)} = W$$
for  $k = 1$  to n  
let  $D^{(k)} = (d_{ij}^{(k)})$  be a new  $n \times n$  matrix  
for  $i = 1$  to n  
for  $j = 1$  to n  
 $d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$   
return  $D^{(n)}$ 

#### Step 3: **Compute** the value of an optimal solution.

FLOYD-WARSHALL 
$$(W, n)$$
  
 $D^{(0)} = W$   
for  $k = 1$  to  $n$   
let  $D^{(k)} = (d_{ij}^{(k)})$  be a new  $n \times n$  matrix  
for  $i = 1$  to  $n$   
for  $j = 1$  to  $n$   
 $d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$   
return  $D^{(n)}$ 

Step 4: **Construct** an optimal solution from computed information.

$$\pi_{ij}^{(0)} = \begin{cases} NIL, & (i=j) \lor (w_{ij} = \infty) \\ i, & (i \neq j) \land (w_{ij} < \infty) \end{cases}$$
  
$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)}, & \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\} = d_{ij}^{(k-1)} \\ \pi_{kj}^{(k-1)}, & \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \end{cases}$$

**Input:** Directed G = (V, E)**Output:** Directed  $G = (V, E^*)$  where

 $E^* = \{(i, j) : \text{there is a path from } i \text{ to } j \text{ in } G\}$ 



**Input:** Directed G = (V, E)**Output:** Directed  $G = (V, E^*)$  where

 $E^* = \{(i, j) : \text{there is a path from } i \text{ to } j \text{ in } G\}$ 

Can apply Floyd-Warshall indirectly, or directly:

$$\begin{split} t^{(0)}_{ij} &= \begin{cases} 1, & (i=j) \lor ((i,j) \in E) \\ 0, & (i \neq j) \land ((i,j) \notin E) \end{cases} \\ t^{(k)}_{ij} &= t^{(k-1)}_{ij} \lor (t^{(k-1)}_{ik} \land t^{(k-1)}_{kj}), \quad k \geq 1 \end{split}$$

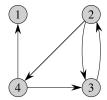
**Input:** Directed G = (V, E)**Output:** Directed  $G = (V, E^*)$  where

 $E^* = \{(i, j) : \text{there is a path from } i \text{ to } j \text{ in } G\}$ 

Can apply Floyd-Warshall indirectly, or directly:

$$t_{ij}^{(0)} = \begin{cases} 1, & (i = j) \lor ((i, j) \in E) \\ 0, & (i \neq j) \land ((i, j) \notin E) \end{cases}$$
  
$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \lor (t_{ik}^{(k-1)} \land t_{kj}^{(k-1)}), \quad k \ge 1$$

(compare to 
$$d_{ij}^{(k)} = \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}$$
)



CS/SE2C03