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Dynamic Programming (DP)

Solving optimization (maximization or minimization)
problems

1 Characterize the structure of an optimal solution.

2 Recursively define the value of an optimal solution.

3 Compute the value of an optimal solution.

4 Construct an optimal solution from computed information.

Step 4 is not needed if want only the value of the optimal
solution.
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Dynamic Programming (DP)

Characterize the structure of an optimal solution.

Divide-and-conquer algorithms:

1 No choice to define subproblems (e.g. split in halves).

2 Optimal solution of (the many) subproblems.

3 A theorem that combines (2) ⇒ Optimal solution.
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Dynamic Programming (DP)

Characterize the structure of an optimal solution.
Greedy algorithms:

1 Greedy choice (out of many) defines subproblem.

2 Optimal solution of (the one) subproblem.

3 A theorem that combines (1) + (2) ⇒ Optimal solution.
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Dynamic Programming (DP)

Characterize the structure of an optimal solution.
Dynamic Programming:

1 Best choice (out of many) defines subproblems.

2 Optimal solution of (the many) subproblems.

3 A theorem that combines (1) + (2) ⇒ Optimal solution.
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Dynamic Programming (DP)

Characterize the structure of an optimal solution.

Recursively define the value of an optimal solution.

Divide-and conquer:

e.g . OPT (P) = OPT (P/2) ] OPT (P/2)

CS/SE2C03



Dynamic Programming (DP)

Characterize the structure of an optimal solution.
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Dynamic Programming (DP)

Characterize the structure of an optimal solution.

Recursively define the value of an optimal solution.

Greedy:

OPT (P) = cost(g) + OPT (SP(g)), for greedy choice g .
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Dynamic Programming (DP)

Characterize the structure of an optimal solution.

Recursively define the value of an optimal solution.

DP:

OPT (P) = cost(b)+OPT (SP1(b))+. . .+OPT (SPk(b)), for best b.

Q: Wait a minute...which choice is the best choice b???
A: I don’t know! Try them all and pick the one that gives you the
best solution !
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Dynamic Programming (DP)

Characterize the structure of an optimal solution.

Recursively define the value of an optimal solution.

DP:

OPT (P) = min
b
{cost(b) + OPT (SP1(b)) + . . .+ OPT (SPk(b))}
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Dynamic Programming (DP)

Characterize the structure of an optimal solution.

Recursively define the value of an optimal solution.

Compute the value of an optimal solution.

Solution 1: We have the recursion, implement recursive (or
iterative) algorithm.
Solution 2 (only for DP): Implement recursive algorithm but also
use a table with optimal values of subproblems we have already
solved.
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Dynamic Programming (DP)

Characterize the structure of an optimal solution.

Recursively define the value of an optimal solution.

Compute the value of an optimal solution.

Construct an optimal solution from computed information.

Solution: Keep track of the best choice b in the recursion every
time you find it!
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Characterize the structure of an optimal solution.

Recursively define the value of an optimal solution.

Compute the value of an optimal solution.

Construct an optimal solution from computed information.

Solution: Keep track of the best choice b in the recursion every
time you find it!
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Dynamic Programming (DP)

Example: Rod-Cutting

Note: There are 2n−1 ways to cut a rod of length n.
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Example: Rod-Cutting

Note: There are 2n−1 ways to cut a rod of length n.
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Dynamic Programming (DP)

Step 1: Characterize the structure of an optimal solution.

Optimal break: i1 + i2 + . . .+ ik = n
Optimal revenue: pi1 + pi2 + . . .+ pik = rn

⇒ Best first cut of length i + optimal cutting of rest n − i

Step 2: Recursively define the value of an optimal solution.

r0 = 0, rn = max
1≤i≤n

{pi + rn−i}
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Dynamic Programming (DP)

Step 3: Compute the value of an optimal solution.
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Dynamic Programming (DP)

Step 3: Compute the value of an optimal solution.

T (n) = 1 +
n−1∑
j=0

T (j)

⇒ T (n) = 2n
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Dynamic Programming (DP)

Step 3: Compute the value of an optimal solution.

T (n) = 1 +
n−1∑
j=0

T (j)⇒ T (n) = 2n
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Dynamic Programming (DP)

Step 4: Construct an optimal solution from computed
information.

i 0 1 2 3 4 5 6 7 8 9 10

r [i ] 0 1 5 8 10 13 17 18 22 25 30
s[i ] 0 1 2 3 2 2 6 1 2 3 10
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DP application: All-Pairs Shortest Paths

Assumption

No negative cycles

Input: Directed G = (V ,E ), n× n weights matrix W = [wij ]

Output: n × n distance matrix D = [di ,j ], and predecessor
matrix Π = [πij ]
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DP application: All-Pairs Shortest Paths

Step 1: Structure of shortest paths.

Step 2: Recursively define the value of an optimal solution.

d
(0)
ij = wij

d
(k)
ij = min{d (k−1)

ij , d
(k−1)
ik + d

(k−1)
kj }, k ≥ 1
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DP application: All-Pairs Shortest Paths

Step 3: Compute the value of an optimal solution.

Step 4: Construct an optimal solution from computed
information.

π
(0)
ij =

{
NIL, (i = j) ∨ (wij =∞)
i , (i 6= j) ∧ (wij <∞)

π
(k)
ij =

{
π
(k−1)
ij , min{d (k−1)

ij , d
(k−1)
ik + d

(k−1)
kj } = d

(k−1)
ij

π
(k−1)
kj , min{d (k−1)

ij , d
(k−1)
ik + d

(k−1)
kj } = d

(k−1)
ik + d

(k−1)
kj
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DP application: Transitive closure

Input: Directed G = (V ,E )

Output: Directed G = (V ,E ∗) where

E ∗ = {(i , j) : there is a path from i to j in G}

Can apply Floyd-Warshall indirectly, or directly:

t
(0)
ij =

{
1, (i = j) ∨ ((i , j) ∈ E )
0, (i 6= j) ∧ ((i , j) /∈ E )

t
(k)
ij = t

(k−1)
ij ∨ (t

(k−1)
ik ∧ t

(k−1)
kj ), k ≥ 1

(compare to d
(k)
ij = min{d (k−1)

ij , d
(k−1)
ik + d

(k−1)
kj })
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