A typical algorithm:

Make some decision(s)

- Make some decision(s)
- **2** Problem is broken into k subproblems (n_1, \ldots, n_k)

- Make some decision(s)
- **2** Problem is broken into k subproblems (n_1, \ldots, n_k)
- Solve *k* subproblems recursively

- Make some decision(s)
- **2** Problem is broken into k subproblems (n_1, \ldots, n_k)
- Solve k subproblems recursively
- Combine decision(s) from (1) with solutions from (3), to output solution

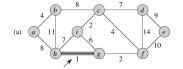
GREEDY:

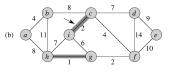
1	Make	greedy	cho	ice g	5
---	------	--------	-----	-------	---

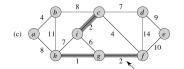
- Make greedy choice g
- Problem is reduced into one subproblem

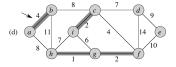
- Make greedy choice g
- Problem is reduced into one subproblem
- Solve subproblem recursively \Rightarrow *SOL*_{sub}

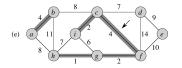
- Make greedy choice g
- Problem is reduced into one subproblem
- Solve subproblem recursively \Rightarrow *SOL*_{sub}
- Combine choice from (1) with solution from (3), to output solution SOL

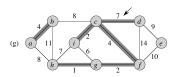


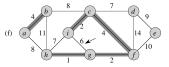


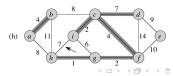








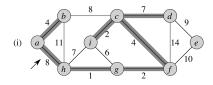


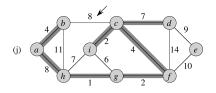


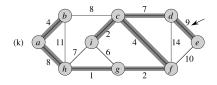
Э

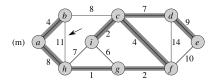
æ

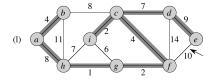
CS 3AC3

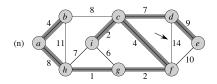












- Make greedy choice g
- Problem is reduced into one subproblem
- Solve subproblem recursively \Rightarrow *SOL*_{sub}
- Combine choice from (1) with solution from (3), to output solution SOL

GREEDY:

- Make greedy choice g
- Problem is reduced into one subproblem
- Solve subproblem recursively \Rightarrow *SOL*_{sub}
- Combine choice from (1) with solution from (3), to output solution SOL

Correctness:

Theorem

If we have that

1 greedy choice g is part of an **OPT** solution

2 $SOL = g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Theorem

If we have that

- **1** greedy choice g is part of an **OPT** solution
- **2** SOL= $g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Theorem

If we have that

- **1** greedy choice g is part of an **OPT** solution
- **2** SOL= $g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Theorem

If we have that

- **1** greedy choice g is part of an **OPT** solution
- **2** SOL= $g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Proof: By induction on the input size:

• n = 1: From (1), SOL = g = OPT.

Theorem

If we have that

- **1** greedy choice g is part of an **OPT** solution
- **2** SOL= $g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Proof: By induction on the input size:

• n = k: Up to size k, GREEDY computes OPT.

Theorem

If we have that

- **1** greedy choice g is part of an **OPT** solution
- **2** SOL= $g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Proof: By induction on the input size:

n = k + 1 : Because of inductive step, SOL_{sub} is optimal solution of the subproblem in GREEDY.

Theorem

If we have that

- **1** greedy choice g is part of an **OPT** solution
- **2** SOL= $g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

- n = k + 1 : Because of inductive step, SOL_{sub} is optimal solution of the subproblem in GREEDY.
- $|OPT_{sub}| \ge |SOL_{sub}|$ (SOL_{sub} is optimal for subproblem)

Theorem

If we have that

- **1** greedy choice g is part of an **OPT** solution
- **2** SOL= $g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

- n = k + 1 : Because of inductive step, SOL_{sub} is optimal solution of the subproblem in GREEDY.
- $|OPT_{sub}| \ge |SOL_{sub}|$ (SOL_{sub} is optimal for subproblem) $\Rightarrow cost(g) + |OPT_{sub}| \ge cost(g) + |SOL_{sub}|$

Theorem

If we have that

- **1** greedy choice g is part of an **OPT** solution
- **2** SOL= $g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

- n = k + 1 : Because of inductive step, SOL_{sub} is optimal solution of the subproblem in GREEDY.
- $|OPT_{sub}| \ge |SOL_{sub}|$ (SOL_{sub} is optimal for subproblem) $\Rightarrow cost(g) + |OPT_{sub}| \ge cost(g) + |SOL_{sub}|$ $\Rightarrow |OPT| \ge |SOL|$ (combination is feasible from (2))

Theorem

If we have that

- **1** greedy choice g is part of an **OPT** solution
- **2** SOL= $g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

- n = k + 1 : Because of inductive step, SOL_{sub} is optimal solution of the subproblem in GREEDY.
- $|OPT_{sub}| \ge |SOL_{sub}|$ (SOL_{sub} is optimal for subproblem) $\Rightarrow cost(g) + |OPT_{sub}| \ge cost(g) + |SOL_{sub}|$ $\Rightarrow |OPT| \ge |SOL|$ (combination is feasible from (2)) $\Rightarrow |OPT| = |SOL|$

Theorem

If we have that

- greedy choice g is part of an OPT solution
- **2** SOL= $g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Theorem

If we have that

- **1** greedy choice g is part of an **OPT** solution
- **2** SOL= $g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Observations:

 \bullet Usually (2) is trivial, GREEDY is designed to satisfy it.

Theorem

If we have that

- **1** greedy choice g is part of an **OPT** solution
- **2** SOL= $g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

- Usually (2) is trivial, GREEDY is designed to satisfy it.
- Here are two approaches to prove (1):

Theorem

If we have that

- greedy choice g is part of an OPT solution
- **2** SOL= $g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

- Usually (2) is trivial, GREEDY is designed to satisfy it.
- Here are two approaches to prove (1):
 - Show that GREEDY is always ahead (i.e., partial solution built with greedy choices is better than any other partial solution, up to the end).

Theorem

If we have that

- **1** greedy choice g is part of an **OPT** solution
- **2** SOL= $g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

- Usually (2) is trivial, GREEDY is designed to satisfy it.
- Here are two approaches to prove (1):
 - Show that GREEDY is always ahead (i.e., partial solution built with greedy choices is better than any other partial solution, up to the end).
 - Show that from any OPT solution (where greedy choice g may not be the first one), we can derive another optimal solution OPT' where g is its first choice, performing a series of exchanges.