
Greedy algorithms

A typical algorithm:

1 Make some decision(s)

2 Problem is broken into k subproblems (n1, . . . , nk)

3 Solve k subproblems recursively

4 Combine decision(s) from (1) with solutions from (3), to
output solution
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Greedy algorithms

Greedy:

1 Make greedy choice g

2 Problem is reduced into one subproblem

3 Solve subproblem recursively ⇒ SOLsub
4 Combine choice from (1) with solution from (3), to output

solution SOL
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Greedy algorithms

Greedy:

1 Make greedy choice g

2 Problem is reduced into one subproblem

3 Solve subproblem recursively ⇒ SOLsub
4 Combine choice from (1) with solution from (3), to output

solution SOL

Correctness:

Theorem

If we have that

1 greedy choice g is part of an OPT solution

2 SOL = g ∪ SOLsub is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).
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Greedy algorithms: Correctness

Theorem

If we have that

1 greedy choice g is part of an OPT solution

2 SOL= g∪SOLsubis a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Proof: By induction on the input size:

n = 1 : From (1), SOL= g =OPT .
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Greedy algorithms: Correctness

Theorem

If we have that

1 greedy choice g is part of an OPT solution

2 SOL= g∪SOLsubis a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Proof: By induction on the input size:

n = k : Up to size k , Greedy computes OPT .
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Greedy algorithms: Correctness

Theorem

If we have that

1 greedy choice g is part of an OPT solution

2 SOL= g∪SOLsubis a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Proof: By induction on the input size:

n = k + 1 : Because of inductive step, SOLsub is optimal
solution of the subproblem in Greedy.

|OPTsub|≥|SOLsub| (SOLsub is optimal for subproblem)
⇒ cost(g)+|OPTsub|≥ cost(g)+|SOLsub|
⇒ |OPT |≥|SOL| (combination is feasible from (2))
⇒ |OPT |=|SOL|
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Greedy algorithms: Correctness

Theorem

If we have that

1 greedy choice g is part of an OPT solution

2 SOL= g∪SOLsubis a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Observations:

Usually (2) is trivial, Greedy is designed to satisfy it.

Here are two approaches to prove (1):
1 Show that Greedy is always ahead (i.e., partial solution built

with greedy choices is better than any other partial solution,
up to the end).

2 Show that from any OPT solution (where greedy choice g
may not be the first one), we can derive another optimal
solution OPT ′ where g is its first choice, performing a series of
exchanges.
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